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A (linear unbounded) operator A is called a finite-dimensional singular per-
turbation of an operator A0 if their graphs differ in a finite-dimensional space.
We study spectral properties of a one-dimensional singular perturbation A
of an unbounded selfadjoint operator A0 with compact resolvent. Our ap-
proach is based on a functional model of this operator, similar to a model by
V. Kapustin. We assume that the spectrum of A is real. We show that for
any operator A of our class there exist an inner function Θ(z) and an outer
function φ(z) in the upper half plane C+ with φ

z+i
∈ H2 and

Θ =
φ

φ
a.e. on R

such that A is unitarily equivalent to the operator T = TΘ,φ which acts on
the model space KΘ = H2(C+) ⊖ ΘH2(C+), with the domain defined as

D(T ) = {f ∈ KΘ : ∃ c = c(f) ∈ C : zf − cφ ∈ KΘ},

and
Tf = zf − cφ, f ∈ D(T ).

We give criteria for completeness of eigenvectors and for the possibility to
remove the whole spectrum by an adequate perturbation of the type consid-
ered in terms of the sparsity of the spectrum of the unperturbed operator.
The proofs use entire functions of Hermite–Biehler and Cartwright classes.
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