Hadamard Semidifferentials
 Semidifferential of Parametrized Minima
 with Applications to Shape and Topological Derivatives

Michel C. Delfour

Centre de recherches mathématiques
and
Département de mathématiques et de statistique
Université de Montréal, Canada

Special TC7 Online Lectures Series
IFIP Technical Committee 7 on System Modeling and Optimization
Mathematical Center for Science and Technology
Institute of Mathematics
Polish Academy of Sciences
(1) Overview
(2) Geometry as a Variable

- Shape Variations
- Topological Variations
(3) Hadamard Semidifferentiable Functions
- Hadamard Geometric Definition of the Differential
- Fréchet Drops the Linearity of the Directional Derivative
- Semidifferentials for Functions on Unstructured Sets
- Variational Principle and an Example from Plasma Physics
- M-semidifferentiability, Lipschitz and Convex Functions
- Strict Differentiability, Upper/Lower Semidifferentiability
(4) One-sided Derivative of Parametrized Minima: an Extra Term
- Some Background and the Seesaw Problem of Danskin in 1966
- Some Generic Examples: Eigenvalue and Compliance Problems
- Main Theorems without and with an Extra Term
- Examples of Shape Derivatives without and with an Extra Term
(5) Specialization of the Main Theorem
- X Convex and $x \mapsto G(t, x)$ Semi-Diifferentiable
- X Affine and $x \mapsto G(t, x)$ Twice Semi-differentiable
(6) Examples of Topological Derivative
- Two- and One-Dimensional Examples
(7) References
- Motivated by shape and topological derivatives, we revisit the Hadamard semidifferential, for which a complete semidifferential calculus is available, including the chain rule. The conical derivative of Mignot [Contrôle dans les inéquations variationelles elliptiques, J. Funct. Anal., 22 (1976)] is a Hadamard semidifferential. It is also a natural tool for differentiation along trajectories in automatic differentiation.
- For real-valued functions we recall the generalized directional derivative (an upper semidifferential) for which some form of differential calculus is restored by going to subdifferentials. Both families of functions contain the continuous convex functions, but they are not contained in one another. The choice is problem dependent, but the Hadamard semidifferential is more convenient in most applications.
- The second object of this lecture is the differentiation of the infimum of parametrized objective functions with respect to the parameters as in Danskin [The theory of max-min, with applications, SIAM J. on Appl. Math. 14 (1966)] who obtained a semidifferential equal to the infimum over the set of minimizers of the one-sided directional derivative with respect to the parameters. Yet, in applications to the topological and shape derivatives of the compliance, examples reveal the possible occurrence of an extra negative term: the so-called polarization term in Mechanics.
- For the shape derivative, the associated technique is a change of variable to work on the fixed initial domain; for the topological derivative, it is an extension over the hole created by the topological perturbation of the domain.
- This work has applications to compliance problems and to eigenvalue problems where the first eigenvalue is not simple.

(2) GEOMETRY AS A VARIABLE

- Shape Variations
- Topological Variations
(3) Hadamard Semidifferentiable Functions
- Hadamard Geometric Definition of the Differential
- Fréchet Drops the Linearity of the Directional Derivative
- Semidifferentials for Functions on Unstructured Sets
- Variational Principle and an Example from Plasma Physics
- M-semidifferentiability, Lipschitz and Convex Functions
- Strict Differentiability, Upper/Lower Semidifferentiability
(4) One-sided Derivative of Parametrized Minima: an Extra Term
- Some Background and the Seesaw Problem of Danskin in 1966
- Some Generic Examples: Eigenvalue and Compliance Problems
- Main Theorems without and with an Extra Term
- Examples of Shape Derivatives without and with an Extra TermSpecialization of the Main Theorem
- X Convex and $x \mapsto G(t, x)$ Semi-Diifferentiable
- X Affine and $x \mapsto G(t, x)$ Twice Semi-differentiable

Examples of Topological Derivative

- Two- and One-Dimensional Examples
(7) REFERENCES

When the variable at hand is a geometric object in the n-dimensional Euclidean space \mathbb{R}^{n}, it is natural to introduce a space of subsets of some fixed holdall $D \subset \mathbb{R}^{n}$ and to give it an appropriate structure (group, metric) to deal with optimal design/control problems and a framework to do sensitivity analysis (differential calculus). There are several ways to do it mathematically.

\square
\square Obviously, such diffeomorphisms can only induce changes in the shape of the set Ω_{0}
\square approach is not limited to $C_{0}^{k}\left(\mathbb{R}^{n} ; \mathbb{R}^{n}\right)$, but extends to other spaces such as the Lipschitzian mappings ([43, Chapter 3])

Since the tangent space to that metric group $\mathcal{F}\left(C_{0}^{k}\left(\mathbb{R}^{n} ; \mathbb{R}^{n}\right)\right)$ is precisely the linear
we have a notion of shape derivative.

When the variable at hand is a geometric object in the n-dimensional Euclidean space \mathbb{R}^{n}, it is natural to introduce a space of subsets of some fixed holdall $D \subset \mathbb{R}^{n}$ and to give it an appropriate structure (group, metric) to deal with optimal design/control problems and a framework to do sensitivity analysis (differential calculus). There are several ways to do it mathematically.

For shape variations, choose the variable sets as the images of a fixed set Ω_{0} by a group of diffeomorphisms with a metric and a differential structure such as the metric groups introduced by Anna-Maria Micheletti [76] in 1972

$$
\mathcal{F}\left(C_{0}^{k}\left(\mathbb{R}^{n} ; \mathbb{R}^{n}\right)\right) \stackrel{\text { def }}{=}\left\{F: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n} \text { bijective }: F-I \text { and } F^{-1}-I \in C_{0}^{k}\left(\mathbb{R}^{n} ; \mathbb{R}^{n}\right)\right\}
$$

where $C_{0}^{k}\left(\mathbb{R}^{n} ; \mathbb{R}^{n}\right)$ is the space of C^{k} mappings of \mathbb{R}^{n} going to zero at infinity. Obviously, such diffeomorphisms can only induce changes in the shape of the set Ω_{0}.
This group was endowed with a metric that she called Courant metric. This approach is not limited to $C_{0}^{k}\left(\mathbb{R}^{n} ; \mathbb{R}^{n}\right)$, but extends to other spaces such as the Lipschitzian mappings ([43, Chapter 3]).
Since the tangent space to that metric group $\mathcal{F}\left(C_{0}^{k}\left(\mathbb{R}^{n} ; \mathbb{R}^{n}\right)\right)$ is precisely the linear space $C_{0}^{k}\left(\mathbb{R}^{n} ; \mathbb{R}^{n}\right)$, we have a notion of shape derivative.
The velocity method of Zolésio [108] in 1979 corresponds to a trajectory $t \mapsto T_{t}$ in the group of diffeomorphisms for which the velocity $V(t) \circ T_{t}$ at T_{t} belongs to the tangent space $C_{0}^{k}\left(\mathbb{R}^{n} ; \mathbb{R}^{n}\right)$ and $d T_{t} / d t=V(t) \circ T_{t}$.

Perturb the bounded open domain Ω by a family of diffeomorphisms T_{t} generated by a smooth velocity field $V(t)$:

$$
\Omega_{t} \stackrel{\text { def }}{=} T_{t}(\Omega), \quad T_{t}(X) \stackrel{\text { def }}{=} x(t ; X), t \geq 0, \quad \frac{d x}{d t}(t ; X)=V(t, x(t ; X)), x(0 ; X)=X
$$

Given $f \in H^{1}\left(\mathbb{R}^{n}\right)$, consider the volume integral and the change of variable T_{t}

$$
\begin{gathered}
J\left(\Omega_{t}\right)=\int_{\Omega_{t}} f d x=\int_{\Omega} f \circ T_{t} j_{t} d x . \quad j_{t}=\operatorname{det} D T_{t}, \quad D T_{t} \text { is the Jacobian matrix, } \\
d J(\Omega ; V) \xlongequal{\operatorname{def}} \lim _{t \geqslant 0} \frac{J\left(\Omega_{t}\right)-J(\Omega)}{t}=\int_{\Omega} \nabla f \circ V(0)+f \operatorname{div} V(0) d x=\int_{\Omega} \operatorname{div}(f V(0)) d x .
\end{gathered}
$$

T_{t} will also be used in integrals involving functions u_{t} and v_{t} in $H^{1}\left(\Omega_{t}\right)$ to obtain an integral over Ω and functions $u^{t}=u_{t} \circ T_{t}$ and $v^{t}=v_{t} \circ T_{t}$ in the fixed space $H^{1}(\Omega)$:

$$
\begin{align*}
\int_{\Omega_{t}} \nabla u_{t} \cdot \nabla v_{t}-a v d x & =\int_{\Omega}\left[A(t) \nabla u^{t} \cdot \nabla v^{t}-a \circ T_{t} v^{t} j_{t}\right] d x \tag{2.1}\\
A(t)=j_{t} D T_{t}^{-1}\left(D T_{t}^{-1}\right)^{\top}, \quad j_{t} & =\operatorname{det} D T_{t}, \quad D T_{t} \text { is the Jacobian matrix, } \tag{2.2}
\end{align*}
$$

where $\left(D T_{t}^{-1}\right)^{\top}$ is the transpose of the inverse of $D T_{t}$.
(1) Overview

(2) GEOMETRY AS A VARIABLE

- Shape Variations

- Topological Variations

Hadamard Semidifferentiable Functions- Hadamard Geometric Definition of the Differential
- Fréchet Drops the Linearity of the Directional Derivative
- Semidifferentials for Functions on Unstructured Sets
- Variational Principle and an Example from Plasma Physics
- M-semidifferentiability, Lipschitz and Convex Functions
- Strict Differentiability, Upper/Lower Semidifferentiability
(4) One-sided Derivative of Parametrized Minima: an Extra Term
- Some Background and the Seesaw Problem of Danskin in 1966
- Some Generic Examples: Eigenvalue and Compliance Problems
- Main Theorems without and with an Extra Term
- Examples of Shape Derivatives without and with an Extra TermSpecialization of the Main Theorem
- X Convex and $x \mapsto G(t, x)$ Semi-Diifferentiable
- X Affine and $x \mapsto G(t, x)$ Twice Semi-differentiableExamples of Topological Derivative
- Two- and One-Dimensional Examples
(7) REFERENCES

For topological variations the variable sets A are identified with a family of set-parametrized functions such as, for instance, the characteristic function

$$
\chi_{A}(x) \stackrel{\text { def }}{=}\left\{\begin{array}{ll}
1, & x \in A \tag{2.3}\\
0, & x \notin A
\end{array}\right\} .
$$

Given a holdall D (a Lebesgue measurable subset of \mathbb{R}^{n}), let $\mathcal{P}(D)$ be the σ-algebra of Lebesgue measurable subsets of D and m_{n} the Lebesgue measure in \mathbb{R}^{n}.

Identify the measurable subsets Ω of the hold-all D with their characteristic functions

$$
\begin{equation*}
\Omega \in \mathcal{P}(D) \longleftrightarrow \chi_{\Omega} \in X(D) \stackrel{\text { def }}{=}\left\{f \in L^{\infty}(D): f(1-f)=0 \text { a.e. }\right\} \tag{2.4}
\end{equation*}
$$

where $L^{p}(D)=L^{p}\left(D, \mathrm{~m}_{n}\right)$. Introduce the Abelian group structure

$$
\begin{equation*}
A \Delta B \stackrel{\text { def }}{=}(A \backslash B) \cup(B \backslash A), \quad\left(\chi_{A} \triangle \chi_{B}\right)(x) \stackrel{\text { def }}{=} \chi_{A \Delta B}(x)=\left|\chi_{A}(x)-\chi_{B}(x)\right| \tag{2.5}
\end{equation*}
$$

where $A \triangle B$ is the symmetric difference, $\chi_{\varnothing}=0$ is the neutral element, and χ_{A} is its own inverse. The group $X\left(\mathbb{R}^{n}\right)$ is a closed subset without interior of $L^{\infty}\left(\mathbb{R}^{n}\right)$ with the associated metric on equivalence classes of measurable subsets of \mathbb{R}^{n} :

$$
\rho\left(\left[\Omega_{2}\right],\left[\Omega_{1}\right]\right) \stackrel{\text { def }}{=}\left\|\chi_{\Omega_{2}}-\chi_{\Omega_{1}}\right\|_{L^{\infty}\left(\mathbb{R}^{n}\right)}=\left\|\chi_{\Omega_{2}} \Delta \chi_{\Omega_{1}}\right\|_{L^{\infty}\left(\mathbb{R}^{n}\right)},
$$

where the operation Δ is continuous. Hence a complete metric group.
Given a topological vector space Y, we are interested in functions of the type

$$
\begin{equation*}
\chi \mapsto F(\chi): X(D) \rightarrow Y \tag{2.6}
\end{equation*}
$$

The original notion of topological derivative by removing a small ball around a point \bar{x} in an open set Ω is the set derivative of Lebesgue (or Lebesgue differentiation theorem) with respect to the dilatation of a point $\bar{x} \in \Omega$. It corresponds to a delta function in the tangent space to the group $X(D)$, that is, a bounded measure.

