On parametrized systems

Cosmin Ionita, Sanda Lefteriu and Thanos Antoulas

Rice University and Jacobs University

email: aca@rice.edu URL: www.ece.rice.edu/~aca

Mod Red 2010, TU Berlin, 2-4 December 2010

A (1) > A (1) > A

 In most model reduction methods, given a desired reduced order complexity k (and additional properties) one tries to find an appropriate (good) model of complexity k.

A B A B A B A

- In most model reduction methods, given a desired reduced order complexity k (and additional properties) one tries to find an appropriate (good) model of complexity k.
- Balanced truncation offers something in addition, namely, a trade-off between accuracy and complexity.

- In most model reduction methods, given a desired reduced order complexity k (and additional properties) one tries to find an appropriate (good) model of complexity k.
- Balanced truncation offers something in addition, namely, a trade-off between accuracy and complexity.
- In the following, we will present a method in the same spirit.

Outline

PART I: Loewner matrices

- ID Lagrange bases and Loewner matrices
- 2D Lagrange bases and Loewner matrices
- Structure of 2D Loewner matrices

2 PART II: Generalized state-space realizations

- One variable case
- Two variable case
- Examples

PART III: Computation of the error

- 1D case
- 2D case

4 Conclusions

The Loewner matrix: 1D case

- \mathcal{P}_n : space of all polynomials of degree at most $n. \Rightarrow \dim(\mathcal{P}_n) := n+1$.
- Monomial basis: s^i , $i = 0, 1, \cdots, n$.
- Given $\lambda_i \in \mathbb{C}$, $i = 1, \cdots, n+1$: $\lambda_i \neq \lambda_j$, $i \neq j$,

$$\mathbf{q}_i(\boldsymbol{s}) := \prod_{i' \neq i} (\boldsymbol{s} - \lambda_{i'}), \ i = 1, \cdots, n+1,$$

Lagrange basis.

(日)

The Loewner matrix: 1D case

- \mathcal{P}_n : space of all polynomials of degree at most $n. \Rightarrow \dim(\mathcal{P}_n) := n+1$.
- Monomial basis: s^i , $i = 0, 1, \cdots, n$.
- Given $\lambda_i \in \mathbb{C}$, $i = 1, \cdots, n+1$: $\lambda_i \neq \lambda_j$, $i \neq j$,

$$\mathbf{q}_i(\boldsymbol{s}) := \prod_{i' \neq i} (\boldsymbol{s} - \lambda_{i'}), \ i = 1, \cdots, n+1,$$

Lagrange basis.

• For given constants α_i , \mathbf{w}_i , $i = 1, \dots, n+1$, consider

$$\sum_{i=1}^{n+1} \alpha_i \frac{\mathbf{g} - \mathbf{w}_i}{s - \lambda_i} = \mathbf{0}, \ \alpha_i \neq \mathbf{0}.$$

A B A B A B A
 A B A
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 A
 A

The Loewner matrix: 1D case

- \mathcal{P}_n : space of all polynomials of degree at most $n. \Rightarrow \dim(\mathcal{P}_n) := n+1$.
- Monomial basis: s^i , $i = 0, 1, \cdots, n$.
- Given $\lambda_i \in \mathbb{C}$, $i = 1, \cdots, n+1$: $\lambda_i \neq \lambda_j$, $i \neq j$,

$$\mathbf{q}_i(\boldsymbol{s}) := \prod_{i' \neq i} (\boldsymbol{s} - \lambda_{i'}), \ i = 1, \cdots, n+1,$$

Lagrange basis

• For given constants α_i , \mathbf{w}_i , $i = 1, \dots, n+1$, consider

$$\sum_{i=1}^{n+1} \alpha_i \, \frac{\mathbf{g} - \mathbf{w}_i}{s - \lambda_i} = \mathbf{0}, \ \ \alpha_i \neq \mathbf{0}.$$

It readily follows that

$$\mathbf{g}(\lambda_i) = \mathbf{w}_i,$$

since
$$\mathbf{g}(\mathbf{s}) = \frac{\sum_{i=1}^{n+1} \frac{\alpha_i \mathbf{W}_i}{\mathbf{s} - \lambda_i}}{\sum_{i=1}^{n+1} \frac{\alpha_i}{\mathbf{s} - \lambda_i}} = \frac{\sum_i \beta_i \mathbf{q}_i(\mathbf{s})}{\sum_i \alpha_i \mathbf{q}_i(\mathbf{s})}$$
, where $\beta_i = \alpha_i \mathbf{W}_i$.

Ionita, Lefteriu, Antoulas (Rice U. & Jacobs U

The free parameters α_i , can be specified so that

$$\mathbf{g}(\mu_j) = \mathbf{v}_j, \ j = 1, \cdots, r,$$

where $(\mu_j, \mathbf{v}_j), \mu_i \neq \mu_j$, are given. Thus

A B A B A B A
 A B A
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 A
 A

The free parameters α_i , can be specified so that

$$\mathbf{g}(\mu_j) = \mathbf{v}_j, \ j = 1, \cdots, r,$$

where $(\mu_i, \mathbf{v}_i), \mu_i \neq \mu_i$, are given. Thus

$$\mathbb{L}\mathbf{c} = \mathbf{0}, \ \mathbb{L} = \begin{bmatrix} \frac{\mathbf{v}_1 - \mathbf{w}_1}{\mu_1 - \lambda_1} & \cdots & \frac{\mathbf{v}_1 - \mathbf{w}_{n+1}}{\mu_1 - \lambda_{n+1}} \\ \vdots & \ddots & \vdots \\ \frac{\mathbf{v}_r - \mathbf{w}_1}{\mu_r - \lambda_1} & \cdots & \frac{\mathbf{v}_r - \mathbf{w}_{n+1}}{\mu_r - \lambda_{n+1}} \end{bmatrix} \in \mathbb{C}^{r \times (n+1)}, \ \mathbf{c} = \begin{bmatrix} \alpha_1, \\ \vdots \\ \alpha_{n+1} \end{bmatrix} \in \mathbb{C}^{n+1}.$$

L: Loewner matrix with

row array
$$(\mu_j, \mathbf{v}_j), j = 1, \dots, r$$
, and
column array $(\lambda_i, \mathbf{w}_i), i = 1, \dots, n+1$.

<ロ> <問> <問> < 回> < 回> 、

Properties of the Loewner matrix

There is a bijective correspondence between rational functions and Loewner matrices. Recall: *complexity* or *(McMillan) degree* is the maximum between the degrees of the numerator and denominator. Let

$$\boldsymbol{P} = \{ (\boldsymbol{x}_i, \boldsymbol{y}_i) : \ \boldsymbol{x}_i, \boldsymbol{y}_i \in \mathbb{C}, \ i = 1, \cdots, N \}.$$

< 回 > < 回 > < 回 >

Properties of the Loewner matrix

There is a bijective correspondence between rational functions and Loewner matrices. Recall: *complexity* or *(McMillan) degree* is the maximum between the degrees of the numerator and denominator. Let

$$P = \{(x_i, y_i): x_i, y_i \in \mathbb{C}, i = 1, \cdots, N\}.$$

This array is partitioned in a column array P_c and in a row array P_r , where

$$P_{c} = \{(\lambda_{i}, \mathbf{w}_{i}) : i = 1, \cdots, k\}, P_{r} = \{(\mu_{i}, \mathbf{v}_{i}) : i = 1, \cdots, p\}.$$

< 回 > < 回 > < 回 >

Properties of the Loewner matrix

There is a bijective correspondence between rational functions and Loewner matrices. Recall: *complexity* or *(McMillan) degree* is the maximum between the degrees of the numerator and denominator. Let

$$P = \{(x_i, y_i): x_i, y_i \in \mathbb{C}, i = 1, \cdots, N\}.$$

This array is partitioned in a column array P_c and in a row array P_r , where

$$P_c = \{(\lambda_i, \mathbf{w}_i) : i = 1, \cdots, k\}, P_r = \{(\mu_i, \mathbf{v}_i) : i = 1, \cdots, p\}.$$

It is assumed that $P = P_c \cup P_r$. To this partitioning we associate a $p \times k$ Loewner matrix

$$(\mathbb{L})_{i,j} = \frac{\mathbf{v}_i - \mathbf{w}_j}{\mu_i - \lambda_j}, \quad i = 1, \cdots, p, \quad j = 1, \cdots, k.$$

Ionita, Lefteriu, Antoulas (Rice U. & Jacobs U

イロト イポト イヨト イヨト

Main property

Given **g** and the array of points *P*, where $y_i = \mathbf{g}(x_i)$, let \mathbb{L} be a $p \times k$ Loewner matrix for some partitioning P_c , P_r of *P*. Then

 $\boldsymbol{\mathsf{p}}, \boldsymbol{\mathsf{k}} \geq \deg \boldsymbol{\mathsf{g}} \ \Rightarrow \ \mathrm{rank}\, \mathbb{L} = \deg \boldsymbol{\mathsf{g}}.$

Consequently, every square Loewner matrix of size deg g, is non-singular.

Main property

Given **g** and the array of points *P*, where $y_i = \mathbf{g}(x_i)$, let \mathbb{L} be a $p \times k$ Loewner matrix for some partitioning P_c , P_r of *P*. Then

 $\label{eq:pk} \boldsymbol{\mathsf{p}}, \boldsymbol{\mathsf{k}} \geq \deg \boldsymbol{\mathsf{g}} \ \, \Rightarrow \ \, \mathrm{rank}\, \mathbb{L} = \deg \boldsymbol{\mathsf{g}}.$

Consequently, every square Loewner matrix of size deg g, is non-singular.

