Rational discrete analytic functions

D. Volok

A function $f: \mathbb{Z}^{2} \longrightarrow \mathbb{C}$ is said to be discrete analytic if

$$
\frac{f(x+1, y+1)-f(x, y)}{1+i}=\frac{f(x, y+1)-f(x+1, y)}{i-1} \quad \forall x, y \in \mathbb{Z}
$$

This notion of discrete analyticity, developed by J. Ferrand (Lelong), R.J. Duffin and others, has many analogies with the classical continuous theory. However, there is also a notable difference: the pointwise product of two discrete analytic functions is not necessarily discrete analytic. For example, the functions $z=x+y i$ and $z^{2}=x^{2}-y^{2}+2 x y i$ are discrete analytic but the function $z^{3}=x^{3}-3 x y^{2}+3 x^{2} y i-y^{3} i$ is not. Nevertheless, one can show that for every polynomial $p(x)$ there is a unique discrete analytic polynomial $P(x, y)$ such that $P(x, 0)=p(x) \forall x \in \mathbb{Z}$.

We shall discuss a generalization of this result for rational functions.
The talk is based on a joint work with D. Alpay.