For instance, consider the volume integral of a function $f \in L^{1}(D)$

$$
\chi_{\Omega} \mapsto V\left(\chi_{\Omega}\right) \stackrel{\text { def }}{=} \int_{\mathbb{R}^{n}} \chi_{\Omega} f d m_{n}=\int_{\Omega} f d x: X(D) \rightarrow \mathbb{R}
$$

$E=\{\bar{x}\}$
$E_{r}=\overline{B_{r}(\bar{x})} \subset \Omega$

This idea of dilatation extends to curves, surfaces, and d-rectifiable subsets E of \mathbb{R}^{n}, where $0 \leq d<n$ is the dimension of the perturbing subset E of \mathbb{R}^{n}.

We obtain a semidifferential (one-sided directional derivative) with respect to bounded measures corresponding to points $(d=0)$, curves $(d=1)$, surfaces $(d=2)$, or closed d-rectifiable subsets $E \subset \Omega([27,28,31,32])$.

The definition of the topological derivative as a semidifferential was introduced at IFIP 2015 in Sophia Antipolis in "System Modeling and Optimization (CSMO 2015),"
L. Bociu, J. A. Desideri and A. Habbal, eds., pp. 230-239, Springer, 2017.

- Topological derivative: a semidifferential via the Minkowski content, Journal of Convex Analysis (3) 25 (2018), 957-982.
- Topological Derivative of State Constrained Objective Functions: a Direct Approach, SIAM J. on Control and Optim. (1) 60 (2022), 22-47.
- Topological derivatives via one-sided derivative of parametrized minima and minimax, Engineering Computations (1) 39 (2022), pp. 34-59.
- One-sided Derivative of Parametrized Minima for Shape and Topological Derivatives, SIAM J. Control and Optim., accepted December 2022.

This topological derivative is technically more challenging than the shape derivative. In the literature it is obtained by compound and matched asymptotic expansions
Quoting S.A. Nazarov [83],
Formulas for increments in the three-dimensional problem, obtained in [85] by the shape optimization tools [98, 43], involve the so-called material derivatives of the energy functionals, which (i.e. the derivatives) are not easily interpreted in natural mechanical terms, and, consequently, one is not able to derive a formula for increments in a simple and clear form. Similar difficulties arise if one calculates the topological derivative of the shape functional. A method for checking the coincidence of formulas obtained by different methods was suggested in [84], but it requires complicated transformations, in particular, multiply repeated integration by parts.

There is a definite interest in developing this idea of the topological derivative as a semidifferential and direct methods such as the t-derivative and the parametrized minima and minimax formulations for constrained objective functions as an alternative and a complement to compound and matched asymptotic expansions.
(1) Overview
(2)

Geometry as a Variable

- Shape Variations
- Topological Variations
(3) Hadamard Semidifferentiable Functions
- Hadamard Geometric Definition of the Differential
- Fréchet Drops the Linearity of the Directional Derivative
- Semidifferentials for Functions on Unstructured Sets
- Variational Principle and an Example from Plasma Physics
- M-semidifferentiability, Lipschitz and Convex Functions
- Strict Differentiability, Upper/Lower SemidifferentiabilityOne-sided Derivative of Parametrized Minima: an Extra Term
- Some Background and the Seesaw Problem of Danskin in 1966
- Some Generic Examples: Eigenvalue and Compliance Problems
- Main Theorems without and with an Extra Term
- Examples of Shape Derivatives without and with an Extra TermSpecialization of the Main Theorem
- X Convex and $x \mapsto G(t, x)$ Semi-Diifferentiable
- X Affine and $x \mapsto G(t, x)$ Twice Semi-differentiableExamples of Topological Derivative
- Two- and One-Dimensional Examples

According to Tihomirov [102], "the correct definition of derivative and differential of a function of many variables was given by K. Weierstrass in his lectures in the eighties of the 19th century. These lectures were published in the thirties of our century (20th).

Over the years equivalent definitions became available, but the geometrical one of J. Hadamard [62] in 1923 revisited by Fréchet of [57] in 1937 is especially interesting.

DEFINITION

An admissible trajectory at $x \in X$ in a topological vector space (TVS) X is a function $h:(-\tau, \tau) \rightarrow X$, for some $\tau>0$, such that

$$
\begin{equation*}
h(0)=x \quad \text { and } \quad h^{\prime}(0) \stackrel{\text { def }}{=} \lim _{t \rightarrow 0} \frac{h(t)-h(0)}{t} \text { exists in } X \tag{3.1}
\end{equation*}
$$

where $h^{\prime}(0)$ is the tangent to the trajectory h at $h(0)=x$.

DEFINITION

Let X and Y be topological vector spaces.
A function $f: X \rightarrow Y$. is Hadamard differentiable at $x \in X$ if there exists a linear function $\operatorname{Df}(x): X \rightarrow Y$ such that for each admissible trajectory h in X at x,

$$
(f \circ h)^{\prime}(0) \text { exists and }(f \circ h)^{\prime}(0)=D f(x) h^{\prime}(0)
$$

All operations of the differential calculus including the chain rule are available. $\bar{\equiv}$

In 1925 Fréchet extended his 1911 definition ${ }^{1}$ in [53] for functions of several variables to functions of functions (functionals).

DEFINITION (FRÉCHET [56] IN 1925)

Let X be a normed space and Y a topological vector space. The function $f: X \rightarrow Y$ is Fréchet differentiable at $x \in X$ if there exists a continuous linear mapping $D f(x): X \rightarrow Y$ such that

$$
\begin{equation*}
\lim _{\|v\| \rightarrow 0} \frac{f(x+v)-f(x)-D f(x) v}{\|v\|}=0 \text { in } Y \tag{3.2}
\end{equation*}
$$

The linear mapping $v \mapsto \operatorname{Df}(x) v: X \rightarrow Y$ is the differential of f at x.
In finite dimension Hadamard coincides with the Fréchet differential. But in abstract vector spaces without a norm or a metric, Hadamard's definition is more general as acknowledged by Fréchet [57, Abstract, pp. 233] in 1937:

Abstract. The author shows that the definition of the total derivative of Stolz-Young is equivalent to the definition of Mr Hadamard. On the other hand, when the latter is extended to functionals, it becomes more general than the one of the author.
necessarily verifying the theorem of composite functions, is still more
general, but for this very reason, perhaps too general.

[^0]In 1925 Fréchet extended his 1911 definition ${ }^{1}$ in [53] for functions of several variables to functions of functions (functionals).

DEFINITION (FRÉCHET [56] IN 1925)

Let X be a normed space and Y a topological vector space. The function $f: X \rightarrow Y$ is Fréchet differentiable at $x \in X$ if there exists a continuous linear mapping $\operatorname{Df}(x): X \rightarrow Y$ such that

$$
\begin{equation*}
\lim _{\|v\| \rightarrow 0} \frac{f(x+v)-f(x)-D f(x) v}{\|v\|}=0 \text { in } Y \tag{3.2}
\end{equation*}
$$

The linear mapping $v \mapsto D f(x) v: X \rightarrow Y$ is the differential of f at x.
In finite dimension Hadamard coincides with the Fréchet differential. But in abstract vector spaces without a norm or a metric, Hadamard's definition is more general as acknowledged by Fréchet [57, Abstract, pp. 233] in 1937:

Abstract. The author shows that the definition of the total derivative of Stolz-Young is equivalent to the definition of Mr Hadamard. On the other hand, when the latter is extended to functionals, it becomes more general than the one of the author. Lastly the definition due to M. Paul Lévy, not necessarily verifying the theorem of composite functions, is still more general, but for this very reason, perhaps too general.

[^1](1) Overview
(2)

Geometry as a Variable

- Shape Variations
- Topological Variations
(3) Hadamard Semidifferentiable Functions
- Hadamard Geometric Definition of the Differential
- Fréchet Drops the Linearity of the Directional Derivative
- Semidifferentials for Functions on Unstructured Sets
- Variational Principle and an Example from Plasma Physics
- M-semidifferentiability, Lipschitz and Convex Functions
- Strict Differentiability, Upper/Lower SemidifferentiabilityOne-sided Derivative of Parametrized Minima: an Extra Term
- Some Background and the Seesaw Problem of Danskin in 1966
- Some Generic Examples: Eigenvalue and Compliance Problems
- Main Theorems without and with an Extra Term
- Examples of Shape Derivatives without and with an Extra TermSpecialization of the Main Theorem
- X Convex and $x \mapsto G(t, x)$ Semi-Diifferentiable
- X Affine and $x \mapsto G(t, x)$ Twice Semi-differentiableExamples of Topological Derivative
- Two- and One-Dimensional Examples

In 1937 Fréchet [57] also boldly drops the linearity and gives examples of (non-differentiable) homogeneous functions for which the classical differential calculus is preserved. However, this was not sufficient to catch the norm and the convex functions but he was very close. He only had to use semitrajectories over trajectories.

DEFINITION

An admissible semitrajectory at x in a topological vector space X is a function $h:[0, \tau) \rightarrow X$, for some $\tau>0$, such that

$$
\begin{equation*}
h(0)=x \quad \text { and } \quad h^{\prime}\left(0^{+}\right) \stackrel{\text { def }}{=} \lim _{t \searrow 0} \frac{h(t)-h(0)}{t} \text { exists in } X \tag{3.3}
\end{equation*}
$$

where $h^{\prime}\left(0^{+}\right)$is the semitangent to the trajectory h at $h(0)=x$.

DEFINITION

Let X and Y be topological vector spaces. A function $f: X \rightarrow Y$. is Hadamard semidifferentiable at $x \in X$ if there exists a function $v \mapsto d_{H} f(x ; v): X \rightarrow Y$ such that for each admissible semitrajectory h in X at x,

$$
(f \circ h)^{\prime}\left(0^{+}\right) \text {exists and }(f \circ h)^{\prime}\left(0^{+}\right)=d_{H} f\left(x ; h^{\prime}\left(0^{+}\right)\right) .
$$

It can be shown thatt $v \mapsto d_{H} f(x ; v): X \rightarrow Y$ is positively homogeneous and sequentially continuous (continuous in Fréchet spaces).

Fréchet [57, p. 239] gives the following example.

$$
\begin{equation*}
f(x, y)=x \sqrt{\frac{x^{2}}{x^{2}+y^{2}}} \quad \text { for }(x, y) \neq(0,0) \quad \text { with } f(0,0)=0 \tag{3.4}
\end{equation*}
$$

Indeed, it is readily checked that at $(0,0)$ with $h(t)=(x(t), y(t)) . h^{\prime}(0) \neq(0,0)$,

$$
\begin{gathered}
\quad \frac{x(t) \sqrt{\frac{x(t)^{2}}{x(t)^{2}+y(t)^{2}}}-0}{t}=\frac{x(t)-x(0)}{t} \sqrt{\frac{\left(\frac{x(t)-x(0)}{t}\right)^{2}}{\left(\frac{x(t)-x(0)}{t}\right)^{2}+\left(\frac{y(t)-y(0)}{t}\right)^{2}}} \\
\Rightarrow \lim _{t \rightarrow 0} \frac{f(x(t), y(t))-f(x(0), y 0))}{t}=x^{\prime}(0) \sqrt{\frac{\left(x^{\prime}(0)\right)^{2}}{\left(x^{\prime}(0)\right)^{2}+\left(y^{\prime}(0)\right)^{2}}} \\
\Rightarrow d_{H} f\left((0,0) ;\left(v_{1}, v_{2}\right)=\left\{\begin{array}{ll}
v_{1} \sqrt{\frac{v_{1}^{2}}{v_{1}^{2}+v_{2}^{2}}} & \left(v_{1}, v_{2}\right) \neq(0,0) \\
0, & \left(v_{1}, v_{2}\right)=(0,0)
\end{array}\right\}=f\left(v_{1}, v_{2}\right) ; \mathbb{R}^{2} \rightarrow \mathbb{R}\right.
\end{gathered}
$$

which is not linear in $\left(v_{1}, v_{2}\right)$.
This definition was crticized by Paul Lévy.
Far from discrediting this new notion, this example shows that such functions exist.

By using $h^{\prime}(0)$ and $(f \circ h)^{\prime}(0)$ rather than $h^{\prime}\left(0^{+}\right)$and $(f \circ h)^{\prime}\left(0^{+}\right)$, Fréchet was losing some Hadamard semidifferentiable functions such as the Euclidean norm ${ }^{2} n(x)=\|x\|$ on \mathbb{R}^{n} at $x=0$ since the differential quotient

$$
\begin{equation*}
\frac{n(h(t))-n(h(0))}{t}=\frac{\|h(t)\|-\|0\|}{t}=\frac{|t|}{t}\left\|\frac{h(t)-0}{t}\right\| \quad \text { diverges as } t \rightarrow 0 . \tag{3.5}
\end{equation*}
$$

It is really necessary that t be positive $(t=|t|)$ to get the convergence of the limit of the differential quotient

$$
\lim _{t>0}\left\|\frac{h(t)-0}{t}\right\|=\left\|h^{\prime}\left(0^{+}\right)\right\| \Rightarrow d_{H} n(x ; v)= \begin{cases}\frac{x}{\|x\|} \cdot v, & x \neq 0 \\ \|v\|, & x=0\end{cases}
$$

Yet, it is quite remarkable that, up to the use of the right-hand side derivatives $h^{\prime}\left(0^{+}\right)$ and $(f \circ h)\left(0^{+}\right)$rather than the derivatives $h^{\prime}(0)$ and $(f \circ h)^{\prime}(0)$, Fréchet introduced a class of nondifferentiable functions verifying the theorem of composite functions.