Conversely: we define the *rank* of an array *P*:

$$\operatorname{rank} \boldsymbol{P} := \max_{\mathbb{L}} \left[\operatorname{rank} \mathbb{L} \right] =: \boldsymbol{q},$$

where the maximum is taken over all possible Loewner matrices which can be built from *P*. It follows that the rank of all Loewner matrices which have at least *q* rows and columns is equal to *q*. Assuming that 2q < N, let $\mathbf{c} = [c_1, \dots, c_{q+1}]^*$, be such that $\mathbb{L}\mathbf{c} = 0$, for any \mathbb{L} of size $q \times (q+1)$. In this case we can attach to \mathbb{L} a rational function **g** by means of the formula $\sum_{i=1}^{q+1} c_i \frac{\mathbf{g} - \mathbf{w}_i}{s - \lambda_i} = 0$. The main result is that if all possible square Loewner matrices of size *q* are non-singular, **g** is the unique interpolant of degree *q*.

Approximate interpolation and model reduction in 1D

Conclusion

The above considerations show that in the Loewner matrix framework

the singular values of $\ensuremath{\mathbb{L}}$

offer a trade-off between accuracy and complexity of the reduced system.

A D A D A D A

Approximate interpolation and model reduction in 1D

Conclusion

The above considerations show that in the Loewner matrix framework

the singular values of $\mathbb L$

offer a trade-off between accuracy and complexity of the reduced system.

A recently obtained error expression shows that the 2-norm of the interpolation error is proportional to the first neglected singular value of \mathbb{L} .

A D A D A D A

• $\mathcal{P}_{n,m}$: space of all polynomials in two indeterminates, say *s* and *t*, so that degree with respect to *s* is at most *n* and degree with respect to *t* is at most *m* $\Rightarrow \dim \mathcal{P}_{n,m} = (n+1)(m+1)$.

• $\mathcal{P}_{n,m}$: space of all polynomials in two indeterminates, say *s* and *t*, so that degree with respect to *s* is at most *n* and degree with respect to *t* is at most *m* $\Rightarrow \dim \mathcal{P}_{n,m} = (n+1)(m+1)$.

• monomial basis: $s^{i}t^{j}$, $i = 0, 1, \dots, n, j = 0, 1, \dots, m$.

イロト イポト イヨト イヨト

• $\mathcal{P}_{n,m}$: space of all polynomials in two indeterminates, say *s* and *t*, so that degree with respect to *s* is at most *n* and degree with respect to *t* is at most *m* $\Rightarrow \dim \mathcal{P}_{n,m} = (n+1)(m+1)$.

• monomial basis: $s^{i}t^{j}$, $i = 0, 1, \dots, n, j = 0, 1, \dots, m$.

• For a *Lagrange basis*, we need distinct (for simplicity) complex numbers λ_i , $i = 1, \dots, n+1, \pi_j, j = 1, \dots, m+1$:

$$\mathbf{q}_{i,j}(s,t) := \prod_{i' \neq i} (s - \lambda_{i'}) \prod_{j' \neq j} (t - \pi_{j'}), \ i = 1, \cdots, n+1, \ j = 1, \cdots, m+1.$$

< 日 > < 同 > < 回 > < 回 > < □ > <

• $\mathcal{P}_{n,m}$: space of all polynomials in two indeterminates, say *s* and *t*, so that degree with respect to *s* is at most *n* and degree with respect to *t* is at most *m* $\Rightarrow \dim \mathcal{P}_{n,m} = (n+1)(m+1)$.

• monomial basis: $s^{i}t^{j}$, $i = 0, 1, \dots, n, j = 0, 1, \dots, m$.

• For a *Lagrange basis*, we need distinct (for simplicity) complex numbers λ_i , $i = 1, \dots, n+1, \pi_j, j = 1, \dots, m+1$:

$$\mathbf{q}_{i,j}(s,t) := \prod_{i' \neq i} (s - \lambda_{i'}) \prod_{j' \neq j} (t - \pi_{j'}), \ i = 1, \cdots, n+1, \ j = 1, \cdots, m+1.$$

Consider g(s, t) defined by

$$\sum_{i=1}^{n+1}\sum_{j=1}^{m+1} \alpha_{i,j} \frac{\mathbf{g} - \mathbf{w}_{i,j}}{(s - \lambda_i)(t - \pi_j)} = \mathbf{0}, \ \alpha_{i,j} \neq \mathbf{0}.$$

< 日 > < 同 > < 回 > < 回 > < □ > <

Since we can write

$$\mathbf{g}(\boldsymbol{s},t) = \frac{\sum_{i=1}^{n+1} \sum_{j=1}^{m+1} \alpha_{i,j} \mathbf{w}_{i,j} \mathbf{q}_{i,j}(\boldsymbol{s},t)}{\sum_{i=1}^{n+1} \sum_{j=1}^{m+1} \alpha_{i,j} \mathbf{q}_{i,j}(\boldsymbol{s},t)}.$$

it follows that **g** satisfies the interpolation conditions $\mathbf{g}(\lambda_i, \pi_i) = \mathbf{w}_{i,i}$.

• As in 1D, the parameters $\alpha_{i,i}$ can be determined so that **g** satisfies additional interpolation conditions:

$$\mathbf{g}(\mu_i, \nu_j) = \mathbf{v}_{i,j}, \ i = 1, \cdots, p+1, \ j = 1, \cdots, r+1,$$

where $(\mu_i, \nu_i; \mathbf{v}_{i,i})$, are given triples of complex numbers; it is assumed for simplicity that the μ_i are distinct and and not equal to any λ_i ; similarly all ν_i are distinct and not equal to any π_i .

・ 同 ト ・ ヨ ト ・ ヨ ト ・

Consider the two arrays

$$P_{c} := \{ (\lambda_{j}, \pi_{i}; \mathbf{w}_{j,i}) : i = 1, \cdots, n', j = 1, \cdots, m' \},\$$
$$P_{r} := \{ (\mu_{l}, \nu_{k}; \mathbf{v}_{l,k}) : k = 1, \cdots, p', l = 1, \cdots, r' \},\$$

for some positive integers n', m', p', r', and let

$$\boldsymbol{\ell}_{i,j}^{k,l} := \frac{\boldsymbol{\mathsf{v}}_{k,l} - \boldsymbol{\mathsf{w}}_{i,j}}{(\mu_k - \lambda_i)(\nu_l - \pi_j)}$$

The associated Loewner matrix has entries $\ell_{i,j}^{k,l}$, where the superscripts k, l determine the rows in the ordering $(1, 1), (1, 2), \dots, (2, 1), (2, 2), \dots$, and the the subscripts *i*, *j* determine the columns in the same ordering. The *two-variable Loewner matrix* \mathbb{L} defined above has dimension $p'r' \times n'm'$.

Example. Consider $\phi(s, t) = \frac{1}{st-1}$. Goal: reconstruct this rational function from measurements. We choose:

 $\begin{bmatrix} \lambda_1, \lambda_2, \mu_3, \mu_4 \end{bmatrix} = \begin{bmatrix} 2, \frac{1}{2}, \frac{3}{2}, 3 \end{bmatrix}, \\ \begin{bmatrix} \pi_1, \pi_2, \nu_3, \nu_4 \end{bmatrix} = \begin{bmatrix} -\frac{1}{2}, -\frac{3}{2}, -1, -2 \end{bmatrix}.$

The corresponding values are:

$$\begin{split} \textbf{w}_{11} &= -\frac{1}{2}, \quad \textbf{w}_{12} = -\frac{1}{4}, \quad \textbf{w}_{21} = -\frac{4}{5}, \quad \textbf{w}_{22} = -\frac{4}{7}, \\ \textbf{v}_{11} &= -\frac{2}{5}, \quad \textbf{v}_{12} = -\frac{1}{4}, \quad \textbf{v}_{21} = -\frac{2}{11}, \quad \textbf{v}_{22} = -\frac{1}{7}. \end{split}$$

The Loewner matrix with

- column indices (λ_1, π_1) , (λ_1, π_2) , (λ_2, π_1) , (λ_2, π_2) , and
- row indices (μ_3, ν_3) , (μ_3, ν_4) , (μ_4, ν_3) , (μ_4, ν_4) , is:

3

< 日 > < 同 > < 回 > < 回 > < □ > <

$$\begin{bmatrix} \frac{2}{5} & \frac{3}{5} & -\frac{4}{5} & \frac{12}{35} \\ \frac{1}{3} & 0 & -\frac{11}{30} & -\frac{9}{14} \\ \hline -\frac{1}{2} & 0 & -\frac{11}{25} & \frac{9}{35} \\ -\frac{5}{21} & -\frac{3}{14} & -\frac{92}{525} & -\frac{12}{35} \end{bmatrix}.$$

It has rank equal to 3 and $\mathbb{L}\mathbf{c} = 0$, where

$$\mathbf{c} = [\mathbf{8}, \ -\mathbf{16}, \ -\mathbf{5}, \ \mathbf{7}]^*$$
 .

Thus:

$$8 \frac{\mathbf{g} + \frac{1}{2}}{(s-2)\left(t + \frac{1}{2}\right)} - 16 \frac{\mathbf{g} + \frac{1}{4}}{(s-2)\left(t + \frac{3}{2}\right)} - 5 \frac{\mathbf{g} + \frac{4}{5}}{\left(s - \frac{1}{2}\right)\left(t + \frac{1}{2}\right)} + 7 \frac{\mathbf{g} + \frac{4}{7}}{\left(s - \frac{1}{2}\right)\left(t + \frac{3}{2}\right)} = 0.$$

which implies $\mathbf{g}(s, t) = \phi(s, t) = \frac{1}{st-1}$ (original function recovered).

