On invariant subspaces of absolutely (p, q)-summing operators

G. Wanjala

Let $1 \leq p, q<\infty$ and let T be a bounded linear operator acting on a Krein space \mathcal{K}. We say that the operator T is absolutely (p, q)-summing if there exists a constant $c>0$ for which

$$
\left(\sum_{i=1}^{n}\left\|T k_{i}\right\|^{p}\right)^{1 / p} \leq c \cdot \sup \left\{\left(\sum_{i=1}^{n}\left|\left\langle k_{i}, k\right\rangle\right|^{q}\right)^{1 / q}: k \in \mathcal{K},\|k\| \leq 1\right\}
$$

irrespective of how we choose a finite collection $\left\{k_{1}, k_{2}, \ldots, k_{n}\right\}$ of vectors in \mathcal{K}. These operators form a linear subspace of $B(\mathcal{K})$, the class of all bounded linear operators acting on \mathcal{K}, which we denote by $\Pi_{p, q}(\mathcal{K})$. The smallest constant c for which the above inequality holds is denoted by $\pi_{p, q}(T)$. Existence of a maximal negative invariant subspace for $T \in \Pi_{p, q}(\mathcal{K})$ with $\pi_{p, q}(T) \leq 1$ will be discussed.