[^2]This Hadamard semidifferentiability preserves all the operations of the differential calculus including the chain rule and more. For instance, for $f_{1}, f_{2} ; X \rightarrow Y$

$$
\begin{equation*}
d_{H}\left(\alpha f_{1}+\beta f_{2}\right)(x ; v)=\alpha d_{H} f_{1}(x ; v)+\beta d_{H} f_{2}(x ; v), \quad \alpha, \beta \in \mathbb{R}, \tag{3.6}
\end{equation*}
$$

for $g: X \rightarrow Y$ and $f: Y \rightarrow Z$

$$
\begin{equation*}
d_{H}(f \circ g)(x ; v)=d_{H} f\left(g(x) ; d_{H} g(x ; v)\right) . \tag{3.7}
\end{equation*}
$$

Moreover, additional operations such as the lower and upper envelops of a finite family of real-valued functions are available: for $f_{i}: X \rightarrow \mathbb{R}, i=1, \ldots m$,

$$
\begin{array}{cl}
d_{H}\left(\max _{1 \leq i \leq m} f_{i}\right)(x ; v)=\max _{i \in(I)} d_{H} f_{i}(x ; v), & I(x)=\left\{i: f_{i}(x)=\max _{1 \leq j \leq m} f_{j}(x)\right\} \\
d_{H}\left(\min _{1 \leq i \leq m} f_{i}\right)(x ; v)=\min _{i \in J(x)} d_{H} f_{i}(x ; v), & J(x)=\left\{i: f_{i}(x)=\min _{1 \leq j \leq m} f_{j}(x)\right\} . \tag{3.9}
\end{array}
$$

This includes the functions $f^{+}(x)=\max \{f(x), 0\}$ and $f^{-}(x)=\min \{f(x), 0\}$.
All continuous convex (resp. concave) functions on X are Hadamard semidifferentiable in the interior of their domain.
(1) OverviewGeometry as a Variable

- Shape Variations
- Topological Variations
(3) Hadamard Semidifferentiable Functions
- Hadamard Geometric Definition of the Differential
- Fréchet Drops the Linearity of the Directional Derivative
- Semidifferentials for Functions on Unstructured Sets
- Variational Principle and an Example from Plasma Physics
- M-semidifferentiability, Lipschitz and Convex Functions
- Strict Differentiability, Upper/Lower SemidifferentiabilityOne-sided Derivative of Parametrized Minima: an Extra Term
- Some Background and the Seesaw Problem of Danskin in 1966
- Some Generic Examples: Eigenvalue and Compliance Problems
- Main Theorems without and with an Extra Term
- Examples of Shape Derivatives without and with an Extra TermSpecialization of the Main Theorem
- X Convex and $x \mapsto G(t, x)$ Semi-Diifferentiable
- X Affine and $x \mapsto G(t, x)$ Twice Semi-differentiableExamples of Topological Derivative
- Two- and One-Dimensional Examples

The Hadamard semidifferential is the natural choice for functions on a subset A of X.
For a closed sufficiently smooth embedded submanifold A of $X=\mathbb{R}^{n}$ of dimension $d<n, \overline{\mathbb{R}^{n} \backslash A}=\mathbb{R}^{n}, A=\partial A$, and the smoothness insures that, at each point of A, the tangent space is a d-dimensional linear subspace. This is illustrated below in Figure 1
$h^{\prime}(0) \stackrel{\text { def }}{=} \lim _{t \rightarrow 0} \frac{h(t)-x}{t}$ exists
$T_{A}(x)=\mathbb{R}$ is a linear subspace of \mathbb{R}^{2}

Figure 1: Tangent $h^{\prime}(0)$ to the trajectory h in A at the point $h(0)=x$.
for a smooth curve A in \mathbb{R}^{2}.
But, the linearity of $T_{A}(x)$ puts a severe restriction on the choice of sets A. For instance, the requirement that $T_{A}(x)$ be linear rules out a curve in \mathbb{R}^{2} with a kink at x as shown in the Figure 2.
$h^{\prime}\left(0^{+}\right) \stackrel{\text { def }}{=} \lim _{t \backslash 0} \frac{h(t)-x}{t}$ exists
$T_{A}(x)$ is a non-convex cone in 0

FIGURE 2: Half-tangent $h^{\prime}\left(0^{+}\right)$to the semitrajectory A in A at the point $h(0) \equiv$. x.

DEFINITION ([32])

Let $A \neq \varnothing$ be a subset of a topological vector space X.
An admissible semitrajectory at $x \in A$ in A is a function $h:[0, \tau) \rightarrow A$ such that

$$
\begin{equation*}
h(0)=x \quad \text { and } \quad h^{\prime}\left(0^{+}\right) \stackrel{\text { def }}{=} \lim _{t \searrow 0} \frac{h(t)-h(0)}{t} \text { exists in } X \tag{3.10}
\end{equation*}
$$

where $h^{\prime}\left(0^{+}\right)$is the semitangent to the trajectory h in A at $h(0)=x$.

DEFInition (AUbin-Frankowska [6, DFN. 4.1.5, PP. 127-128 AND P. 161], [32])

Let $A \neq \varnothing$ be a subset of a topological vector space X.
The adjacent tangent cone to A at $x \in A$ is defined as

$$
T_{A}^{b}(x) \stackrel{\text { def }}{=}\left\{v \in X: \forall\left\{t_{n} \searrow 0\right\}, \exists\left\{x_{n}\right\} \subset A \text { such that } \lim _{n \rightarrow \infty} \frac{x_{n}-x}{t_{n}}=v\right\}
$$

For $x \in \operatorname{int} A, T_{A}^{b}(x)=X$. For $x \in \partial A$, the relevant tangent cone to A is $T_{A}^{b}(x)$.

THEOREM ([32])

Let $A \neq \varnothing$ be a subset of a topological vector space X.

$$
\begin{equation*}
\forall x \in A . \quad T_{A}^{b}(x)=\left\{h^{\prime}\left(0^{+}\right): h \text { an admissible semitrajectory in } A \text { at } x\right\} . \tag{3.11}
\end{equation*}
$$

We now have all the elements to extend the definition of the Hadamard semidifferential to a subset A of a TVS X.

DEFInition ([32])

Let X and Y be topological vector spaces, $A, \varnothing \neq A \subset X$, and $f: A \rightarrow Y$.
(i) f is Hadamard semidifferentiable at $x \in A$ if there exists a function $v \mapsto d_{H} f(x ; v): T_{A}^{b}(x) \rightarrow Y$ such that for all admissible semitrajectories h in A at x

$$
\begin{equation*}
(f \circ h)^{\prime}\left(0^{+}\right) \stackrel{\text { def }}{=} \lim _{t \star 0} \frac{f(h(t))-f(h(0))}{t}=d_{H} f\left(x ; h^{\prime}\left(0^{+}\right)\right) \tag{3.12}
\end{equation*}
$$

(ii) f is Hadamard differentiable at $x \in A$ if f is Hadamard semidifferentiable at $x \in A$, $T_{A}^{b}(x)$ is a linear subspace, and the function $v \mapsto d_{H} f(x ; v): T_{A}^{b}(x) \rightarrow Y$ is linear in which case it will be denoted $\operatorname{Df}(x)$.

REMARK

(i) The conical derivative of Mignot [77, Dfn. 2.1 and Prop, 2.3, pp.141-142] in 1976 [Contrôle dans les inéquations variationelles elliptiques] is a Hadamard semidifferential.
(ii) By its very definition, the Hadamard semidifferentiabilty is differentiation along trajectories as in automatic differentiation (see, for instance, the paper of J. Bolte and E. Pauwels [9] in 2021 [Conservative set valued fields, automatic differentiation, stochastic gradient methods and deep learning]).

THEOREM ([32])

Let X and Y be topological vector spaces and $A, \varnothing \neq A \subset X$.
(i) If $f: A \rightarrow Y$ is Hadamard semidifferentiable at $x \in A$, then the mapping

$$
\begin{equation*}
v \mapsto d_{H} f(x ; v): T_{A}^{b}(x) \rightarrow T_{f(A)}^{b}(f(x)) \subset Y \tag{3.13}
\end{equation*}
$$

is sequentially continuous for the induced topologies.
(ii) If $f_{1}: A \rightarrow Y$ and $f_{2}: A \rightarrow Y$ are Hadamard semidifferentiable at $x \in A$, then for all α and β in \mathbb{R},

$$
\begin{equation*}
\forall v \in T_{A}^{b}(x), \quad d_{H}\left(\alpha f_{1}+\beta f_{2}\right)(x ; v)=\alpha d_{H} f_{1}(x ; v)+\beta d_{H} f_{2}(x ; v) \tag{3.14}
\end{equation*}
$$

and $\alpha f_{1}+\beta f_{2}$ is Hadamard semidifferentiable at x.
(iii) (Chain rule) Let X, Y, Z be topological vector spaces, $g: A \subset X \rightarrow Y$, and $f: g(A) \rightarrow Z$ be functions such as g is Hadamard semidifferentiable at x and f is Hadamard semidifferentiable at $g(x)$ in $g(A)$. Then $d_{H} g(x ; v) \in T_{g(A)}^{b}(x), f \circ g$ is Hadamard semidifferentiable at x, and

$$
\begin{equation*}
\forall v \in T_{A}^{b}(x), \quad d_{H}(f \circ g)(x ; v)=d_{H} f\left(g(x) ; d_{H} g(x ; v)\right) \tag{3.15}
\end{equation*}
$$

We obtain notions of semidifferential and differential without introducing coordinate spaces, charts, local bases, or Christoffel symbols.
(1) Overview
(2)

Geometry as a Variable

- Shape Variations
- Topological Variations
(3) Hadamard Semidifferentiable Functions
- Hadamard Geometric Definition of the Differential
- Fréchet Drops the Linearity of the Directional Derivative
- Semidifferentials for Functions on Unstructured Sets
- Variational Principle and an Example from Plasma Physics
- M-semidifferentiability, Lipschitz and Convex Functions
- Strict Differentiability, Upper/Lower SemidifferentiabilityOne-sided Derivative of Parametrized Minima: an Extra Term
- Some Background and the Seesaw Problem of Danskin in 1966
- Some Generic Examples: Eigenvalue and Compliance Problems
- Main Theorems without and with an Extra Term
- Examples of Shape Derivatives without and with an Extra TermSpecialization of the Main Theorem
- X Convex and $x \mapsto G(t, x)$ Semi-Diifferentiable
- X Affine and $x \mapsto G(t, x)$ Twice Semi-differentiableExamples of Topological Derivative
- Two- and One-Dimensional Examples

We begin with the standard first order necessary condition for a local minimum.

THEOREM ([33])

Let X be a topological vector space, $A \neq \varnothing$ be a subset of X, and $f: A \rightarrow \mathbb{R}$ be Hadamard semidifferentiable at $x \in A$.
(i) If $x \in A$ is a local minimizer of f with respect to A, then

$$
\begin{equation*}
d_{H} f(x ; v) \geq 0 \text { for all } v \in T_{A}^{b}(x) \tag{3.16}
\end{equation*}
$$

where $T_{A}^{b}(x)$ is the adjacent tangent cone.
(ii) II A is convex and $x \in A$ is a minimizer of f with respect to A, then

$$
\begin{equation*}
d_{H} f(x ; y-x) \geq 0 \text { for all } y \in A \tag{3.17}
\end{equation*}
$$

If, in addition, f is convex, condition (3.17) is necessary and sufficient.
M. C. Delfour, Hadamard Semidifferential of Functions on an Unstructured Subset of a TVS, J. Pure and Applied Functional Analysis 5, no. 5, (2020), 1039-1072.
M. C. Delfour, Hadamard Semidifferential, Oriented Distance Function, and some Applications, Communications on Pure and Applied Analysis, 21, no. 6 (2022), 1917-1951. doi:10.3934/сраа. 2021076
M. C. Delfour, Introduction to Optimization and Hadamard Semidifferential Calculus, 2nd edition, MOS-SIAM Series, Phil., USA, 2012. (thanks to Keneth Lange= UCLEA)

Mossino and Zolésio [81] in 1977 and Zolésio [107, 108] in 1979 considered the infimum of the following non-differentiable convex continuous functional on $H_{0}^{1}(\Omega)$

$$
\begin{equation*}
f(v) \stackrel{\text { def }}{=} \int_{\Omega}\left(\|\nabla v(x)\|^{2}+|\Omega| v(x)\right) d x+\int_{\Omega} \int_{\Omega}[v(x)-v(y)]^{+} d x d y \tag{3.18}
\end{equation*}
$$

where $[y]^{+}=\max \{y, 0\}$.
It provided a direct way to get the Grad-Mercier equation in Plasma Physics.