イロン イボン イヨン 一日

Structure of 2D Loewner matrices

Assuming that n' = n + 1 and m' = m + 1, the entries of **c** will be rearranged, and the quantities $\mathbf{c}^{(i)}$, $\mathbf{c}_{(j)}$ defined:

$$\mathbb{A} := \begin{bmatrix} \alpha_{1,1} & \alpha_{1,2} & \cdots & \alpha_{1,n+1} \\ \alpha_{2,1} & \alpha_{2,2} & \cdots & \alpha_{2,n+1} \\ \vdots & \vdots & \ddots & \vdots \\ \alpha_{m+1,1} & \alpha_{m+1,2} & \cdots & \alpha_{m+1,n+1} \end{bmatrix}, \quad \mathbf{c}^{(i)} := \mathbb{A}(i,:), \quad \mathbf{c}_{(j)} := \mathbb{A}(:,j).$$

Thus $\mathbf{c} = \text{vec } \mathbb{A}$, where 'vec' denotes the *vectorization* of a matrix obtained by stacking its rows into a column vector, i.e. $\mathbf{c}^* = [\mathbf{c}^{(1)} \cdots \mathbf{c}^{(m+1)}]$.

< 日 > < 同 > < 回 > < 回 > < □ > <

Structure of 2D Loewner matrices

Assuming that n' = n + 1 and m' = m + 1, the entries of **c** will be rearranged, and the quantities $\mathbf{c}^{(i)}$, $\mathbf{c}_{(j)}$ defined:

$$\mathbb{A} := \begin{bmatrix} \alpha_{1,1} & \alpha_{1,2} & \cdots & \alpha_{1,n+1} \\ \alpha_{2,1} & \alpha_{2,2} & \cdots & \alpha_{2,n+1} \\ \vdots & \vdots & \ddots & \vdots \\ \alpha_{m+1,1} & \alpha_{m+1,2} & \cdots & \alpha_{m+1,n+1} \end{bmatrix}, \ \mathbf{c}^{(i)} := \mathbb{A}(i,:), \ \mathbf{c}_{(j)} := \mathbb{A}(:,j).$$

Thus $\mathbf{c} = \operatorname{vec} \mathbb{A}$, where 'vec' denotes the *vectorization* of a matrix obtained by stacking its rows into a column vector, i.e. $\mathbf{c}^* = [\mathbf{c}^{(1)} \cdots \mathbf{c}^{(m+1)}]$.

In the sequel we will denote by \mathbb{L}_{π_i} and \mathbb{L}_{λ_j} , single-variable Loewner matrices of appropriate dimensions obtained by sampling the 1D rational functions $\mathbf{g}(s, \pi_i)$ and $\mathbf{g}(\lambda_i, t)$, respectively.

< 日 > < 同 > < 回 > < 回 > < □ > <

Consider \mathbb{L} , \mathbb{L}_{π_j} , \mathbb{L}_{λ_i} .

ヘロン 人間 アメボア メボン

Consider \mathbb{L} , \mathbb{L}_{π_i} , \mathbb{L}_{λ_i} .

(a1) If $\mathbb{L}\mathbf{c} = 0$, its components $\mathbf{c}_{(j)}$, and $\mathbf{c}^{(i)}$, satisfy:

$$\mathbb{L}_{\pi_i} \mathbf{c}_{(j)} = 0, \ j = 1, \cdots, m' \text{ and } \mathbf{c}^{(i)} \mathbb{L}_{\lambda_i} = 0, \ i = 1, \cdots, n'.$$

Consider \mathbb{L} , \mathbb{L}_{π_j} , \mathbb{L}_{λ_i} .

(a1) If $\mathbb{L}\mathbf{c} = 0$, its components $\mathbf{c}_{(i)}$, and $\mathbf{c}^{(i)}$, satisfy:

$$\mathbb{L}_{\pi_i} \mathbf{c}_{(j)} = 0, \ j = 1, \cdots, m' \ \text{ and } \ \mathbf{c}^{(i)} \mathbb{L}_{\lambda_i} = 0, \ i = 1, \cdots, n'.$$

(a2) Conversely, if the components $\mathbf{c}_{(j)}$, $\mathbf{c}^{(i)}$ satisfy the above relationships, \mathbf{c} satisfies $\mathbb{L}\mathbf{c} = 0$.

Consider \mathbb{L} , \mathbb{L}_{π_j} , \mathbb{L}_{λ_i} .

(a1) If $\mathbb{L}\mathbf{c} = 0$, its components $\mathbf{c}_{(j)}$, and $\mathbf{c}^{(i)}$, satisfy:

$$\mathbb{L}_{\pi_i} \mathbf{c}_{(j)} = 0, \ j = 1, \cdots, m' \text{ and } \mathbf{c}^{(i)} \mathbb{L}_{\lambda_i} = 0, \ i = 1, \cdots, n'.$$

(a2) Conversely, if the components $\mathbf{c}_{(j)}$, $\mathbf{c}^{(i)}$ satisfy the above relationships, \mathbf{c} satisfies $\mathbb{L}\mathbf{c} = \mathbf{0}$.

Remark: The computational complexity can be reduced to

$$n' \cdot (m')^3 + (n')^3$$
 or $m' \cdot (n')^3 + (m')^3$,

from the original cost

 $(n')^3 \cdot (m')^3$.

2 X 4 2 X

Consider \mathbb{L} , \mathbb{L}_{π_j} , \mathbb{L}_{λ_i} .

(a1) If $\mathbb{L}\mathbf{c} = 0$, its components $\mathbf{c}_{(j)}$, and $\mathbf{c}^{(i)}$, satisfy:

$$\mathbb{L}_{\pi_j} \mathbf{c}_{(j)} = 0, \ j = 1, \cdots, m' \ \text{ and } \ \mathbf{c}^{(i)} \mathbb{L}_{\lambda_i} = 0, \ i = 1, \cdots, n'.$$

(a2) Conversely, if the components $\mathbf{c}_{(j)}$, $\mathbf{c}^{(i)}$ satisfy the above relationships, \mathbf{c} satisfies $\mathbb{L}\mathbf{c} = \mathbf{0}$.

Remark: The computational complexity can be reduced to

$$n' \cdot (m')^3 + (n')^3$$
 or $m' \cdot (n')^3 + (m')^3$,

from the original cost

 $(n')^3 \cdot (m')^3$.

(b) Given $\mathbf{g}(s, t)$ of complexity (n, m), let the arrays above be defined by means of its samples. Assume also that $n' \ge n + 1$ and $m' \ge m + 1$. The rank of the associated Loewner matrix \mathbb{L} is:

rank
$$\mathbb{L} = \mathbf{n}'\mathbf{m}' - (\mathbf{n}' - \mathbf{n})(\mathbf{m}' - \mathbf{m})$$

・ ロ ト ・ (型 ト ・ 三 ト ・ 三 ト

Remarks.

(a). In 1D: rank $\mathbb{L} = n' - (n' - n) = n$, that is, it is independent of the number of measurements (interpolation data). In 2D the rank of \mathbb{L} still encodes the information about the complexity *n*, *m*, of interpolants. This property makes \mathbb{L} the fundamental tool for Data-driven PMOR.

(b) The tableau below pictorially displays the samples needed to define the various Loewner matrices.

$s \setminus t$	π1		$\pi_{m'}$	ν_1		$\nu_{m'}$
λ_1	w _{1,1}		w _{1,m'}	w _{1,m'+1}		w _{1,2m'}
:	:	•	:	:	·	:
$\lambda_{n'}$	w _{n',1}		w _{n',m'}	w _{n',m'+1}		w _{n',m'+1}
μ_1	w _{n'+1,1}		w _{n'+1,m'}	v _{1,1}		v _{1,m'}
:	· · · · · · · · · · · · · · · · · · ·	•••	-		·	-
$\mu_{n'}$	w _{2n',1}	• • •	₩ _{2n′,m′}	v _{n',1}		v _{n',m'}

・ ロ ト ・ 同 ト ・ 回 ト ・ 回 ト

Example. Consider the 2D rational function

$$\mathbf{g}(s,t)=\frac{s^2}{s-t+1}.$$

We wish to recover **g** from samples at the following points:

$$\begin{pmatrix} s_1, s_2, s_3, s_4, s_5, s_6, s_7, s_8 \end{pmatrix} = \begin{pmatrix} 0, \frac{1}{2}, 1, \frac{3}{2}, 2, \frac{3}{4}, 3, \frac{5}{2}, \end{pmatrix}, \begin{pmatrix} t_1, t_2, t_3, t_4, t_5, t_6, t_7, t_8 \end{pmatrix} = \begin{pmatrix} -\frac{1}{4}, -\frac{1}{2}, -\frac{3}{4}, -1, -\frac{5}{4}, -\frac{3}{2}, 0, -2 \end{pmatrix}.$$

イロト イポト イヨト イヨト

Example. Consider the 2D rational function

$$\mathbf{g}(s,t)=\frac{s^2}{s-t+1}.$$

We wish to recover **g** from samples at the following points:

$$\begin{pmatrix} s_1, s_2, s_3, s_4, s_5, s_6, s_7, s_8 \end{pmatrix} = \begin{pmatrix} 0, \frac{1}{2}, 1, \frac{3}{2}, 2, \frac{3}{4}, 3, \frac{5}{2}, \end{pmatrix}, \begin{pmatrix} t_1, t_2, t_3, t_4, t_5, t_6, t_7, t_8 \end{pmatrix} = \begin{pmatrix} -\frac{1}{4}, -\frac{1}{2}, -\frac{3}{4}, -1, -\frac{5}{4}, -\frac{3}{2}, 0, -2 \end{pmatrix}.$$

