Hamiltonians with Riesz bases of eigenvectors and Riccati equations

C. Wyss

We consider the algebraic Riccati equation

$$
A^{*} X+X A+X Q_{1} X-Q_{2}=0
$$

which appears in the problem of optimal control of a linear system, for the case that A is a normal operator with compact resolvent and Q_{1}, Q_{2} are unbounded, selfadjoint and nonnegative. Using the well-known correspondence of solutions X to invariant graph subspaces of the Hamiltonian

$$
T=\left(\begin{array}{cc}
A & Q_{1} \\
Q_{2} & -A^{*}
\end{array}\right),
$$

we prove the existence of infinitely many selfadjoint solutions. Our main tools are a Riesz basis with parentheses of generalised eigenvectors of T and two indefinite inner products associated with T. We also obtain conditions which yield nonnegative, nonpositive, and bounded solutions.