Theorem (Mossino-Zolésio [81] And Zolésio [107, 108])

Assume that Ω is a bounded open domain with locally Lipschitzian boundary Γ and that f is given by (3.18).
(i) There exists a unique minimizer $u \in H_{0}^{1}(\Omega)$
(ii) u is the solution in $H_{0}^{1}(\Omega) \cap H^{2}(\Omega)$ of the following (non-local) system

$$
\begin{equation*}
-\Delta u+\beta_{-}(u)=0 \text { in } \Omega, \quad u=0 \text { on } \Gamma, \quad \text { meas }(\{y \in \Omega: u(x)=u(y)\})=0 \tag{3.19}
\end{equation*}
$$

where

$$
\begin{equation*}
\beta_{-}(u)(x)=\operatorname{meas}(\{y \in \Omega: u(x)>u(y)\}) . \tag{3.20}
\end{equation*}
$$

It says that the variational solution u is not constant on any subset of Ω of positive measure and is the unique solution of the first equation (3.19) with that property.
(1) Overview
(2)

Geometry as a Variable

- Shape Variations
- Topological Variations
(3) Hadamard Semidifferentiable Functions
- Hadamard Geometric Definition of the Differential
- Fréchet Drops the Linearity of the Directional Derivative
- Semidifferentials for Functions on Unstructured Sets
- Variational Principle and an Example from Plasma Physics
- M-semidifferentiability, Lipschitz and Convex Functions
- Strict Differentiability, Upper/Lower SemidifferentiabilityOne-sided Derivative of Parametrized Minima: an Extra Term
- Some Background and the Seesaw Problem of Danskin in 1966
- Some Generic Examples: Eigenvalue and Compliance Problems
- Main Theorems without and with an Extra Term
- Examples of Shape Derivatives without and with an Extra TermSpecialization of the Main Theorem
- X Convex and $x \mapsto G(t, x)$ Semi-Diifferentiable
- X Affine and $x \mapsto G(t, x)$ Twice Semi-differentiableExamples of Topological Derivative
- Two- and One-Dimensional Examples

In 1978 Penot [92] introduces the following stronger definition

DEFINITION (PENOT [92, P. 250], 1978)

Let X and Y be topological vector spaces. A function $f: X \rightarrow Y$ is M-semidifferentiable ${ }^{a}$ at $x \in X$ if

$$
\begin{equation*}
\forall v \in X, \quad d_{M} f(x ; v) \stackrel{\text { def }}{=} \lim _{\substack{w \rightarrow v \\ t>0}} \frac{f(x+t w)-f(x)}{t} \text { exists in } Y . \tag{3.21}
\end{equation*}
$$

${ }^{a}$ A. D. Michal [71, 72] in 1938 and 1939.
If $f: X \rightarrow Y$ is M -semidifferentiable at x, it is Hadamard semidifferentiable at x.
The next theorem connects continuity and semidifferentiability for a convex function.

THEOREM

Let X be a locally convex topological vector space,
$f: \operatorname{dom} f \rightarrow \mathbb{R}$ a convex function, and x a point in the interior of its domain dom f.
(i) If f is continuous.at x, then f is M-semidifferentiable at x.
(ii) If f is sequentially continuous at x, then f is Hadamard semidifferentiable at x.
(iii) If X is a Fréchet space, then f is continuous at x if and only if f is Hadamard semidifferentiable at x.

THEOREM (NORMED VECTOR SPACES)

Let X and Y be normed vector spaces, $f: X \rightarrow Y$ a function, and $x \in X$. The function f is M-semidifferentiable at x if and only if it is Hadamard semidifferentiable at x, that is, $d_{M} f(x ; v)=d_{H} f(x ; v)$.

DEFINITION (LIPSCHITZ FUNCTIONS)

Let X and Y be normed spaces. A function $f: X \rightarrow Y$ is Lipschitz continuous at $x \in X$ if there exists a constant $c(x)>0$ and a ball $B_{r}(x)$ of radius $r>0$ such that

$$
\begin{equation*}
\forall y, z \in B_{r}(x), \quad\|f(y)-f(z)\| y \leq c(x)\|y-z\|_{x} \tag{3.22}
\end{equation*}
$$

THEOREM

Let X and Y be normed vector spaces, $f: X \rightarrow Y$ a function, and $x \in X$. If $f: X \rightarrow Y$ is Lipschitz at x, then
(i) f is Hadamard semidifferentiable at x if and only if

$$
\begin{equation*}
\forall v \in X, \quad \lim _{t \geq 0} \frac{f(x+t v)-f(x)}{t} \text { exists. } \tag{3.23}
\end{equation*}
$$

(ii) In particular, if f is convex and x is an interior point of its domain dom f, then (3.23) is verified and f is Hadamard semidifferentiable at x.
(1) Overview
(2) GEOMETRY AS A VARIABLE

- Shape Variations
- Topological Variations
(3) Hadamard Semidifferentiable Functions
- Hadamard Geometric Definition of the Differential
- Fréchet Drops the Linearity of the Directional Derivative
- Semidifferentials for Functions on Unstructured Sets
- Variational Principle and an Example from Plasma Physics
- M-semidifferentiability, Lipschitz and Convex Functions
- Strict Differentiability, Upper/Lower Semidifferentiability

One-sided Derivative of Parametrized Minima: an Extra Term

- Some Background and the Seesaw Problem of Danskin in 1966
- Some Generic Examples: Eigenvalue and Compliance Problems
- Main Theorems without and with an Extra Term
- Examples of Shape Derivatives without and with an Extra TermSpecialization of the Main Theorem
- X Convex and $x \mapsto G(t, x)$ Semi-Diifferentiable
- X Affine and $x \mapsto G(t, x)$ Twice Semi-differentiableExamples of Topological Derivative
- Two- and One-Dimensional Examples

To complete this section, we quote the definition of strict differentiability introduced by the school of Bourbaki in the fifties, which is strictly stronger than the M-, Hadamard, and Fréchet differentiabilities.

DEFINITION (CLARKE [19, P. 30-31])

Given two Banach spaces X and Y, a function $f: X \rightarrow Y$ is strictly differentiable at x if there exists a continuous linear function $\operatorname{Df}(x): X \rightarrow Y$ such that

$$
\begin{equation*}
\forall v \in X, \lim _{\substack{t \geq 0 \\ y \rightarrow x}} \frac{f(y+t v)-f(y)}{t}=D f(x) v \tag{3.24}
\end{equation*}
$$

- According to [19, Prop. 2.2.1. p. 31] such a function is Lipschitz continuous at x.

For real-valued functions $f: X \rightarrow \mathbb{R}$ Lipschitz continuous at $x \in X$, lower and upper notions of Gateaux, M -, and strict differentiabilty can be introduced by replacing the limit by the lim inf or the lim sup. They are called upper and lower semidifferentials in the terminology of Cannarsa and Sinestrari [14].

Upper and lower semidifferentials of locally Lipschitz functions are more general, but the basic operations of the differential calculus are lost and one resorts to the notion of subdifferential and the tools of set-valued analysis to restore some form of calculus.

This is a disadvantage over the Hadamard semidifferential.

$$
\underline{d} f(x ; v) \stackrel{\text { def }}{=} \liminf _{t \neq 0} \frac{f(x+t v)-f(x)}{t}
$$

lower Gateaux semidifferential at x in the direction v

$$
\underline{d}_{M} f(x ; v) \stackrel{\text { def }}{=} \liminf _{\substack{t \\ w \rightarrow v}} \frac{f(x+t w)-f(x)}{t}
$$

lower M-semidifferential at x in the direction v
$\underline{d}_{C} f(x ; v) \stackrel{\text { def }}{=} \liminf _{\substack{t>0 \\ y \rightarrow x}} \frac{f(y+t v)-f(y)}{t}$
Clarke lower semidifferential at x in the direction v

$$
\bar{d} f(x ; v) \stackrel{\text { def }}{=} \limsup _{t \geq 0} \frac{f(x+t v)-f(x)}{t}
$$

upper Gateaux semidifferential
at x in the direction v

$$
\bar{d}_{M} f(x ; v) \stackrel{\text { def }}{=} \lim _{\substack{t \searrow 0 \\ w \rightarrow v}} \frac{f(x+t w)-f(x)}{t}
$$

upper M-semidifferential at x in the direction v.

$$
\bar{d}_{C} f(x ; v) \stackrel{\text { def }}{=} \limsup _{\substack{t>0 \\ y \rightarrow x}} \frac{f(y+t v)-f(y)}{t}
$$

Clarke upper semidifferential at x in the direction v

The upper notion of strict differentiability $\bar{d}_{C} f(x ; v)$ corresponds to the upper semidifferential developed by Clarke [18] in 1973 under the name generalized directional derivative.

For a convex function f at a point x in the interior of its domain dom f (see, for instance, [19, Prop. 2.2.7, p. 36]).

$$
\forall v, \quad \bar{d}_{c} f(x ; v)=d f(x ; v) \stackrel{\text { def }}{=} \lim _{t>0} \frac{f(x+t v)-f(x)}{t}
$$

Hence, from our previous considerations,

$$
\forall v, \quad \bar{d}_{C} f(x ; v)=d f(x ; v)=d_{H} f(x ; v)
$$

- What is happening at boundary points of a closed convex U ?

Note that for a concave function we have $\underline{d}_{C} f(x ; v)=d_{H} f(x ; v)$ for all $\underline{\underline{v}}$,

For the Lipschitz continuous function f_{1} on $U=[0,2]$

$$
\forall v \in T_{x}^{b}(U), \quad \bar{d}_{C} f(x ; v)=d_{H} f(x ; v)
$$

For the continuous convex function $f_{2}:[0,1] \rightarrow \mathbb{R}$

$$
\begin{equation*}
f_{2}(x)=1-\sqrt{1-(x-1)^{2}} \tag{3.2}
\end{equation*}
$$

choose an admissible semitrajectory $h:[0,1)$ such that

$$
\begin{equation*}
h(0)=0 \text { and } h^{\prime}\left(0^{+}\right)=1 . \tag{3.26}
\end{equation*}
$$

Then for $t>0$ and $h(t) / t \rightarrow 1$

$$
\frac{f_{2}(h(t))-f_{2}(h(0))}{t}=-\frac{\sqrt{1-(h(t)-1)^{2}}}{t}=-\sqrt{\frac{2}{t} \frac{h(t)}{t}-\left(\frac{h(t)}{t}\right)^{2}} \rightarrow-\infty .
$$

Moreover, setting $y \searrow 0$ and $t \searrow 0$ in the strict differential quotient

$$
\begin{equation*}
\frac{f_{2}(y+t)-f_{2}(y)}{t} \rightarrow-\infty \Rightarrow \bar{d}_{C} f(x ; v)=-\infty=d_{H} f(x ; v) . \tag{3.27}
\end{equation*}
$$

Therefore, if we allow in the definition of $d_{H} f(x ; v)$ the value $-\infty, f_{2}$ is Hadamard semidifferentiable at $x=0$ for directions in the cone $T_{0}^{b}([0,2])=[0, \infty)$.

If a convex function $f: U \rightarrow \mathbb{R}$ is continuous on a closed convex subset U

$$
\forall x \in \partial U, \forall v \in \mathbb{R}^{+}(U-x), \quad \bar{d}_{C} f(x ; v)=d_{H} f(x ; v)
$$

where this semidifferential can be $-\infty$ as for the example of the function $f_{2}=$

In the next two slides, we give two examples:
(i) a function which is Hadamard semidifferentiable at 0 , but is not Lipschitz in any neighborhood of $x=0$;
(ii) a Lipschitz function f which is not Hadamard semidifferentiable at 0 .

They shows that
the Hadamard semififferentiable functions are not contained in the Lipschitzian
functions with a generalized directional derivative and that
the Lipschitzian functions with a generalized directional derivative are not contained in the Hadamard semififferentiable functions.

	$\uparrow_{0.5}$																			-		
		$f(x)$	$x)=$	$=x^{3 / 2}$		n $\frac{1}{x}$																
		$f^{\prime}(x$	$(x)=$	$=\frac{3}{2}$	$x^{1 / 2}$	${ }^{2} \sin \frac{1}{x}$	$-x$	$\frac{1}{x^{1 / 2}}$	co		$\frac{1}{x},$	$x \neq$										
			$x)=$	0 ,		$x=0$																
																						x
0						25			0.5	5					${ }^{5} \times$							
	0.25																					

Figure 3: A function which is Hadamard semidifferentiable at 0 which is not Lipschitz in any neighborhood of $x=0$.

Figure 4: A Lipschitz function f which is not Hadamard semidifferentiable at 0.