Hence n = 2, m = 1, n' = m' = 4. The Loewner matrix \mathbb{L}_{16} , with column array formed from the first four s_i and t_j , has dimension 16×16 . According to the main lemma its rank is n'm' - (n' - n)(m' - m) = 10, while its null space has dimension (n' - n)(m' - m) = 6 and is spanned by the following vectors:

Ionita, Lefteriu, Antoulas (Rice U. & Jacobs U

・ロン ・日 ・ ・ 日 ・ ・ 日 ・

1	$(\mathbf{s_1}, \mathbf{t_1})$	$-\frac{1}{2}$	$-\frac{5}{11}$	$-\frac{5}{12}$	$-\frac{5}{6}$	$-\frac{10}{13}$	- 5 \
	$(\boldsymbol{s_1}, \boldsymbol{t_2})$	35	0	0	1	0	0
	$(\boldsymbol{s_1},\boldsymbol{t_3})$	0	$\frac{7}{11}$	0	0	$\frac{14}{13}$	0
	$(\boldsymbol{s_1}, \boldsymbol{t_4})$	0	0	<u>2</u> 3	0	0	87
	$(\boldsymbol{s_2}, \boldsymbol{t_1})$	$\frac{7}{5}$	<u>14</u> 11	$\frac{7}{6}$	$\frac{7}{4}$	<u>21</u> 13	32
	$(\boldsymbol{s_2}, \boldsymbol{t_2})$	$-\frac{8}{5}$	0	0	-2	0	0
	$(\boldsymbol{s_2}, \boldsymbol{t_3})$	0	$-\frac{18}{11}$	0	0	$-\frac{27}{13}$	0
	$(\boldsymbol{s_2}, \boldsymbol{t_4})$	0	0	$-\frac{5}{3}$	0	0	$-\frac{15}{7}$
	$(\boldsymbol{s_3}, \boldsymbol{t_1})$	$-\frac{9}{10}$	$-\frac{9}{11}$	$-\frac{3}{4}$	0	0	0
	$(\boldsymbol{s_3}, \boldsymbol{t_2})$	1	0	0	0	0	0
	$(\boldsymbol{s_3}, \boldsymbol{t_3})$	0	1	0	0	0	0
	$(\boldsymbol{s_3}, \boldsymbol{t_4})$	0	0	1	0	0	0
	$(\boldsymbol{s_4}, \boldsymbol{t_1})$	0	0	0	$-\frac{11}{12}$	$-\frac{11}{13}$	$-\frac{11}{14}$
	$(\boldsymbol{s_4}, \boldsymbol{t_2})$	0	0	0	1	0	0
	$(\boldsymbol{s_4},\boldsymbol{t_3})$	0	0	0	0	1	0
	(s_4, t_4)	0	0	0	0	0	1 /

2

◆□ > ◆圖 > ◆臣 > ◆臣 > ○
1	$(\boldsymbol{s_1}, \boldsymbol{t_1})$	$-\frac{1}{2}$	$-\frac{5}{11}$	$-\frac{5}{12}$	- 56	$-\frac{10}{13}$	$-\frac{5}{7}$ \
	$(\boldsymbol{s_1},\boldsymbol{t_2})$	35	0	0	1	0	0
	$(\boldsymbol{s_1},\boldsymbol{t_3})$	0	$\frac{7}{11}$	0	0	$\frac{14}{13}$	0
	$(\boldsymbol{s_1}, \boldsymbol{t_4})$	0	0	<u>2</u> 3	0	0	<u>8</u> 7
	$(\boldsymbol{s_2}, \boldsymbol{t_1})$	$\frac{7}{5}$	$\frac{14}{11}$	$\frac{7}{6}$	$\frac{7}{4}$	21 13	32
	$(\boldsymbol{s_2}, \boldsymbol{t_2})$	$-\frac{8}{5}$	0	0	-2	0	0
	$(\boldsymbol{s_2}, \boldsymbol{t_3})$	0	$-\frac{18}{11}$	0	0	$-\frac{27}{13}$	0
	$(\boldsymbol{s_2}, \boldsymbol{t_4})$	0	0	$-\frac{5}{3}$	0	0	$-\frac{15}{7}$
	$(\boldsymbol{s_3}, \boldsymbol{t_1})$	$-\frac{9}{10}$	$-\frac{9}{11}$	$-\frac{3}{4}$	0	0	0
	$(\boldsymbol{s_3}, \boldsymbol{t_2})$	1	0	0	0	0	0
	$(\boldsymbol{s_3}, \boldsymbol{t_3})$	0	1	0	0	0	0
	$(\boldsymbol{s_3}, \boldsymbol{t_4})$	0	0	1	0	0	0
	$(\boldsymbol{s_4}, \boldsymbol{t_1})$	0	0	0	$-\frac{11}{12}$	$-\frac{11}{13}$	$-\frac{11}{14}$
	$(\boldsymbol{s_4}, \boldsymbol{t_2})$	0	0	0	1	0	0
	$(\boldsymbol{s_4},\boldsymbol{t_3})$	0	0	0	0	1	0
	(s_4, t_4)	0	0	0	0	0	1 /

Thus the 2D Lagrange bases involved are obtained from all combinations of the 1D bases formed by (s_1, s_2, s_3) , (s_1, s_2, s_4) , and (t_1, t_2) , (t_1, t_3) , $(t_1, t_4) \Rightarrow$ 6 Lagrange bases associated with \mathbb{L}_{16} . All 6 resulting rational functions are equal to **g**.

Circuit example

Given the circuit above, all elements have unit value except L_2 = parameter *t*. Using the voltages across the capacitors and the currents through the inductors as state variables, we obtain the equations: $\mathbf{E}\dot{\mathbf{x}} = \mathbf{A}\mathbf{x} + \mathbf{B}\mathbf{u}$, $\mathbf{y} = \mathbf{C}\mathbf{x}$, where

Circuit example

Given the circuit above, all elements have unit value except L_2 = parameter *t*. Using the voltages across the capacitors and the currents through the inductors as state variables, we obtain the equations: $\mathbf{E}\dot{\mathbf{x}} = \mathbf{A}\mathbf{x} + \mathbf{B}\mathbf{u}$, $\mathbf{y} = \mathbf{C}\mathbf{x}$, where

$$\mathbf{A} = \begin{bmatrix} -1 & 0 & -1 & -1 \\ 0 & 0 & 1 & 1 \\ 1 & -1 & 0 & 0 \\ 1 & -1 & 0 & -1 \end{bmatrix}, \ \mathbf{E} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & t & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}, \ \mathbf{B} = \begin{bmatrix} 1 \\ 0 \\ 0 \\ 0 \\ 0 \end{bmatrix},$$

while $\mathbf{C} = \mathbf{B}^*$. For comparison later on, we notice that (the inverse of the resolvent) $\mathbf{\Phi}(s, t) = s\mathbf{E} - \mathbf{A}$, contains the product of the two variables *st*.

() < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < ()

Thus the transfer function depends on two variables, namely the (complex) frequency s, and the value t of one of the inductors:

$$\mathbf{g}(s,t) = \mathbf{C} \left[s\mathbf{E} - \mathbf{A} \right]^{-1} \mathbf{B} = \frac{t \, s^3 + t \, s^2 + 2 \, s + 1}{s^4 \, t + 2 \, s^3 \, t + 3 \, s^2 \, t + 2 \, s^2 + s \, t + 3 \, s + 1}.$$

Thus the transfer function depends on two variables, namely the (complex) frequency s, and the value t of one of the inductors:

$$\mathbf{g}(s,t) = \mathbf{C} \left[s\mathbf{E} - \mathbf{A} \right]^{-1} \mathbf{B} = \frac{t \, s^3 + t \, s^2 + 2 \, s + 1}{s^4 \, t + 2 \, s^3 \, t + 3 \, s^2 \, t + 2 \, s^2 + s \, t + 3 \, s + 1}.$$

• We will reconstruct this system using measurements at the following frequencies and values of the parameter:

$$[s_1, s_2, s_3, s_4, s_5, t_1, t_2] = \begin{bmatrix} 0, \frac{1}{2}, 1, \frac{3}{2}, 2, 0, -\frac{1}{2} \end{bmatrix}$$

$$[s_6, s_7, s_8, s_9, s_{10}, t_3, t_4] = \begin{bmatrix} -\frac{1}{4}, -\frac{1}{2}, -1, -\frac{3}{2}, -2, 1, \frac{1}{2} \end{bmatrix}$$

The resulting 10×10 Loewner matrix is:

A (10) A (10)

 \mathbbm{L} and \boldsymbol{c} are:

$-\frac{1}{6}$ $-\frac{1}{6}$ $-\frac{1}{6}$
,
$-\frac{349}{657} - \frac{1975}{3042} - \frac{1}{2} - \frac{3}{4} - \frac{1}{2} - \frac{3}{4} - \frac{1}{4} - \frac{1}{4} - \frac{1}{24} - \frac{3}{473} - \frac{1}{3066} - \frac{1}{745} - \frac{2}{2492} - \frac{2}{208} - \frac{2}{208} - \frac{1}{2} $
$-\frac{1388}{1971} - \frac{5080}{4563} - \frac{2}{3} - \frac{4}{3} \\ -\frac{4}{3} \\ \frac{4}{9} \\ \frac{14}{9} \\ \frac{14}{9} \\ \frac{146}{1533} \\ \frac{1340}{1869} \\ \frac{17}{78} \\ \end{array}$
$\begin{array}{r} -\frac{23312}{1533}\\ -\frac{26760}{1183}\\ -\frac{40}{3}\\ -20\\ -\frac{148}{15}\\ -\frac{72}{5}\\ -\frac{1816}{219}\\ -\frac{1816}{89}\\ -\frac{1948}{273}\end{array}$
$-\frac{2216}{5555}$ $-\frac{8016}{5915}$ $-\frac{4}{5}$ $-\frac{8}{5}$ $\frac{14}{225}$ $\frac{48}{225}$ $\frac{132}{3655}$ $\frac{392}{4455}$ $\frac{1222}{4555}$
$-\frac{1088}{1225} -\frac{2656}{42225} -\frac{8}{15} -\frac{4}{5} -\frac{4}{5} -\frac{3}{5} -\frac{4}{5} -\frac{3}{5} -\frac{2168}{5475} -\frac{1632}{2225} -\frac{1532}{2225} -\frac{58}{195} -\frac{195}{195} -\frac{1088}{195} -\frac{1088}{195$
$\begin{array}{r} -\frac{414}{365} \\ -\frac{1468}{845} \\ -1 \\ -2 \\ \frac{3}{4} \\ \frac{5}{2} \\ \frac{173}{365} \\ \frac{506}{445} \\ \frac{9}{26} \end{array}$
$-\frac{5072}{5183}\\-\frac{36904}{35597}\\-\frac{56}{71}\\-\frac{84}{71}\\\frac{400}{213}\\\frac{400}{213}\\\frac{5492}{6319}\\\frac{5492}{6319}\\\frac{1668}{4615}$
$-\frac{1096}{657} - \frac{3728}{1521} - \frac{4}{3} - \frac{8}{3} - \frac{8}{3} \frac{10}{9} \frac{32}{9} \frac{148}{219} \frac{424}{4267} \frac{424}{267} - \frac{94}{195} \frac{94}{195} - \frac{10}{10} - \frac{10}{1$
$-\frac{536}{219} - \frac{396}{169} - \frac{4}{3} - 2 \frac{4}{3} - 2 \frac{4}{3} \frac{3}{164} \frac{164}{219} \frac{114}{89} \frac{20}{39}$
$ \begin{array}{r} -\frac{268}{73} \\ -\frac{792}{169} \\ -2 \\ -4 \\ 2 \\ 6 \\ \frac{82}{73} \\ \frac{228}{89} \\ \frac{10}{13} \\ \end{array} $

Э.

イロン 不通 とくほど 不良とう

F 1

-

 \mathbbm{L} and \boldsymbol{c} are:

	$-\frac{268}{73}$ $-\frac{792}{169}$ -2 -4	$-\frac{536}{219}$ $-\frac{396}{169}$ $-\frac{4}{3}$ -2	$-\frac{1096}{657} \\ -\frac{3728}{1521} \\ -\frac{4}{3} \\ -\frac{8}{3}$	$-\frac{5072}{5183} \\ -\frac{36904}{35997} \\ -\frac{56}{71} \\ -\frac{84}{71}$	$-\frac{414}{365}$ $-\frac{1468}{845}$ -1 -2	$-\frac{1088}{1825} \\ -\frac{2656}{4225} \\ -\frac{8}{15} \\ -\frac{4}{5}$	$-\frac{2216}{2555} \\ -\frac{8016}{5915} \\ -\frac{4}{5} \\ -\frac{8}{5}$	$-\frac{23312}{1533} \\ -\frac{26760}{1183} \\ -\frac{40}{3} \\ -20$	$-\frac{1388}{1971} \\ -\frac{5080}{4563} \\ -\frac{2}{3} \\ -\frac{4}{3}$	$ \begin{array}{r} -\frac{349}{657} \\ -\frac{1975}{3042} \\ -\frac{1}{2} \\ -\frac{3}{4} \\ \end{array} $		- 18 - 32 714 64
	2	<u>4</u> 3	<u>10</u> 9	172 213	<u>3</u> 4	35	$\frac{14}{25}$	$-\frac{148}{15}$	<u>4</u> 9	$\frac{1}{4}$,	2
1	6	3	<u>32</u> 9	400 213	52	75	48 25	$-\frac{72}{5}$	<u>14</u> 9	$\frac{17}{24}$		- 15
	<u>82</u> 73	<u>164</u> 219	<u>148</u> 219	7784 15549	<u>173</u> 365	2168 5475	<u>132</u> 365	$-\frac{1816}{219}$	446 1533	$\frac{473}{3066}$		-5 1
	<u>228</u> 89	<u>114</u> 89	424 267	5492 6319	<u>506</u> 445	1532 2225	<u>392</u> 445	$-\frac{1100}{89}$	<u>1340</u> 1869	745 2492		- 64 15
	<u>10</u> 13	<u>20</u> 39	<u>94</u> 195	<u>1668</u> 4615	$\frac{9}{26}$	<u>58</u> 195	<u>122</u> 455	$-\frac{1948}{273}$	$\frac{17}{78}$	23 208		8

 $\mathbb{L}\mathbf{c} = 0$ and rank $\mathbb{L} = 9$. To recover **g** solve the following equation for ϕ :

$$\begin{array}{cccc} \frac{\phi-1}{8ts} & -\frac{3\phi-2}{2t(s-\frac{1}{2})} & +\frac{9\phi-\frac{5}{2}}{2t(s-1)} & -\frac{5\phi-2}{t(s-\frac{3}{2})} & +\frac{15\phi-5}{8t(s-2)} \\ -\frac{\phi-1}{8s(t+\frac{1}{2})} & +\frac{71\phi-58}{64(s-\frac{1}{2})(t+\frac{1}{2})} & -\frac{15\phi-12}{8(s-1)(t+\frac{1}{2})} & -\frac{\phi+38}{64(s-\frac{3}{2})(t+\frac{1}{2})} & +\frac{\phi-\frac{1}{8}}{(s-2)(t+\frac{1}{2})} & = 0. \end{array}$$

Indeed $\phi(s,t) = \mathbf{g}(s,t)$.

Approximate interpolation and model reduction in 2D

Conclusion

As in the 1D case, in the Loewner matrix framework

the singular values of $\ensuremath{\mathbb{L}}$

offer a trade-off between accuracy and complexity of the reduced system.

- A TE N - A TE N

Approximate interpolation and model reduction in 2D

Conclusion

As in the 1D case, in the Loewner matrix framework

the singular values of $\mathbb L$

offer a trade-off between accuracy and complexity of the reduced system.

Here also we will present a recently obtained error expression shows that the 2-norm of the interpolation error is proportional to the first neglected singular value of \mathbb{L} .

A B A B A B A

Approximate interpolation and model reduction in 2D

Conclusion

As in the 1D case, in the Loewner matrix framework

the singular values of $\ensuremath{\mathbb{L}}$

offer a trade-off between accuracy and complexity of the reduced system.

Here also we will present a recently obtained error expression shows that the 2-norm of the interpolation error is proportional to the first neglected singular value of \mathbb{L} .

MOR procedure

- From rank L = n'm' − (n' − n)(m' − m) determine the desired complexities n and m.
- Build a model either in numerator/denominator format, or by means of a description realization (next section).

Outline

PART I: Loewner matrices

- 1D Lagrange bases and Loewner matrices
- 2D Lagrange bases and Loewner matrices
- Structure of 2D Loewner matrices

PART II: Generalized state-space realizations

- One variable case
- Two variable case
- Examples

PART III: Computation of the error

- 1D case
- 2D case

4 Conclusions

PART II: Generalized state-space realizations

One variable case

One variable case: $g(s) = \frac{\sum_{i=1}^{n+1} \frac{\beta_i}{s - \lambda_i}}{\sum_{i=1}^{n+1} \frac{\alpha_i}{s - \lambda_i}}$

Lemma

$$\widehat{\mathbf{C}} = \mathbf{b}, \ \widehat{\mathbf{\Phi}}(s) = \begin{pmatrix} \mathbf{J}_{\text{lag}}(s; \lambda_i, n) \\ \mathbf{a} \end{pmatrix}, \ \widehat{\mathbf{B}} = \mathbf{e}_{n+1},$$
(2)

is an R-controllable and R-observable order n+1 realization of g.

Corollary

$$\mathbf{C} = [\mathbf{0} \mid -1], \ \mathbf{\Phi}(s) = \begin{bmatrix} \widehat{\mathbf{\Phi}}(s) \mid \mathbf{0} \\ \widehat{\mathbf{C}} \mid 1 \end{bmatrix}, \ \mathbf{B} = \begin{bmatrix} \widehat{\mathbf{B}} \\ 0 \end{bmatrix},$$
(3)

is an R-controllable and R-observable realization of size n+2.

