L_p -theory for second order elliptic operators with complex coefficients

H. Vogt

The aim of the talk is to show how one can associate the (minus) generator of a C_0 -semigroup on $L_p(\Omega)$ with the formal differential expression

$$\mathcal{L} = -\nabla \cdot (a\nabla) + b_1 \cdot \nabla + \nabla \cdot b_2 + q$$

on an open set $\Omega \subseteq \mathbb{R}^n$, with *complex* measurable coefficients $a: \Omega \to \mathbb{C}^{N \times N}$, $b_1, b_2: \Omega \to \mathbb{C}^N$ and $q: \Omega \to \mathbb{C}$.

Under suitable conditions on the coefficients, one can use Kato's representation theorem for sectorial forms to associate an *m*-sectorial operator A_2 in $L_2(\Omega)$ with the expression \mathcal{L} . The question then is to what L_p -spaces the C_0 -semigroup e^{-tA_2} extrapolates. We also discuss the case that the sesquilinear form associated with \mathcal{L} is not sectorial, in which one does not necessarily obtain a C_0 -semigroup on $L_2(\Omega)$.

The talk is based on joint work with A.F.M. ter Elst, Z. Sobol and V. Liskevich.