For $v=1$

$$
\begin{equation*}
\liminf _{t>0} \frac{f(0+t v)-f(0)}{t}=0, \quad \limsup _{t \searrow 0} \frac{f(0+t v)-f(0)}{t}=1 \tag{3.28}
\end{equation*}
$$

(1) Overview
(2)

Geometry as a Variable

- Shape Variations
- Topological VariationsHadamard Semidifferentiable Functions
- Hadamard Geometric Definition of the Differential
- Fréchet Drops the Linearity of the Directional Derivative
- Semidifferentials for Functions on Unstructured Sets
- Variational Principle and an Example from Plasma Physics
- M-semidifferentiability, Lipschitz and Convex Functions
- Strict Differentiability, Upper/Lower Semidifferentiability
(4) One-Sided Derivative of Parametrized Minima: an Extra Term - Some Background and the Seesaw Problem of Danskin in 1966
- Some Generic Examples: Eigenvalue and Compliance Problems
- Main Theorems without and with an Extra Term
- Examples of Shape Derivatives without and with an Extra TermSpecialization of the Main Theorem
- X Convex and $x \mapsto G(t, x)$ Semi-Diifferentiable
- X Affine and $x \mapsto G(t, x)$ Twice Semi-differentiableExamples of Topological Derivative
- Two- and One-Dimensional ExamplesREFERENCES

Whether dealing with differentiation in a function space or with shape or topological derivatives, the problem can be put in the following general form:

$$
\begin{align*}
& g(t) \stackrel{\text { def }}{=} \inf _{x \in X} G(t, x), \quad(t, x) \mapsto G(t, x):[0, \tau) \times X \rightarrow \mathbb{R}, \tau>0, \tag{4.1}\\
& \text { to find and characterize } d g(0) \stackrel{\text { def }}{=} \lim _{t \geq 0} \frac{g(t)-g(0)}{t} \tag{4.2}
\end{align*}
$$

Let $X(t) \stackrel{\text { def }}{=}\left\{x^{t} \in X: g(t)=G\left(t, x^{t}\right)\right\}$ be the set of minimizers at $t \geq 0$.
Even if, in many cases, $d g(0)$ is simply given in terms of the one-sided derivative of $G(t, x)$ with respect to t (in the sequel we shall use the terminology t-derivative)

$$
\begin{equation*}
d g(0)=\inf _{x^{0} \in X(0)} d_{t} G\left(0, x^{0}\right), \quad \text { where } d_{t} G\left(0, x^{0}\right) \stackrel{\text { def }}{=} \lim _{t \searrow 0} \frac{G\left(t, x^{0}\right)-G\left(0, x^{0}\right)}{t} \tag{4.3}
\end{equation*}
$$

there are examples where an extra negative term occurs.
This extra term is known as the polarization term in the literature on the topological derivative which is often obtained by resorting to compound and matched asymptotic expansions (see, for instance, Sokołowski and Zȯchowski [97], Nazarov and Sokołowski [84], [3]), [83], [86], [15], ...)

In general, those methods are global and do not separate the computation of the extra term from the one of the t-derivative of $G\left(t, x^{0}\right)$. For instance, see the joint use of Fenchel duality and Gamma-convergence techniques by Bouchité, Fragala, and Lucardes. [13] to obtain the shape derivative of minima of integral functionals (see also Ngom, Faye, and Seck [87] for minimax of Lagrangian).

Danskin [22] in 1966 gives several simple examples in which the function g is not differentiable even if G is very smooth. This type of nondifferentiability is closely related to the fact that the set of minimizers $Y(x)$ is not a singleton as illustrated in his example of the seesaw problem ([22, p. 643]).
height of the point $(x, y): G(x, y)=y \sin x$

- J_{Y} minimizes the height over $Y \stackrel{\text { def }}{=}\{y \in \mathbb{R}:|y| \leq 1\}$ $g(x)=\min _{|y| \leq 1} G(x, y)=-|\sin x|$
- J_{X} maximizes $g(x)$ over $X \stackrel{\text { def }}{=}\{x \in \mathbb{R}:|x| \leq \pi / 2\}$
$\max _{|x| \leq \pi / 2} \min _{|y| \leq 1}(y \sin x)=\max _{|x| \leq \pi / 2} g(x)=0$ where the maximum is reached at $x=0$

$$
y=-1
$$

Figure 5: The seesaw problem of Danskin where $(x, y) \in[-\pi / 2, \pi / 2] \times[-1,1]$.

Player J_{X} chooses the angle $x \in X$ (see Figure 5) of the seesaw, player J_{Y} chooses any point y between the extremities -1 and +1 . Consider the function

$$
\begin{equation*}
g(x)=\inf _{y \in Y} G(x, y), \quad G(x, y) \stackrel{\text { def }}{=} y \sin x, \quad Y \stackrel{\text { def }}{=}\{y \in \mathbb{R}:|y| \leq 1\}, \tag{4.4}
\end{equation*}
$$

It is readily seen that
$g(x)=\min _{|y| \leq 1}(y \sin x)=-|\sin x|, \quad$ set of minimizers $Y(x)= \begin{cases}\left\{-\frac{\sin x}{|\sin x|}\right\}, & x \neq 0, \\ Y, & x=0 .\end{cases}$
The directional derivative of $G(x, y)$ with respect to x in the direction v

$$
\begin{equation*}
d_{x} G(x, y ; v)=(y \cos x) v \tag{4.5}
\end{equation*}
$$

and the directional derivative of $g(x)$ with respect to x in the direction v

$$
d g(x ; v)=\inf _{y \in Y(x)}(y \cos x) v= \begin{cases}-\frac{\sin x \cos x}{|\sin x|} v, & x \neq 0, \tag{4.6}\\ \inf _{|y| \leq 1} y v=-|v|, & x=0 .\end{cases}
$$

The function $g(x)$ is not differentiable at $x=0$, where the maximum of $g(x)$ occurs.
It is neither convex nor concave. The nondifferentiability at $x=0$ arises from the fact that the set $Y(x)$ of minimizers of $G(x, y)$ is not a singleton at $x=0$.
Yet, the function g is Hadamard semidifferentiable.

- Some Generic Examples: Eigenvalue and Compliance Problems
- Main Theorems without and with an Extra Term
- Examples of Shape Derivatives without and with an Extra TermSpecialization of the Main Theorem
- X Convex and $x \mapsto G(t, x)$ Semi-Diifferentiable
- X Affine and $x \mapsto G(t, x)$ Twice Semi-differentiableExamples of Topological Derivative
- Two- and One-Dimensional Examples

Let $\Omega \subset \mathbb{R}^{n}$ be a bounded open domain with Lipschitz boundary Γ and let A be a symmetric $n \times n$ matrix such that

$$
\begin{equation*}
\exists \alpha>0, \forall x \in \mathbb{R}^{n}, \quad A x \cdot x \geq \alpha\|x\|^{2} \tag{4.7}
\end{equation*}
$$

The first eigenvalue can be obtained via the Rayleigh quotient

$$
\lambda(\Omega, A) \stackrel{\text { def }}{=} \inf _{v \in H_{0}^{1}(\Omega), v \neq 0} F(\Omega, A ; v), \quad F(\Omega, A ; v) \stackrel{\text { def }}{=} \frac{\int_{\Omega} A \nabla v \cdot \nabla v d x}{\int_{\Omega}|v|^{2} d x} .
$$

The corresponding eigenspace is

$$
E(\Omega, A) \stackrel{\text { def }}{=}\left\{v \in H_{0}^{1}(\Omega):-\operatorname{div}(A \nabla v)=\lambda(\Omega, A) v\right\}
$$

Given a symmetric $n \times n$ matrix B, we are interested in the limit

$$
d \lambda(\Omega, A ; B) \stackrel{\text { def }}{=} \lim _{t \geq 0} \frac{\lambda(\Omega, A+t B)-\lambda(\Omega, A)}{t}=\inf _{\substack{v \in E(\Omega, A) \\ v \neq 0}} \frac{\int_{\Omega} B \nabla v \cdot \nabla v d x}{\int_{\Omega}|v|^{2} d x}
$$

This problem is defined on the fixed space $X=H_{0}^{1}(\Omega)$ for the function

$$
\begin{gathered}
v \mapsto G(t, v) \stackrel{\text { def }}{=} F(\Omega, A+t B ; v): X \rightarrow \mathbb{R}, \\
g(t) \stackrel{\text { def }}{=} \inf _{v \in X} G(t, v), \quad X(t) \stackrel{\text { def }}{=}\{u \in X: G(t, u)=g(t)\}, \\
\Rightarrow d \lambda(\Omega, A ; B)=d g(0) \stackrel{\text { def }}{=} \lim _{t \searrow 0} \frac{g(t)-g(0)}{t} .
\end{gathered}
$$

Another example is the first eigenvalue of the bi-Laplacian which is not simple.

The first eigenvalue $\lambda(\Omega, A)$ can also be obtained via the Auchmuty's dual principle as follows

$$
\begin{align*}
& \mu(\Omega, A) \stackrel{\text { def }}{=} \inf _{v \in H_{0}^{\prime}(\Omega)} F(\Omega, A ; v), \\
& \left.F(\Omega, A ; v) \stackrel{\text { def }}{=} \frac{1}{2} \int_{\Omega} A \nabla v \cdot \nabla v d x-\left[\int_{\Omega}|v|^{2} d x\right]^{1 / 2} \right\rvert\, \lambda(\Omega, A)=-\frac{1}{2 \mu(\Omega, A)} .
\end{align*}
$$

The main advantage of $\mu(\Omega, A)$ is that the minimization is over the linear space $H_{0}^{1}(\Omega)$.
It is shown in [59, Chapter 9, sec 2.3.3, pp. 203-205] that this relation holds between the infima of the quotient of two symmetric bilinear forms defined over a Hilbert space X. For $0 \leq t \leq \tau$,

$$
\begin{array}{r}
\lambda(t) \stackrel{\text { def }}{=} \inf _{0 \neq v \in X} f(t, v), \quad f(t, v) \stackrel{\text { def }}{=} \frac{a(t, v, v)}{b(t, v, v)}, \quad 0 \neq v \in X, \\
d f(t, u ; v)=\frac{2}{b(t, u, u)}[a(t, u, v)-f(t, u) b(t, u, v)], u \neq 0, \tag{4.10}
\end{array}
$$

under the assumption that $b(t, v, v) \geq 0$ and $b(t, v, v)=0$ implies $v=0$ in X.
The corresponding Auchmuty Dual Problem is

$$
\begin{gather*}
\mu(t) \stackrel{\text { def }}{\inf _{v \in X} g(t, v), \quad m(t, v) \stackrel{\text { def }}{=} \frac{1}{2} a(t, v, v)-b(t, v, v)^{1 / 2}, \quad \lambda(t)=-\frac{1}{2 \mu(t)},} \tag{4.11}\\
d m(t, u ; v)=a(t, u, v)-\frac{1}{b(t, u, u)^{1 / 2}} b(t, u, v), u \neq 0 . \tag{4.12}
\end{gather*}
$$

Let $\Omega \subset \mathbb{R}^{n}$ be bounded open with smooth boundary Γ and A a symmetric $n \times n$ matrix verifying (4.7). Given $f \in L^{2}\left(\mathbb{R}^{n}\right)$, let $u \in H_{0}^{1}(\Omega)$ be the solution of

$$
\begin{equation*}
-\operatorname{div}(A \nabla u)=f \text { in } \Omega, \quad u=0 \text { on } \Gamma . \tag{4.13}
\end{equation*}
$$

The compliance is defined as the work of the applied forces

$$
\begin{equation*}
J(\Omega, A) \stackrel{\text { def }}{=}-\int_{\Omega} f u d x \tag{4.14}
\end{equation*}
$$

The function $u \in H_{0}^{1}(\Omega)$ is the minimizing element of the energy functional

$$
\begin{align*}
& E(\Omega, A ; u)=\inf _{v \in H_{0}^{1}(\Omega)} E(\Omega, A ; v), \quad E(\Omega, A ; v) \stackrel{\text { def }}{=} \int_{\Omega} A \nabla v \cdot \nabla v-2 f v d x, \tag{4.15}\\
& \Rightarrow \exists u \in H_{0}^{1}(\Omega) \text { such that } \forall v \in H_{0}^{1}(\Omega), \quad \int_{\Omega} A \nabla u \cdot \nabla v-f v d x=0 . \tag{4.16}\\
& \Rightarrow J(\Omega, A)=-\int_{\Omega} A \nabla u \cdot \nabla u d x=\inf _{v \in H_{0}^{\prime}(\Omega)} E(\Omega, A ; v) . \tag{4.17}
\end{align*}
$$

If B is a symmetrical $n \times n$ matrix and $t>0$, we are interested in computing

$$
d J(\Omega, A ; B) \stackrel{\operatorname{def}}{=} \lim _{t \nless 0} \frac{J(\Omega, A+t B)-J(\Omega, A)}{t} .
$$

Again for the fixed space $X=H_{0}^{1}(\Omega)$

$$
v \mapsto G(t, v) \stackrel{\text { def }}{=} E(\Omega, A+t B ; v): X \rightarrow \mathbb{R}, \quad g(t) \stackrel{\text { def }}{=} \inf _{v \in X} G(t, v), \quad d J(\Omega, A ; B)=d g(0) .
$$

(1) Overview
(2) Geometry as a Variable

- Shape Variations
- Topological VariationsHadamard Semidifferentiable Functions
- Hadamard Geometric Definition of the Differential
- Fréchet Drops the Linearity of the Directional Derivative
- Semidifferentials for Functions on Unstructured Sets
- Variational Principle and an Example from Plasma Physics
- M-semidifferentiability, Lipschitz and Convex Functions
- Strict Differentiability, Upper/Lower Semidifferentiability

4. One-sided Derivative of Parametrized Minima: an Extra Term

- Some Background and the Seesaw Problem of Danskin in 1966
- Some Generic Examples: Eigenvalue and Compliance Problems
- Main Theorems without and with an Extra Term
- Examples of Shape Derivatives without and with an Extra TermSpecialization of the Main Theorem
- X Convex and $x \mapsto G(t, x)$ Semi-Diifferentiable
- X Affine and $x \mapsto G(t, x)$ Twice Semi-differentiableExamples of Topological Derivative
- Two- and One-Dimensional Examples

The objective is twofold: firstly to revisit the assumptions used in [42, Thm. 2.1, p. 394] dating back to 2001 in order to avoid conditions of the type lim inf's of t-derivatives of $G(t, x)$ and secondly to catch the extra term.
For instance, if the set of minimizers $X(0)=\left\{x^{0}\right\}$ at $t=0$ is a singleton, for $t>0$

$$
\begin{aligned}
& \frac{g(t)-g(0)}{t}=\underbrace{\frac{g(t)-G\left(t, x^{0}\right)}{t}}_{\leq 0}+\underbrace{\frac{G\left(t, x^{0}\right)-G\left(0, x^{0}\right)}{t}}_{\rightarrow d_{t} G\left(0, x^{0}\right)=\lim _{t} \backslash \frac{G\left(t, x^{0}\right)-G\left(0, x^{0}\right)}{t}} \\
& d g(0)=\lim _{t>0} \frac{g(t)-g(0)}{t}=\underbrace{\lim _{t \not 0} \frac{g(t)-G\left(t, x^{0}\right)}{t}}_{=R\left(x^{0}\right) \leq 0}+d_{t} G\left(0, x^{0}\right) .
\end{aligned}
$$

What makes the next two theorems very attractive is that there is a priori no assumption on the set X or the differentiability of $G(t, x)$ with respect to x. In particular, they can be used for continuous convex non-differentiable functions $x \mapsto G(t, x)$ as we shall see in a series of simple examples.
The new theorem and its two subsequent specialized versions, which respectively assume first and second order semi-differentiability of the function $x \mapsto G(t, x)$, set the stage to handle perturbations of the form ([28, 31, 32])
perturbations $x+t v$ in a vector space,
admissible trajectories in a group of diffeomorphisms, and

The objective is twofold: firstly to revisit the assumptions used in [42, Thm. 2.1, p. 394] dating back to 2001 in order to avoid conditions of the type lim inf's of t-derivatives of $G(t, x)$ and secondly to catch the extra term.