・ロト ・四ト ・ヨト・

PART II: Generalized state-space realizations

Two variable case

Two variable case: $g(s, p) = \frac{\sum_{i=1}^{n+1} \sum_{j=1}^{m+1} \frac{\beta_{i,j}}{(s-\lambda_i)(p-\pi_j)}}{\sum_{i=1}^{n+1} \sum_{j=1}^{m+1} \frac{\alpha_{i,j}}{(s-\lambda_i)(p-\pi_j)}}$

$$\mathbb{A}:=\begin{bmatrix} \alpha_{00} \ \alpha_{10} \ \cdots \ \alpha_{n0} \\ \vdots \ \vdots \ \ddots \ \vdots \\ \alpha_{0m} \ \alpha_{1m} \ \cdots \ \alpha_{nm} \end{bmatrix}, \mathbb{B}:=\begin{bmatrix} \beta_{00} \ \beta_{10} \ \cdots \ \beta_{n0} \\ \vdots \ \vdots \ \ddots \ \vdots \\ \beta_{0m} \ \beta_{1m} \ \cdots \ \beta_{nm} \end{bmatrix}$$

Theorem

$$\Phi(s,p) = \begin{bmatrix} \mathbf{J}_{\text{lag}}(s;\lambda_i,n) & \mathbf{0} & \mathbf{0} \\ & \mathbf{A} & \mathbf{J}_{\text{lag}}^*(p;\pi_j,m) & \mathbf{0} \\ & \mathbf{B} & \mathbf{0} & [\mathbf{J}_{\text{lag}}^*(p;\pi_j,m), \mathbf{p}] \end{bmatrix}, \mathbf{B} = \begin{bmatrix} \mathbf{0} & \mathbf{p} \\ & \mathbf{0} \end{bmatrix},$$
$$\mathbf{C} = [\mathbf{0} \mid \mathbf{0} \mid -\mathbf{e}_{m+1}^T],$$

is a realization of $\mathbf{g}(s, p)$ of dimension n+2m+2, *R*-controllable and *R*-observable where $\mathbf{p} \in \mathbb{C}^{m+1}$ is a vector such that $[\mathbf{J}_{lag}^*(p; \pi_j, m), \mathbf{p}]$ is a unimodular matrix in *p*. The entries of this vector can be chosen as: $p_i = 1/\prod_{j=1, j \neq i}^{m+1} (\pi_i - \pi_j)$, in which case det $[\mathbf{J}_{lag}^*(p; \pi_j, m), \mathbf{p}] = (-1)^m$. **Example:** $H(s, p) = \frac{1+2s+3p+4sp}{5+6s+7p+8sp}$

• Lagrange basis:
$$(s+1)(p+1)$$
, $(s+1)(p+2)$, $(s+2)(p+1)$, $(s+2)(p+2)$
• $A = \begin{bmatrix} 0 & -2 \\ -1 & 11 \end{bmatrix}$, $\mathbb{B} = \begin{bmatrix} 0 & -2 \\ -1 & 7 \end{bmatrix}$
• $\mathbf{g}(s,p) = \begin{bmatrix} s+1 & -s-2 & 0 & 0 & 0 \\ 0 & -2 & p+1 & 0 & 0 \\ -1 & 11 & -p-2 & 0 & 0 \\ 0 & -2 & 0 & p+1 & -1 \\ -1 & 7 & 0 & -p-2 & 1 \end{bmatrix}^{-1} \begin{bmatrix} 0 \\ -1 \\ 1 \\ 0 \\ 0 \end{bmatrix}$

2

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト ・

Numerical examples - Circuit (continued)

Measurements at the following frequencies and values of the parameter:

$$[s_1, s_2, s_3, s_4, s_5, p_1, p_2] = \begin{bmatrix} 0, \frac{1}{2}, 1, \frac{3}{2}, 2, 0, -\frac{1}{2} \end{bmatrix}$$

Nullspace of L: $\mathbf{c} = \begin{bmatrix} \frac{1}{8} & -\frac{1}{8} & -\frac{3}{2} & \frac{71}{64} & \frac{9}{2} & -\frac{15}{8} & -5 & -\frac{1}{64} & \frac{15}{8} & 1 \end{bmatrix}$.

$$\mathbf{\Phi}(s,p) = \begin{bmatrix} s & \frac{1}{2} - s & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ s & 0 & 1 - s & 0 & 0 & 0 & 0 & 0 & 0 \\ s & 0 & 0 & \frac{3}{2} - s & 0 & 0 & 0 & 0 & 0 \\ \frac{1}{8} & \frac{3}{2} & \frac{9}{2} & -5 & \frac{15}{8} & p & 0 & 0 \\ \frac{-\frac{1}{8} & \frac{71}{64} & -\frac{15}{8} - \frac{1}{64} & 1 & -p - \frac{1}{2} & 0 & 0 \\ \frac{1}{8} & -1 & \frac{9}{4} & -2 & \frac{5}{8} & 0 & p & -1 \\ \frac{-1}{8} & \frac{29}{32} & -\frac{3}{2} & \frac{19}{32} & \frac{1}{8} & 0 & -p - \frac{1}{2} & 1 \end{bmatrix}, \mathbf{B} = \begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \\ -\frac{1}{0} \\ 0 \\ 0 \end{bmatrix}, \mathbf{C}^{T} = \begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ -1 \end{bmatrix}$$

Ionita, Lefteriu, Antoulas (Rice U. & Jacobs U

(a) < (a) < (b) < (b)

Numerical examples - Circuit

By adding row 5 to 6, the submatrix of Φ consisting of rows & columns 6, 7, 8 is unimodular \Rightarrow Schur complement \Rightarrow realization of dimension 5:

$$\begin{split} \Phi_{5}(s,p) &= \begin{bmatrix} s & \frac{1}{2} - s & 0 & 0 & 0 \\ s & 0 & 1 - s & 0 & 0 \\ s & 0 & 0 & \frac{3}{2} - s & 0 \\ \frac{1}{8} & -\frac{25}{32}p - \frac{3}{2} & \frac{21}{4}p + \frac{9}{2} & -\frac{321}{32}p - 5 & \frac{23}{4}p + \frac{15}{8} \end{bmatrix}, \\ B_{5} &= \begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \\ 1 \end{bmatrix}, \\ \text{while} \\ \mathbf{C}_{5}(p) &= \begin{bmatrix} \frac{1}{8} & -\frac{3}{16}p - 1 & \frac{3}{2}p + \frac{9}{4} & -\frac{45}{16}p - 2 & \frac{3}{2}p + \frac{5}{8} \end{bmatrix}. \end{split}$$

< 口 > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Numerical examples - Convection Diffusion

• Consider the 2-dimensional convection-diffusion equation in $\Omega=(0,1)^2$

$$\frac{\partial \mathbf{x}}{\partial t}(t,\xi) = \Delta \mathbf{x}(t,\xi) + \boldsymbol{p} \cdot \nabla \mathbf{x}(t,\xi) + \mathbf{b}(\xi)\mathbf{u}(t), \xi \in \Omega,$$
$$\mathbf{x}(t,\xi) = \mathbf{0}, \xi \in \partial \Omega$$

• A finite-difference discretization leads to an order *n* = 900 parametric system (note that *m* = 900):

$$\dot{\mathbf{x}}(t) = \mathbf{A}\mathbf{x}(t) + p\mathbf{A}_1\mathbf{x}(t) + \mathbf{B}\mathbf{u}(t), \ \mathbf{y}(t) = \mathbf{C}\mathbf{x}(t), \ \mathbf{x}(0) = 0$$

 $\mathbf{H}(s, p) = \mathbf{C}(s\mathbf{I} - \mathbf{A} - p\mathbf{A}_1)^{-1}\mathbf{B}$

• We reduce to an order n = m = 7 system by selecting measurements in *s* logarithmically spaced between $j10^{-2}$ and $j10^{6}$ and measurements in *p* linearly spaced between 0 and 10.

Numerical examples - Convection Diffusion

Outline

PART I: Loewner matrices

- 1D Lagrange bases and Loewner matrices
- 2D Lagrange bases and Loewner matrices
- Structure of 2D Loewner matrices

2 PART II: Generalized state-space realizations

- One variable case
- Two variable case
- Examples

PART III: Computation of the error

- 1D case
- 2D case

4 Conclusions

• sample a 1D rational function **H**(*s*) of degree *n*:

$$\mathbf{w}_j := \mathbf{H}(\lambda_j), \ \mathbf{v}_i := \mathbf{H}(\mu_i), \ \lambda_j \neq \mu_i.$$

• construct the 1D Loewner matrix, $\mathbb{L} \in \mathbb{C}^{N \times n'}$, N > n',

$$\mathbb{L} := \begin{bmatrix} \frac{\mathbf{v}_1 - \mathbf{w}_1}{\mu_1 - \lambda_1} & \cdots & \frac{\mathbf{v}_1 - \mathbf{w}_{n'}}{\mu_1 - \lambda_{n'}} \\ \vdots & \ddots & \vdots \\ \frac{\mathbf{v}_{n'} - \mathbf{w}_1}{\mu_{n'} - \lambda_1} & \cdots & \frac{\mathbf{v}_{n'} - \mathbf{w}_{n'}}{\mu_{n'} - \lambda_{n'}} \\ \vdots & \ddots & \vdots \\ \frac{\mathbf{v}_N - \mathbf{w}_1}{\mu_N - \lambda_1} & \cdots & \frac{\mathbf{v}_N - \mathbf{w}_{n'}}{\mu_N - \lambda_{n'}} \end{bmatrix}$$

• then, for n' > n, the degree can be read off from the rank of $\mathbb{L} \operatorname{rank} \mathbb{L} = n$.

• from $\mathbf{x} \in ker\mathbb{L}$ original system recovered as $\mathbf{H}(s) = rac{\sum_{j=1}^{r'} \frac{\mathbf{w}_j \mathbf{x}_j}{s-\lambda_j}}{\sum_{j=1}^{r'} \frac{\mathbf{x}_j}{s-\lambda_j}}$.

