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We design uniformly convergent sequences of rational interpolants to
Cauchy integrals of the form fµ(z) =

∫
(z − t)−1dµ(t), where

dµ(t) = (1 − t)α(1 + t)βh(t)dt, α, β > −1,

and h is a non-vanishing smooth function on an analytic arc ∆ with end-
points ±1. Namely, we show that for any analytic arc there exist probability
Borel measures that make it symmetric in the sense of Stahl [1] (that is,
the normal derivatives, taken from the left and right-hand sides of ∆, of
the Green potential of each such measure coincide). Proper discretization
of these measures produces sought interpolation schemes. The proof of con-
vergence of the corresponding rational interpolants proceeds via ∂̄-extension
[2] of the Riemann-Hilbert approach [3] applied to the underlying boundary
value problem.

This talk is based on a joint work with L. Baratchart.
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