For instance, if the set of minimizers $X(0)=\left\{x^{0}\right\}$ at $t=0$ is a singleton, for $t>0$

$$
\begin{aligned}
& \frac{g(t)-g(0)}{t}=\underbrace{\frac{g(t)-G\left(t, x^{0}\right)}{t}}_{\leq 0}+\underbrace{\frac{G\left(t, x^{0}\right)-G\left(0, x^{0}\right)}{t}}_{\rightarrow d_{t} G\left(0, x^{0}\right)=\lim _{t} \backslash 0} \\
& d g(0)=\lim _{t>0} \frac{g(t)-G\left(0, x^{0}\right)}{t} \\
& t
\end{aligned} \underbrace{\lim _{t>0} \frac{g(t)-G\left(t, x^{0}\right)}{t}+d_{t} G\left(0, x^{0}\right) .}_{=R\left(x^{0}\right) \leq 0}
$$

What makes the next two theorems very attractive is that there is a priori no assumption on the set X or the differentiability of $G(t, x)$ with respect to x. In particular, they can be used for continuous convex non-differentiable functions $x \mapsto G(t, x)$ as we shall see in a series of simple examples.

The new theorem and its two subsequent specialized versions, which respectively assume first and second order semi-differentiability of the function $x \mapsto G(t, x)$, set the stage to handle perturbations of the form ($[28,31,32])$
(i) perturbations $x+t v$ in a vector space,
(ii) admissible trajectories in a group of diffeomorphisms, and
(ii) admissible semitrajectories in the group $\mathrm{X}(\mathrm{D})$ of characteristic functions.

We first consider the case where the extra term is zero.

THEOREM (NO EXTRA TERM)

Let X be an arbitrary set, $\tau>0,(t, x) \mapsto G(t, x):[0, \tau[\times X \rightarrow \mathbb{R}$, and

$$
g(t) \stackrel{\text { def }}{=} \inf _{x \in X} G(t, x), \quad X(t) \stackrel{\text { def }}{=}\{x \in X: G(t, x)=g(t)\}, \quad 0 \leq t<\tau
$$

Assume that the following conditions are satisfied:
(H1) for all $t \in[0, \tau[, X(t) \neq \varnothing$;
(H2) for each $x^{0} \in X(0)$ the one-sided t-derivative

$$
\begin{equation*}
d_{t} G\left(0, x^{0}\right) \stackrel{\text { def }}{=} \lim _{t \searrow 0} \frac{G\left(t, x^{0}\right)-G\left(0, x^{0}\right)}{t} \text { exists and is finite; } \tag{4.18}
\end{equation*}
$$

(H3) for each $t_{n} \searrow 0$, there exists $x^{0} \in X(0)$ such that

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \frac{g\left(t_{n}\right)-G\left(t_{n}, x^{0}\right)}{t_{n}}=0 \tag{4.19}
\end{equation*}
$$

Then there exists $\bar{x}^{0} \in X(0)$ such that ${ }^{a}$

$$
\begin{equation*}
d g(0) \stackrel{\text { def }}{=} \lim _{t \searrow 0} \frac{g(t)-g(0)}{t}=\inf _{x^{0} \in X(0)} d_{t} G\left(0, x^{0}\right)=d_{t} G\left(0, \bar{x}^{0}\right) \tag{4.20}
\end{equation*}
$$

If, in addition, $X(0)$ is a singleton, the infimum can be dropped.

REMARK

Theorem 19 is a generalization of [43, Thm. 2.1, p. 524] first formulated in [42, Thm. 2.1, p. 394] in 2001. It was recently used for eigenvalue problems (see [16] for elasticity theory in 2021 and [17] for the case of Steklov or Wentzell boundary conditions in 2022).

It relaxes the stronger assumptions $(\overline{\mathrm{H}} 2)$, ($\overline{\mathrm{H}} 3$), and $(\overline{\mathrm{H}} 4)$ that we briefly recall:
($\overline{\mathrm{H}} 2$) for all x in $\bigcup_{s \in[0, \tau[} X(s)$ and $t \in[0, \tau)$, the t-derivative

$$
\begin{equation*}
d_{t} G(t, x) \stackrel{\text { def }}{=} \lim _{\theta \rightarrow 0,0 \leq t+\theta<\tau} \frac{G(t+\theta, x)-G(t, x)}{\theta} \text { exists; } \tag{4.21}
\end{equation*}
$$

(H3 3) for each $t_{n} \searrow 0$, there exist $x^{0} \in X(0)$ and $\left\{x_{n}\right\}, x_{n} \in X\left(t_{n}\right)$, such that

$$
\begin{equation*}
\liminf _{n \rightarrow \infty s \searrow 0} d_{t} G\left(s, x_{n}\right) \geq d_{t} G\left(0, x^{0}\right) \tag{4.22}
\end{equation*}
$$

($\overline{\mathrm{H}} 4)$ for all x in $X(0)$, the map $t \mapsto d_{t} G(t, x)$ is upper semicontinuous at $t=0$.
Assumption ($\overline{\mathrm{H}} 4$) turns out to be unnecessary and assumptions ($\overline{\mathrm{H}} 2$) and (H 3) are replaced by the weaker and simpler assumptions $(\mathrm{H} 2)$ and $(\mathrm{H} 3)$ of Theorem 19, which only require the existence of $d_{t} G\left(0, x^{0}\right)$ at all $x^{0} \in X(0)$. Condition (4.19) in Assumption (H3) only involving $G(t, x)$ is easier to check than the condition in the older Assumption (H 3) involving the t-derivative of $G(t, x)$.

Theorem (General case: occurenece of the extra term $R\left(x^{0}\right)$)

Let X be an arbitrary set, $\tau>0,(t, x) \mapsto G(t, x):[0, \tau[\times X \rightarrow \mathbb{R}$, and

$$
g(t) \xlongequal{\text { def }} \inf _{x \in X} G(t, x), \quad X(t) \xlongequal{\text { def }}\{x \in X: G(t, x)=g(t)\}, \quad 0 \leq t<\tau .
$$

Assume that the following conditions are satisfied:
(H1) for all $t \in[0, \tau[, g(t)$ is finite and $X(t) \neq \varnothing$;
(H2) for each $x^{0} \in X(0)$, the one-sided t-derivative of $G\left(t, x^{0}\right)$ at $t=0$,

$$
\begin{equation*}
d_{t} G\left(0, x^{0}\right) \stackrel{\operatorname{def}}{=} \lim _{\theta \searrow 0} \frac{G\left(\theta, x^{0}\right)-G\left(0, x^{0}\right)}{\theta} \quad \text { exists and is finite; } \tag{4.23}
\end{equation*}
$$

(H3) for each $t_{n} \searrow 0$, there exists $x^{0} \in X(0)$ such that ${ }^{2}$

$$
\begin{gather*}
\lim _{n \rightarrow \infty} \frac{g\left(t_{n}\right)-G\left(t_{n}, x^{0}\right)}{t_{n}}=R\left(x^{0}\right), \tag{4.2}\\
\text { where } x^{0} \mapsto R\left(x^{0}\right) \stackrel{\text { def }}{=} \lim _{t \geqslant 0} \frac{g(t)-G\left(t, x^{0}\right)}{t}: X(0) \rightarrow[-\infty, 0] . \tag{4.25}
\end{gather*}
$$

Then, $d g(0)$ exists and there exists $\bar{x}^{0} \in X(0)$ such that ${ }^{b}$

$$
\begin{equation*}
d g(0)=\inf _{x^{0} \in X(0)}\left[d_{t} G\left(0, x^{0}\right)+R\left(x^{0}\right)\right]=d_{t} G\left(0, \bar{x}^{0}\right)+R\left(\bar{x}^{0}\right) . \tag{4.26}
\end{equation*}
$$

If, in addition, $X(0)$ is a singleton, the infimum can be dropped.
(1) Overview
(2)

Geometry as a Variable

- Shape Variations
- Topological VariationsHadamard Semidifferentiable Functions
- Hadamard Geometric Definition of the Differential
- Fréchet Drops the Linearity of the Directional Derivative
- Semidifferentials for Functions on Unstructured Sets
- Variational Principle and an Example from Plasma Physics
- M-semidifferentiability, Lipschitz and Convex Functions
- Strict Differentiability, Upper/Lower Semidifferentiability

4. One-sided Derivative of Parametrized Minima: an Extra Term

- Some Background and the Seesaw Problem of Danskin in 1966
- Some Generic Examples: Eigenvalue and Compliance Problems
- Main Theorems without and with an Extra Term
- Examples of Shape Derivatives without and with an Extra TermSpecialization of the Main Theorem
- X Convex and $x \mapsto G(t, x)$ Semi-Diifferentiable
- X Affine and $x \mapsto G(t, x)$ Twice Semi-differentiableExamples of Topological Derivative
- Two- and One-Dimensional Examples

Perturb the bounded open domain Ω by a family of diffeomorphisms T_{t} generated by a smooth velocity field $V(t)$:

$$
\Omega_{t} \stackrel{\text { def }}{=} T_{t}(\Omega), \quad T_{t}(X) \stackrel{\text { def }}{=} x(t ; X), t \geq 0, \quad \frac{d x}{d t}(t ; X)=V(t, x(t ; X)), x(0 ; X)=X
$$

Given $f \in H^{1}\left(\mathbb{R}^{n}\right)$, consider the volume integral and the change of variable T_{t}

$$
\begin{gathered}
J\left(\Omega_{t}\right)=\int_{\Omega_{t}} f d x=\int_{\Omega} f \circ T_{t} j_{t} d x . \quad j_{t}=\operatorname{det} D T_{t}, \quad D T_{t} \text { is the Jacobian matrix, } \\
d J(\Omega ; V) \xlongequal{\operatorname{def}} \lim _{t>0} \frac{J\left(\Omega_{t}\right)-J(\Omega)}{t}=\int_{\Omega} \nabla f \circ V(0)+f \operatorname{div} V(0) d x=\int_{\Omega} \operatorname{div}(f V(0)) d x .
\end{gathered}
$$

T_{t} will also be used in integrals involving functions u_{t} and v_{t} in $H^{1}\left(\Omega_{t}\right)$ to obtain an integral over Ω and functions $u^{t}=u_{t} \circ T_{t}$ and $v^{t}=v_{t} \circ T_{t}$ in the fixed space $H^{1}(\Omega)$:

$$
\begin{gather*}
\int_{\Omega_{t}} \nabla u_{t} \cdot \nabla v_{t}-a v d x=\int_{\Omega}\left[A(t) \nabla u^{t} \cdot \nabla v^{t}-a \circ T_{t} v^{t} j_{t}\right] d x \tag{4.27}\\
A(t)=j_{t} D T_{t}^{-1}\left(D T_{t}^{-1}\right)^{\top}, \quad j_{t}=\operatorname{det} D T_{t}, \quad D T_{t} \text { is the Jacobian matrix, } \tag{4.28}
\end{gather*}
$$

where $\left(D T_{t}^{-1}\right)^{\top}$ is the transpose of the inverse of $D T_{t}$.