・ロット (日) (日) (日) (日)

• model order reduction:

construct a 'tall' Loewner matrix $\mathbb{L} \in \mathbb{C}^{N \times (k+1)}$, N > k,

$$\mathbb{L} := \begin{bmatrix} \frac{\mathbf{v}_1 - \mathbf{w}_1}{\mu_1 - \lambda_1} & \cdots & \frac{\mathbf{v}_1 - \mathbf{w}_{k+1}}{\mu_1 - \lambda_{k+1}} \\ \vdots & \ddots & \vdots \\ \frac{\mathbf{v}_{k+1} - \mathbf{w}_1}{\mu_{k+1} - \lambda_1} & \cdots & \frac{\mathbf{v}_{k+1} - \mathbf{w}_{k+1}}{\mu_{k+1} - \lambda_{k+1}} \\ \vdots & \ddots & \vdots \\ \frac{\mathbf{v}_N - \mathbf{w}_1}{\mu_N - \lambda_1} & \cdots & \frac{\mathbf{v}_N - \mathbf{w}_{k+1}}{\mu_N - \lambda_{k+1}} \end{bmatrix}$$

with number of columns k < n.

 $\bullet~$ then \mathbbm{L} has full column rank

$$\operatorname{rank}\mathbb{L} = k + 1$$
,

and

$$\mathbb{L}\mathbf{x} = \mathbf{b} \neq \mathbf{0}, \quad \forall \ \mathbf{x} \in \mathbb{C}^{k+1}.$$

Ionita, Lefteriu, Antoulas (Rice U. & Jacobs U

э

イロト 不得 トイヨト イヨト

• for each row of $\mathbb{L}\mathbf{x} = \mathbf{b}$, rewrite \mathbf{v}_i as:

$$\mathbf{V}_{i} = \frac{\sum_{j=1}^{k+1} \frac{\mathbf{w}_{j}\mathbf{x}_{j}}{\sum_{j=1}^{k+1} \frac{\mathbf{x}_{j}}{\mu_{i}-\lambda_{j}}}}{\sum_{j=1}^{k+1} \frac{\mathbf{x}_{j}}{\mu_{i}-\lambda_{j}}} + \frac{\mathbf{b}_{i}}{\sum_{j=1}^{k+1} \frac{\mathbf{x}_{j}}{\mu_{i}-\lambda_{j}}}.$$

A B A B A B A
 A B A
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 A
 A

• define **reduced model** of order *k* as:

$$\mathbf{G}(\boldsymbol{s}) := \frac{\sum_{j=1}^{k+1} \frac{\mathbf{w}_j \mathbf{x}_j}{s - \lambda_j}}{\sum_{j=1}^{k+1} \frac{\mathbf{x}_j}{s - \lambda_j}}.$$

the error is:
$$\mathbf{H}(\lambda_j) - \mathbf{G}(\lambda_j) = 0, \quad j = 1, \dots, k + 1,$$

 $\mathbf{H}(\mu_i) - \mathbf{G}(\mu_i) = \frac{\mathbf{b}_i}{\sum_{j=1}^{k+1} \frac{\mathbf{x}_j}{\mu_i - \lambda_j}} := \mathbf{d}_i, \quad i = 1, \dots, N.$

• for $\mathbb{L} \in \mathbb{C}^{N \times (k+1)}$, find $\mathbf{b} \in \mathbb{C}^N$ and $\mathbf{x} \in \mathbb{C}^{k+1}$ such that

 $\min_{\mathbb{L}\mathbf{x}=\mathbf{b}} \|\mathbf{d}\|_2.$

э

• eliminate **b** and re-write the minimization problem as

$$\min_{\mathbf{x}} \|\widehat{\mathbf{d}}\|_{2}, \text{ with } \widehat{\mathbf{d}}_{i} := \sum_{j=1}^{k+1} \frac{(\mathbf{v}_{i} - \mathbf{w}_{j})\mathbf{x}_{j}}{\mu_{i} - \lambda_{j}} / \sum_{j=1}^{k+1} \frac{\mathbf{x}_{j}}{\mu_{i} - \lambda_{j}}$$

solve a sub-optimal minimization problem

$$\min_{\mathbf{x}} \|\widetilde{\mathbf{d}}\|_2, \quad \text{with} \quad \widetilde{\mathbf{d}}_i := \sum_{j=1}^{k+1} \frac{(\mathbf{v}_i - \mathbf{w}_j)\mathbf{x}_j}{\mu_i - \lambda_j} \Leftrightarrow \min_{\mathbf{x}} \|\mathbb{L}\mathbf{x}\|_2.$$

• compute SVD of Loewner matrix ($\mathbb{L} = \mathbf{Y} \Sigma \mathbf{X}^*$).

solution:

 $\mathbf{x} =$ right-singular vector corresponding to σ_{k+1} .

• error formula:

$$\mathbf{H}(\mu_i) - \mathbf{G}(\mu_i) = \sigma_{k+1} \frac{\mathbf{y}_i}{\sum_{j=1}^{k+1} \frac{\mathbf{x}_j}{\mu_i - \lambda_j}},$$

where $\mathbf{y} =$ left-singular vector corresponding to σ_{k+1} .

1D case

1D Loewner-MOR

• original system of order n = 348, take measurements

 $\mathbf{w}_{i} := \mathbf{H}(\lambda_{i}), \ \lambda_{i} \in \{0, \pm .1j, \pm .4j, \pm 1.4j, \pm 2.4j, \pm 3.3j, \pm 4.5j, \pm 7.5j, \pm 16j, \pm 250j\},\$ $\mathbf{v}_i := \mathbf{H}(\mu_i), \ \mu_i \in \{\pm 10^{-3}j, \ldots, \pm 10^{3}j\}.$

• construct 'tall' 1D Loewner matrix $\mathbb{L} \in \mathbb{C}^{100 \times 18}$, $\mathbb{L}_{i,j} := \frac{\mathbf{v}_i - \mathbf{w}_j}{\mu_i - \lambda_i}$.

- $(\mathbf{y}, \mathbf{x}) = (\text{left-,right-})$ singular vectors for smallest singular value of \mathbb{L} , σ_{18} .
- reduced model of order k = 18

$$\mathbf{G}(s) := rac{\sum_{j=1}^{k+1} rac{\mathbf{w}_j \mathbf{x}_j}{s - \lambda_j}}{\sum_{j=1}^{k+1} rac{\mathbf{x}_j}{s - \lambda_j}}$$

1D case

1D Loewner-MOR

- by construction, measurements w_i interpolated exactly.
- ۲ for measurements \mathbf{v}_i , maximum point-wise error

$$\max_{i} \left| \mathbf{H}(\mu_{i}) - \mathbf{G}(\mu_{i}) \right| = \sigma_{k+1} \cdot \max_{i} \left| \frac{\mathbf{y}(i)}{\sum_{j} \frac{\mathbf{x}_{j}}{\mu_{i} - \lambda_{j}}} \right| = 0.5.$$

• sample a 2D rational function H(s, t) of degree (n, m):

$$\mathbf{w}_{i,j} := \mathbf{H}(\lambda_i, \pi_j), \ \mathbf{v}_{k,\ell} := \mathbf{H}(\mu_k, \nu_\ell), \ \lambda_i \neq \mu_k, \ \pi_j \neq \nu_\ell.$$

• construct 2D Loewner matrix, $\mathbb{L} \in \mathbb{C}^{N \times (n'm')}$, $(NM) \ge (n'm')$

$$\mathbb{L} := \begin{bmatrix} \mathbf{v}_{1,1} - \mathbf{w}_{1,1} & \mathbf{v}_{1,1} - \mathbf{w}_{n',m'} \\ \overline{(\mu_1 - \lambda_1)(\nu_1 - \pi_1)} & \cdots & \overline{(\mu_1 - \lambda_{n'})(\nu_1 - \pi_{m'})} \\ \vdots & \ddots & \vdots \\ \frac{\mathbf{v}_{n',m'} - \mathbf{w}_{1,1}}{(\mu_{n'} - \lambda_1)(\nu_{m'} - \pi_1)} & \cdots & \frac{\mathbf{v}_{n',m'} - \mathbf{w}_{n',m'}}{(\mu_{n'} - \lambda_{n'})(\nu_{m'} - \pi_{m'})} \\ \vdots & \ddots & \vdots \\ \frac{\mathbf{v}_{N,M} - \mathbf{w}_{1,1}}{(\mu_N - \lambda_1)(\nu_M - \pi_1)} & \cdots & \frac{\mathbf{v}_{N,M} - \mathbf{w}_{n',m'}}{(\mu_N - \lambda_{n'})(\nu_M - \pi_{m'})} \end{bmatrix}$$

• then for n' > n, m' > m, dim ker $\mathbb{L} = (n' - n)(m' - m)$.

• and from
$$\mathbf{x} \in ker\mathbb{L}$$
, recover $\mathbf{H}(s, t) = \frac{\sum_{i=1}^{n'} \sum_{j=1}^{m'} \frac{\mathbf{w}_{i,j}\mathbf{x}_{i,j}}{(s-\lambda_i)(t-\pi_j)}}{\sum_{i=1}^{n'} \sum_{j=1}^{m'} \frac{\mathbf{w}_{i,j}}{(s-\lambda_i)(t-\pi_j)}}$.

