The pair of operators $T^{[*]} T$ and $T T^{[*]}$; J-dilations and canonical forms

M. Wojtylak

We will describe a procedure of dilating an operator in an infinite dimensional Krein space. Namely, let $\mathcal{H}_{0}, \mathcal{K}_{0}, \mathcal{H}, \mathcal{K}$ be Krein spaces. We say that an operator $T \in \mathbf{B}(\mathcal{H}, \mathcal{K})$ is an J-dilation of $T_{0} \in \mathbf{B}\left(\mathcal{H}_{0}, \mathcal{K}_{0}\right)$ if the following three conditions are satisfied:
(i) \mathcal{H}_{0} is a subspace of $\mathcal{H}, \mathcal{K}_{0}$ is a subspace of \mathcal{K}.
(ii) There exist subspaces \mathcal{H}_{i} of \mathcal{H} and \mathcal{K}_{i} of $\mathcal{K}(i=1,2,3)$ such that

$$
\mathcal{H}=\mathcal{H}_{0}\left[H \mathcal{H}_{1} H\right]\left(\mathcal{H}_{2}+\mathcal{H}_{3}\right), \quad \mathcal{K}=\mathcal{K}_{0} H \mathcal{K}_{1} H\left(\mathcal{K}_{2}+\mathcal{K}_{3}\right),
$$

where \mathcal{H}_{1} and \mathcal{K}_{1} are Krein spaces, \mathcal{H}_{2} and $\mathcal{H}_{3}\left(\mathcal{K}_{2}\right.$ and $\left.\mathcal{K}_{3}\right)$ are skewly linked neutral spaces such that $\mathcal{H}_{2}+\mathcal{H}_{3}\left(\mathcal{K}_{2}+\mathcal{K}_{3}\right)$ is a Krein space.
(iii) The operator T has a following representation with respect to the above decomposition

$$
T=\left(\begin{array}{cccc}
T_{0} & 0 & T_{02} & 0 \tag{1}\\
0 & 0 & 0 & 0 \\
T_{20} & 0 & T_{2} & 0 \\
0 & 0 & 0 & 0
\end{array}\right)
$$

It appears that the dilated operators $T^{[*]} T$ and $T T^{[*]}$ inherit many spectral properties from the operators $T_{0} T_{0}^{[*]}$ and $T_{0}^{[*]} T_{0}$, respectively. We use the J-dilation procedure to study and compare the canonical forms of matrices $T^{[*]} T$ and $T T^{[*]}$ in a finite dimensional Krein space.

The talk is based on a joint work
[1] Ran A.C.M., Wojtylak M., The pair of operators $T^{[*]} T$ and $T T^{[*]}$; Jdilations and canonical forms, Integral Equations and Operator Theory, to appear.