Figure 6: Domains $\Omega=(0,1)$ and $\Omega_{t}=T_{t}(\Omega)=(t, 1)$
$D T_{t}=j_{t}=1-t, \quad A(t)=j_{t}\left[D T_{t}\right]^{-1}\left[D T_{t}\right]^{-\top}=\frac{1}{1-t}, \quad A^{\prime}(t)=\frac{1}{(1-t)^{2}}$,
$\operatorname{div} V(t)=-\frac{1}{1-t}, \quad \operatorname{div} V(0)=-\left.\frac{1}{1-t}\right|_{t=0}=-1, \quad A^{\prime}(0)=\left.\frac{1}{(1-t)^{2}}\right|_{t=0}=1$

Example (Example 1 WITH an Extra Term)

Let $\Omega=(0,1) \subset \mathbb{R}$ and $u^{0} \in V(\Omega)=\left\{v \in H^{1}(0,1): v(1)=2 / 3\right\}$ be the minimizing element for the compliance

$$
\inf _{v \in V(\Omega)} E(\Omega, v), \quad E(\Omega, v) \stackrel{\text { def }}{=} \int_{0}^{1}\left[\frac{1}{2}\left|v^{\prime}\right|^{2}-f v\right] d x, \quad f(x) \stackrel{\text { def }}{=}-\frac{1}{2} \frac{1}{x^{1 / 2}}
$$

where f belongs to $L^{2-\varepsilon}(0,1), 0<\varepsilon<1$, but not to $L^{2}(0,1)$. Then u^{0} is a solution of

$$
\begin{align*}
& \left(u^{0}\right)^{\prime \prime}+f=0 \text { in }(0,1), \quad u^{0}(1)=2 / 3 \text { and }\left(u^{0}\right)^{\prime}(0)=0 \tag{4.30}\\
\Rightarrow & u^{0}(x)=\frac{2}{3} x^{3 / 2}, \quad\left(u^{0}\right)^{\prime}(x)=x^{1 / 2}, \quad\left(u^{0}\right)^{\prime \prime}(x)=\frac{1}{2} \frac{1}{x^{1 / 2}} . \tag{4.31}
\end{align*}
$$

For $0 \leq t<1$, choose the transformation T_{t} and the velocity field $V(t, x)$

$$
\begin{equation*}
X \mapsto T_{t}(X)=t+(1-t) X:[0,1] \rightarrow[t, 1], \quad V(t, x)=\frac{1-x}{1-t} \tag{4.32}
\end{equation*}
$$

Then $\Omega_{t}=T_{t}((0,1))=(t, 1), V\left(\Omega_{t}\right)=\left\{v \in H^{1}(t, 1): v(1)=2 / 3\right\}$, and

$$
\inf _{v \in V\left(\Omega_{t}\right)} E\left(\Omega_{t}, v\right), \quad E\left(\Omega_{t}, v\right) \stackrel{\text { def }}{=} \int_{t}^{1}\left[\frac{1}{2}\left|v^{\prime}\right|^{2}-f v\right] d x
$$

Example (Example 1 WITH an Extra Term)

The minimizer $u_{t} \in V\left(\Omega_{t}\right)$ is the solution of

$$
\begin{gather*}
\left(u_{t}\right)^{\prime \prime}+f=0 \text { in }(t, 1), \quad u_{t}(1)=2 / 3, u_{t}^{\prime}(t)=0 \tag{4.33}\\
\Rightarrow \\
u_{t}(x)=t^{1 / 2}[1-x]+\frac{2}{3} x^{3 / 2}, \quad u_{t}^{\prime}(x)=-t^{1 / 2}+x^{1 / 2}
\end{gather*}
$$

The function $g(t)$ can now be computed directly

$$
\begin{align*}
g(t) & =\int_{t}^{1}\left[\frac{1}{2}\left|u_{t}^{\prime}\right|^{2}-f u_{t}\right] d x \\
& =\int_{t}^{1}\left[\frac{1}{2}\left|-t^{1 / 2}+x^{1 / 2}\right|^{2}+\frac{1}{2} \frac{1}{x^{1 / 2}}\left(t^{1 / 2}[1-x]+\frac{2}{3} x^{3 / 2}\right)\right] d x \\
g(t) & =-\frac{t}{2}+\frac{5}{12}-\frac{t^{2}}{12} \Rightarrow g^{\prime}(t)=-\frac{1}{2}-\frac{t}{6}, \text { and } d g(0)=-\frac{1}{2} . \tag{4.34}
\end{align*}
$$

Example (Example 1 WITH an Extra Term)

For the (right-hand side) t-derivative $d_{t} G\left(0, u_{0}\right)$ at $t=0$ of

$$
\begin{align*}
& G\left(t, u_{0}\right)=E\left(T_{t}(\Omega), u_{0} \circ T_{t}^{-1}\right)=\int_{\Omega} \frac{1}{2} A(t) \nabla u_{0} \cdot \nabla u_{0}-j_{t}\left(f \circ T_{t}\right) u_{0} d x \tag{4.35}\\
& d_{t} G\left(0, u_{0}\right)=\int_{\Omega}\left[\frac{1}{2} A^{\prime}(0) \nabla u_{0} \cdot \nabla u_{0}-[(\operatorname{div} V(0)) f+\nabla f \cdot V(0)] u_{0}\right] d x \tag{4.36}
\end{align*}
$$

where for the transformation T_{t} and velocity field $V(t, x)$ chosen in (4.32)

$$
\begin{align*}
D T_{t}=j_{t} & =1-t, \quad A(t)=j_{t}\left[D T_{t}\right]^{-1}\left[D T_{t}\right]^{-\top}=\frac{1}{1-t}, \quad A^{\prime}(t)=\frac{1}{(1-t)^{2}}, \tag{4.37}\\
\operatorname{div} V(t) & =-\frac{1}{1-t}, \quad \operatorname{div} V(0)=-\left.\frac{1}{1-t}\right|_{t=0}=-1, \quad A^{\prime}(0)=\left.\frac{1}{(1-t)^{2}}\right|_{t=0}=1 \\
d_{t} G\left(0, u_{0}\right) & =\int_{\Omega}\left[\frac{1}{2} x-\left(\frac{1}{2 x^{1 / 2}}+\frac{1}{4} \frac{1}{x^{3 / 2}}(1-x)\right) \frac{2}{3} x^{3 / 2}\right] d x \\
& =\int_{0}^{1}\left[\frac{1}{2} x-\frac{2}{3}\left(\frac{x}{2}+\frac{1}{4}(1-x)\right)\right] d x=\int_{0}^{1}\left[\frac{1}{3} x-\frac{1}{6}\right] d x=0 \tag{4.38}
\end{align*}
$$

So we don't recover the previously computed $d g(0)=-1 / 2$.
There is a missing negative term as in the example provided in Delfour-Sturm [38, sec. 2.5, pp. 145-148] of a constrained objective function.

Example (Example 1 with an Extra Term in Higher Dimensions)

This example can be extended to higher dimensions. For instance In \mathbb{R}^{2}, let

$$
\Omega=(0,1) \times(0,1), \quad \Gamma_{1}=\{(1, y): 0 \leq y \leq 1\}
$$

Let $u^{0} \in V(\Omega)=\left\{v \in H^{1}(\Omega): v=2 / 3\right.$ on $\left.\Gamma_{1}\right\}$ be the unique minimizing element for the compliance

$$
\inf _{v \in V(\Omega)} E(\Omega, v), \quad E(\Omega, v) \stackrel{\text { def }}{=} \int_{\Omega}\left[\frac{1}{2}\|\nabla v\|^{2}-f v\right] d x, \quad f(x, y) \stackrel{\text { def }}{=}-\frac{1}{2} \frac{1}{x^{1 / 2}}
$$

The minimizer u_{0} is solution of the problem

$$
\begin{equation*}
\Delta u_{0}(x, y)-\frac{1}{2} \frac{1}{x^{1 / 2}}=0 \text { in } \Omega,\left.\quad u_{0}\right|_{\Gamma_{1}}=2 / 3, \quad \frac{\partial u_{0}}{\partial n}=0 \text { on } \Gamma \backslash \Gamma_{1}, \tag{4.39}
\end{equation*}
$$

and the minimizer is $u_{0}(x, y)=(2 / 3) x^{3 / 2}$. For $0 \leq t<1$, choose the transformation

$$
\begin{gather*}
(X, Y) \mapsto T_{t}(X, Y)=(t+(1-t) X, Y):[0,1] \times[0,1] \rightarrow[t, 1] \times[0,1] \tag{4.40}\\
\Omega_{t} \stackrel{\text { def }}{=} T_{t}(\Omega)=\{(x, y): x \in(t, 1), y \in(0,1)\} . \tag{4.41}
\end{gather*}
$$

The next example involves a convex continuous non-differentiable functional.

Example (Example 2. The extra term is zero)

Let $a>0, b \in \mathbb{R}, \Omega=(0,1)$, and for $v \in H_{0}^{1}(0,1)$ the convex continuous non-differentiable function

$$
\begin{equation*}
\inf _{v \in H_{0}^{\prime}(0,1)} E(\Omega, v), \quad E(\Omega, v) \stackrel{\text { def }}{=} \int_{0}^{1}\left[\left(\left|v^{\prime}\right|-a\right)^{2}+b\right] d x \tag{4.42}
\end{equation*}
$$

The function

$$
\begin{equation*}
u_{0}(x)=a\left(\left|x-\frac{1}{2}\right|-\frac{1}{2}\right) \tag{4.43}
\end{equation*}
$$

is a minimizer, but it is not unique. The minimizers are characterized by

$$
\begin{gather*}
\left|u_{0}^{\prime}(x)\right|=a \quad \text { a.e in }(0,1), \quad u_{0}(0)=u_{0}(1)=0 \tag{4.44}\\
\Rightarrow g(0)=\inf _{v \in H_{0}^{\prime}(0,1)} E(\Omega, v)=\int_{0}^{1}\left(\left|u_{0}^{\prime}\right|-a\right)^{2}+b d x=b . \tag{4.45}
\end{gather*}
$$

For the perturbed problem indexed by $0 \leq t<1$ choose the shape perturbation

$$
\begin{equation*}
T_{t}(X)=t+(1-t) X, \quad V(t, x)=\frac{1-x}{1-t}, \quad D T_{t}=1-t \tag{4.46}
\end{equation*}
$$

Therefore, $T_{t}(0.1)=(t, 1)$.

Example (Example 2. The extra term is zero)

Therefore, the minimization problem on $T_{t}(0.1)=(t, 1)$ is

$$
\begin{equation*}
\inf _{v \in H_{0}^{\prime}(t, 1)} E\left(\Omega_{t}, v\right), \quad E\left(\Omega_{t}, v\right) \stackrel{\text { def }}{=} \int_{t}^{1}\left(\left|v^{\prime}\right|-a\right)^{2}+b d x \tag{4.47}
\end{equation*}
$$

The function

$$
\begin{equation*}
u_{t}(x)=a\left(\left|x-\frac{1+t}{2}\right|-\frac{1-t}{2}\right) \tag{4.48}
\end{equation*}
$$

is a minimizer, but it is not unique. The minimizers are characterized by

$$
\begin{gather*}
\left|u_{t}^{\prime}(x)\right|=a \quad \text { a.e in }(t, 1), \quad u_{0}(t)=u_{0}(1)=0 \tag{4.49}\\
\Rightarrow g(t)=\inf _{v \in H_{0}^{\prime}(t, 1)} E\left(\Omega_{t}, v\right)=\int_{t}^{1}\left(\left|u_{t}^{\prime}\right|-a\right)^{2}+b d x=(1-t) b \tag{4.50}
\end{gather*}
$$

and $d g(0)=-b$. For the t-derivative and $u_{0} \in H_{0}^{1}(0,1)$

$$
\begin{aligned}
& \qquad \begin{aligned}
G\left(t, u_{0}\right) & =E\left(T_{t}(\Omega), u_{0} \circ T_{t}^{-1}\right)=\int_{0}^{1}\left[\left(\frac{1}{1-t}\left|u_{0}^{\prime}\right|-a\right)^{2}+b\right](1-t) d x \\
& =\int_{0}^{1}\left[\left(\frac{1}{1-t} a-a\right)^{2}+b\right](1-t) d x=a^{2} \frac{t^{2}}{1-t}+b(1-t)
\end{aligned} \\
& \text { and } d_{t} G\left(0, u_{0}\right)=-b \text {. }
\end{aligned}
$$

Example (EXAMPLE 2. The Extra TERM IS ZERO)

Finally, Hypothesis $(\mathrm{H} 3)$ of Theorem 19 is verified:

$$
\begin{gathered}
\frac{g(t)-G\left(t, u_{0}\right)}{t}=\frac{(1-t) b-\left[a^{2} \frac{t^{2}}{1-t}+b(1-t)\right]}{t}=-a^{2} \frac{t}{1-t} \\
\Rightarrow R\left(u_{0}\right)=\lim _{t \searrow 0} \frac{g(t)-G\left(t, u_{0}\right)}{t}=\lim _{t \searrow 0}-a^{2} \frac{t}{1-t}=0
\end{gathered}
$$

Since the expressions of $R\left(u_{0}\right)=0$ and $d_{t} G\left(0, u_{0}\right)=-b$ are independent of the choice of $u_{0} \in X(0)$, the infimum in the expression of $d g(0)$ can be dropped even if $X(0)$ is not a singleton.