• □ ▶ • @ ▶ • ■ ▶ • ■ ▶ ·

• model order reduction:

construct a 'tall' 2D Loewner matrix $\mathbb{L} \in \mathbb{C}^{(NM) \times (p+1)(q+1)}$

$$\mathbb{L} := \begin{bmatrix} \mathbf{v}_{1,1} - \mathbf{w}_{1,1} & \cdots & \mathbf{v}_{1,1} - \mathbf{w}_{p+1,q+1} \\ (\mu_1 - \lambda_1)(\nu_1 - \pi_1) & \cdots & (\mu_1 - \lambda_{p+1})(\nu_1 - \pi_{q+1}) \\ \vdots & \ddots & \vdots \\ \mathbf{v}_{p+1,q+1} - \mathbf{w}_{1,1} & \cdots & \mathbf{v}_{p+1,q+1} - \mathbf{w}_{p+1,q+1} \\ \vdots & \ddots & \vdots \\ \mathbf{v}_{N,M} - \mathbf{w}_{1,1} & \cdots & \mathbf{v}_{N,M} - \mathbf{w}_{p+1,q+1} \\ \vdots & \ddots & \vdots \\ \mathbf{v}_{N,M} - \mathbf{w}_{1,1} & \cdots & \mathbf{v}_{N,M} - \mathbf{w}_{p+1,q+1} \\ (\mu_N - \lambda_1)(\nu_M - \pi_1) & \cdots & (\mu_N - \lambda_{p+1})(\nu_M - \pi_{q+1}) \end{bmatrix}$$

with p < n, q < m.

 $\bullet~$ then \mathbbm{L} has full column rank

$$\operatorname{rank}\mathbb{L} = (p+1)(q+1),$$

and

$$\mathbb{L}\mathbf{x} = \mathbf{b} \neq \mathbf{0}, \quad \forall \ \mathbf{x} \in \mathbb{C}^{(p+1)(q+1)}.$$

Ionita, Lefteriu, Antoulas (Rice U. & Jacobs U

э

.

• define reduced model of order (p, q) as:

$$\mathbf{G}(s,t) := \frac{\sum_{i=1}^{p+1} \sum_{j=1}^{q+1} \frac{\mathbf{w}_{i,j} \mathbf{x}_{i,j}}{(s-\lambda_i)(t-\pi_j)}}{\sum_{i=1}^{p+1} \sum_{j=1}^{q+1} \frac{\mathbf{x}_{i,j}}{(s-\lambda_i)(t-\pi_j)}}.$$

the error is:
$$\begin{aligned} \mathbf{H}(\lambda_i,\pi_j) - \mathbf{G}(\lambda_i,\pi_j) &= 0, \\ \mathbf{H}(\mu_i,\nu_j) - \mathbf{G}(\mu_i,\nu_j) &= \frac{\mathbf{b}_{k,\ell}}{\sum_{i=1}^{p+1}\sum_{j=1}^{q+1}\frac{\mathbf{x}_{i,j}}{(\mu_k - \lambda_i)(\nu_\ell - \pi_j)}} := \mathbf{d}_{k,\ell}. \end{aligned}$$

• for $\mathbb{L} \in \mathbb{C}^{(NM) \times (p+1)(q+1)}$, find $\mathbf{b} \in \mathbb{C}^{(NM)}$ and $\mathbf{x} \in \mathbb{C}^{(p+1)(q+1)}$ such that

 $\min_{\mathbb{L}\mathbf{x}=\mathbf{b}} \|\mathbf{d}\|_2.$

イロト 不得 トイヨト イヨト 二日

• eliminate **b** and re-write the minimization problem as $\min_{\mathbf{x}} \|\widehat{\mathbf{d}}\|_2$,

$$\widehat{\mathbf{d}}_{k,\ell} := \sum_{i=1}^{p+1} \sum_{j=1}^{q+1} \frac{(\mathbf{v}_{k,\ell} - \mathbf{w}_{i,j}) \mathbf{x}_{k,\ell}}{(\mu_k - \lambda_i)(\nu_\ell - \pi_j)} \left/ \sum_{i=1}^{p+1} \sum_{j=1}^{q+1} \frac{\mathbf{x}_{k,\ell}}{(\mu_k - \lambda_i)(\nu_\ell - \pi_j)} \right.$$

solve a sub-optimal minimization problem

$$\min_{\mathbf{x}} \|\widetilde{\mathbf{d}}\|_{2}, \quad \widetilde{\mathbf{d}}_{k,\ell} := \sum_{i=1}^{p+1} \sum_{j=1}^{q+1} \frac{(\mathbf{v}_{k,\ell} - \mathbf{w}_{i,j})\mathbf{x}_{k,\ell}}{(\mu_{k} - \lambda_{i})(\nu_{\ell} - \pi_{j})} \Leftrightarrow \min_{\mathbf{x}} \|\mathbb{L}\mathbf{x}\|_{2}.$$

solution:

 \mathbf{x} = right-singular vector corresponding to $\sigma_{(p+1)(q+1)}$.

• error formula:

$$\mathbf{H}(\mu_i,\nu_j) - \mathbf{G}(\mu_i,\nu_j) = \sigma_{(p+1)(q+1)} \frac{\mathbf{y}_{k,\ell}}{\sum_{i=1}^{p+1} \sum_{j=1}^{q+1} \frac{\mathbf{x}_{i,j}}{(\mu_k - \lambda_i)(\nu_\ell - \pi_j)}},$$

where $\mathbf{y} = \text{left-singular vector corresponding to } \sigma_{(\rho+1)(q+1)}$.

Example of 2D MOR in the Loewner framework:

Two-variable rational function of order (n, m) = (6, 6)

$$\mathbf{H}(s,t) = \frac{(s^4 + t^4 + 0.5)(s+1)}{(s^4 + t^4)(s^2 + 2s + t^2 + 1)}.$$

- **Given:** measurements $H(s_i, t_j)$.
- Goal: construct reduced model G(s, t) of order (p, q) = (2, 2) s.t.

 $\mathbf{G}(\mathbf{s}_i, t_j) \approx \mathbf{H}(\mathbf{s}_i, t_j).$

2D case

2D Loewner-MOR

• data: $\begin{array}{ll} \mathbf{W}_{i,j} & := & \mathbf{H}(\lambda_i, \pi_j), \quad \lambda_i \in \{0, \pm j\}, \ \pi_j \in \{2, 4, 6\}, \\ \mathbf{v}_{k,\ell} & := & \mathbf{H}(\mu_k, \nu_\ell), \quad \mu_k \in \{\pm 3.2j, \dots, \pm 30j\}, \ \nu_\ell \in \{8, \dots, 14\}. \end{array}$ • 2D Loewner matrix $\mathbb{L} \in \mathbb{C}^{104 \times 9}$, with entries $[\mathbb{L}] := \left[\frac{\mathbf{v}_{k,\ell} - \mathbf{w}_{i,j}}{(\mu_k - \lambda_i)(\nu_\ell - \pi_i)} \right]$.

2D case

2D Loewner-MOR

• reduced model of order (p, q) = (2, 2)

$$\mathbf{G}(s,t) := \frac{\sum_{i=1}^{p+1} \sum_{j=1}^{q+1} \frac{\mathbf{w}_{i,j} \mathbf{x}_{i,j}}{(s-\lambda_i)(t-\pi_j)}}{\sum_{i=1}^{p+1} \sum_{j=1}^{q+1} \frac{\mathbf{x}_{i,j}}{(s-\lambda_i)(t-\pi_j)}}$$

• $[x_{1,1}, x_{1,2}, \ldots, x_{3,3}]^T :=$ right singular vector of \mathbb{L} corresponding to σ_9 .

- by construction, measurements **w**_{*i*,*j*} interpolated exactly.
- for measurements $\mathbf{v}_{k,\ell}$, maximum point-wise error

$$\max_{k,\ell} \left| \mathbf{H}(\mu_k,\nu_\ell) - \mathbf{G}(\mu_k,\nu_\ell) \right| = \sigma_9 \cdot \max_{k,\ell} \left| \frac{\mathbf{y}_{k,\ell}}{\sum_{i=1}^3 \sum_{j=1}^3 \frac{\mathbf{x}_{i,j}}{(\mu_k - \lambda_i)(\nu_\ell - \pi_j)}} \right| = 0.1.$$

A .

- H - N

Ionita, Lefteriu, Antoulas (Rice U. & Jacobs U

Outline

PART I: Loewner matrices

- 1D Lagrange bases and Loewner matrices
- 2D Lagrange bases and Loewner matrices
- Structure of 2D Loewner matrices

PART II: Generalized state-space realizations

- One variable case
- Two variable case
- Examples

PART III: Computation of the error

- 1D case
- 2D case

4 Conclusions

★ ∃ > < ∃ >

Conclusions

- We presented a data-based model reduction method.
- Based of the Loewner matrix framework.
- Provides trade-off between accuracy and complexity.
- Aposteriori error computation.
- Extension to parametrized systems.

< 回 > < 回 > < 回 > -
(Some) References

Model reduction from data

- A.J. Mayo and A.C. Antoulas, *A framework for the solution of the generalized realization problem*, Linear Algebra and Its Applications, vol. 425, pages 634-662 (2007).
- Lefteriu, Antoulas: A New Approach to Modeling Multiport Systems from Frequency-Domain Data, IEEE Trans. CAD, vol. 29, pages 14-27 (2010).

Interpolatory model reduction

A.C. Antoulas, C.A. Beattie, and S. Gugercin, *Interpolatory model reduction of large-scale systems*, in Efficient modeling and control of large-scale systems, K. Grigoriadis and J. Mohammadpour Eds, Springer Verlag, pages 3-58 (2010).

Parametric interpolatory model reduction

• A.C. Antoulas, A.C. Ionita, and S. Lefteriu, *On two-variable rational interpolation*, submitted to LAA (2010).

(日)