Example (Example 4 with an Extra Term)

Consider a variant of Example 25 for a slightly different convex continuous non-differentiable function $v \mapsto E(\Omega, v)$ to be minimized over $H_{0}^{1}(0,1)$

$$
\begin{equation*}
\inf _{v \in H_{0}^{1}(0,1)} E(\Omega, v), \quad E(\Omega, v) \stackrel{\text { def }}{=} \int_{0}^{1}| | v^{\prime}|-a|+b d x, \quad a>0, \quad b \in \mathbb{R} \tag{4.52}
\end{equation*}
$$

The minimizers are the same as in Example 25 and $g(0)=b$. For the same perturbations (4.46) the minimization problem parametrized by $0 \leq t<1$ is

$$
\begin{equation*}
\inf _{v \in H_{0}^{1}(t 1)} E\left(\Omega_{t}, v\right), \quad E\left(\Omega_{t}, v\right) \stackrel{\text { def }}{=} \int_{t}^{1}| | v^{\prime}|-a|+b d x \tag{4.53}
\end{equation*}
$$

It has the same minimizers as in Example 25, $g(t)=(1-t) b$, and $d g(0)=-b$. For the t-derivative with $u_{0} \in H_{0}^{1}(0,1)$

$$
\begin{aligned}
G\left(t, u_{0}\right) \stackrel{\text { def }}{=} E\left(\Omega_{t}, u_{0} \circ T_{t}^{-1}\right) & =\int_{0}^{1}\left(\left|\frac{1}{1-t}\right| u_{0}^{\prime}|-a|+b\right)(1-t) d x \\
& =\int_{0}^{1}\left(\left|\frac{1}{1-t} a-a\right|+b\right)(1-t) d x=a \frac{t}{1-t}+b(1-t)
\end{aligned}
$$

and $d_{t} G\left(0, u_{0}\right)=a-b$.

Example (Example 4 WITH AN Extra Term)

Hypothesis (H3) of Theorem 20 is satisfied,

$$
\begin{aligned}
& \frac{g(t)-G\left(t, u_{0}\right)}{t}=\frac{(1-t) b-\left[a \frac{t}{1-t}+b(1-t)\right]}{t}=-a \frac{1}{1-t} \\
& \Rightarrow R\left(u_{0}\right)=\lim _{t \searrow 0} \frac{g(t)-G\left(t, u_{0}\right)}{t}=\lim _{t \searrow 0}-a \frac{1}{1-t}=-a<0
\end{aligned}
$$

and there is a non-zero extra term $R\left(u_{0}\right)=-a$.
The terms $R\left(u_{0}\right)=-a$ and $d_{t} G\left(0, u_{0}\right)=a-b$ are independent of the choice of $u_{0} \in X(0)$.
Therefore the infimum in the expression of $d g(0)=-b$ can be dropped even if $X(0)$ is not a singleton.
(1) Overview
(2) Geometry as a Variable

- Shape Variations
- Topological VariationsHadamard Semidifferentiable Functions
- Hadamard Geometric Definition of the Differential
- Fréchet Drops the Linearity of the Directional Derivative
- Semidifferentials for Functions on Unstructured Sets
- Variational Principle and an Example from Plasma Physics
- M-semidifferentiability, Lipschitz and Convex Functions
- Strict Differentiability, Upper/Lower Semidifferentiability

4
One-sided Derivative of Parametrized Minima: an Extra Term

- Some Background and the Seesaw Problem of Danskin in 1966
- Some Generic Examples: Eigenvalue and Compliance Problems
- Main Theorems without and with an Extra Term
- Examples of Shape Derivatives without and with an Extra Term
(5) Specialization of the Main Theorem
- X Convex and $x \mapsto G(t, x)$ Semi-Diifferentiable
- X Affine and $x \mapsto G(t, x)$ Twice Semi-differentiableExamples of Topological Derivative
- Two- and One-Dimensional Examples

The minimizers can often be characterized by a variational equation or inequality when the function $x \mapsto G(t, x)$ enjoys some form of differentiability.

For instance, If $x \in A$ is a local minimizer of f with respect to A, then

$$
\begin{equation*}
d_{H} f(x ; v) \geq 0 \text { for all } v \in T_{A}^{b}(x) \text {, variational inequality } \tag{5.1}
\end{equation*}
$$

When $T_{A}^{b}(x)$ is linear and $v \mapsto d_{H} f(x ; v)$ is linear, then

$$
\begin{equation*}
d_{H} f(x ; v)=0 \text { for all } v \in T_{A}^{b}(x), \quad \text { variational equation. } \tag{5.2}
\end{equation*}
$$

This differentiability assumption can be used to characterize the negative extra term.
To keep things simple we assume that X is respectively convex and affine.

Let X be a convex subset of a vector space. For $t>0, x^{0} \in X(0)$, and $x^{t} \in X(t)$, let $\theta \mapsto G\left(t, x^{0}+\theta\left(x^{t}-x^{0}\right)\right)$ on $[0,1]$ satisfy

$$
g(t)=G\left(t, x^{t}\right)=G\left(t, x^{0}\right)+\int_{0}^{1} d_{x} G\left(t, x+\theta\left(x^{t}-x^{0}\right) ; x^{t}-x^{0}\right) d \theta \text {. }
$$

As a consequence, for $t>0, x^{0} \in X(0)$, and $x^{t} \in X(t)$

$$
\frac{g(t)-g(0)}{t}=\int_{0}^{1} d_{x} G\left(t, x^{0}+\theta\left(x^{t}-x^{0}\right) ; \frac{x^{t}-x^{0}}{t}\right) d \theta+\frac{G\left(t, x^{0}\right)-G\left(0, x^{0}\right)}{t},
$$

where the second term would converge to $d_{t} G\left(0 ; x^{0}\right)$ as $t>0$ goes to zero.
mypothesis (H0)
Let X be a convex subset of a vector space, $(t, x) \mapsto G(t, x):[0, \tau[\times X \rightarrow \mathbb{R}, \tau>0$, and the associated minimization problems

Assume that

$$
r 0, \tau[\text { and } x, y \in X \text { the following limit exists }
$$

Let X be a convex subset of a vector space. For $t>0, x^{0} \in X(0)$, and $x^{t} \in X(t)$, let $\theta \mapsto G\left(t, x^{0}+\theta\left(x^{t}-x^{0}\right)\right)$ on $[0,1]$ satisfy

$$
g(t)=G\left(t, x^{t}\right)=G\left(t, x^{0}\right)+\int_{0}^{1} d_{x} G\left(t, x+\theta\left(x^{t}-x^{0}\right) ; x^{t}-x^{0}\right) d \theta \text {. }
$$

As a consequence, for $t>0, x^{0} \in X(0)$, and $x^{t} \in X(t)$

$$
\frac{g(t)-g(0)}{t}=\int_{0}^{1} d x G\left(t, x^{0}+\theta\left(x^{t}-x^{0}\right) ; \frac{x^{t}-x^{0}}{t}\right) d \theta+\frac{G\left(t, x^{0}\right)-G\left(0, x^{0}\right)}{t},
$$

where the second term would converge to $d_{t} G\left(0 ; x^{0}\right)$ as $t>0$ goes to zero.

Hypothesis (H0)

Let X be a convex subset of a vector space, $(t, x) \mapsto G(t, x):[0, \tau[\times X \rightarrow \mathbb{R}, \tau>0$, and the associated minimization problems

$$
g(t) \stackrel{\text { def }}{=} \inf _{x \in X} G(t, x), \quad X(t) \stackrel{\text { def }}{=}\{x \in X: G(t, x)=g(t)\}, \quad 0 \leq t<\tau .
$$

Assume that
(i) for all $t \in[0, \tau[$ and $x, y \in X$ the following limit exists

$$
\begin{equation*}
d_{x} G(t, x ; y-x) \stackrel{\text { def }}{=} \lim _{\theta \geq 0} \frac{G(t, x+\theta(y-x))-G(t, x)}{\theta} \tag{5.3}
\end{equation*}
$$

(ii) and, for all $t \in\left[0, \tau\left[, x^{0} \in X(0)\right.\right.$, and $x^{t} \in X(t)$, the function

$$
\begin{equation*}
\theta \mapsto G\left(t, x^{0}+\theta\left(x^{t}-x^{0}\right)\right):[0,1] \rightarrow \mathbb{R} \text { is absolutely continuous. } \tag{5.4}
\end{equation*}
$$

THEOREM (X BE A CONVEX SUBSET OF A VECTOR SPACE)

Let (HO) and the following hypotheses be satisfied:
(H1) for all $t \in[0, \tau[, g(t)$ is finite, $X(t) \neq \varnothing$;
(H2) for each $x^{0} \in X(0)$, the one-sided t-derivative of $G\left(t, x^{0}\right)$ at $t=0$,

$$
\begin{equation*}
d_{t} G\left(0, x^{0}\right) \stackrel{\text { def }}{=} \lim _{\theta \searrow 0} \frac{G\left(\theta, x^{0}\right)-G\left(0, x^{0}\right)}{\theta} \quad \text { exists and is finite; } \tag{5.5}
\end{equation*}
$$

(H3) for each $t_{n} \searrow 0$, there exist $x^{0} \in X(0)$ and $\left\{x_{n}\right\}, x_{n} \in X\left(t_{n}\right)$, such that

$$
\lim _{n \rightarrow \infty} \int_{0}^{1} d_{x} G\left(t_{n}, x^{0}+\theta\left(x_{n}-x^{0}\right) ; \frac{x_{n}-x^{0}}{t_{n}}\right) d \theta=R\left(x^{0}\right)
$$

where $R: X(0) \rightarrow[-\infty, 0]$ is defined as

$$
\begin{equation*}
R\left(x^{0}\right) \stackrel{\text { def }}{=} \limsup _{t \searrow 0} \frac{g(t)-G\left(t, x^{0}\right)}{t} \tag{5.6}
\end{equation*}
$$

Then, $d g(0)$ exists and there exists $\bar{x}^{0} \in X(0)$ such that

$$
\begin{equation*}
d g(0)=\inf _{x^{0} \in X(0)}\left[d_{t} G\left(0, x^{0}\right)+R\left(x^{0}\right)\right]=d_{t} G\left(0, \bar{x}^{0}\right)+R\left(\bar{x}^{0}\right) \tag{5.7}
\end{equation*}
$$

If, in addition, $X(0)$ is a singleton, the infimum can be dropped.
(1) Overview
(2)

Geometry as a Variable

- Shape Variations
- Topological VariationsHadamard Semidifferentiable Functions
- Hadamard Geometric Definition of the Differential
- Fréchet Drops the Linearity of the Directional Derivative
- Semidifferentials for Functions on Unstructured Sets
- Variational Principle and an Example from Plasma Physics
- M-semidifferentiability, Lipschitz and Convex Functions
- Strict Differentiability, Upper/Lower Semidifferentiability

4
One-sided Derivative of Parametrized Minima: an Extra Term

- Some Background and the Seesaw Problem of Danskin in 1966
- Some Generic Examples: Eigenvalue and Compliance Problems
- Main Theorems without and with an Extra Term
- Examples of Shape Derivatives without and with an Extra Term
(5) Specialization of the Main Theorem
- X Convex and $x \mapsto G(t, x)$ Semi-Diifferentiable
- X Affine and $x \mapsto G(t, x)$ Twice Semi-differentiableExamples of Topological Derivative
- Two- and One-Dimensional Examples

Let X be an affine subspace of a vector space \mathcal{X}, S the unique linear subspace associated with X. For $t>0, x^{0} \in X(0)$, and $x^{t} \in X(t), x^{0}-x^{t} \in S$ and

$$
\begin{align*}
G\left(t, x^{0}\right)= & G\left(t, x^{t}\right)+\underbrace{d_{x} G\left(t, x^{t} ; x^{0}-x^{t}\right)}_{=0} \\
& +\frac{1}{2} \int_{0}^{1} d_{x}^{2} G\left(t, x^{t}+\theta\left(x^{0}-x^{t}\right) ; x^{0}-x^{t} ; x^{0}-x^{t}\right)
\end{align*}
$$

since, for a minimizer $x^{t} \in X(t)$ at t,

$$
\begin{aligned}
& \Rightarrow \frac{g(t)-G\left(t, x^{0}\right)}{t}=\quad \forall v \in S, \quad d_{x} G\left(t, x^{t} ; v\right)=0 \\
& \frac{G\left(t, x^{t}\right)-G\left(t, x^{0}\right)}{t}=-\frac{1}{2} \int_{0}^{1} d_{x}^{2} G\left(t, x^{t}+\theta\left(x^{0}-x^{t}\right) ; \frac{x^{0}-x^{t}}{t^{1 / 2}} ; \frac{x^{0}-x^{t}}{t^{1 / 2}}\right) d \theta \\
& \frac{g(t)-g(0)}{t} \\
& =-\frac{1}{2} \int_{0}^{1} d_{x}^{2} G\left(t, x^{t}+\theta\left(x^{0}-x^{t}\right) ; \frac{x^{0}-x^{t}}{t^{1 / 2}} ; \frac{x^{0}-x^{t}}{t^{1 / 2}}\right) d \theta+\frac{G\left(t, x^{0}\right)-G\left(0, x^{0}\right)}{t}
\end{aligned}
$$

where the second term would converge to $d_{t} G\left(0 ; x^{0}\right)$ as $t>0$ goes to zero,

HYPOTHESIS (A0)

Let X be an affine subspace of a vector space \mathcal{X}, S the unique linear subspace associated with $X,(t, x) \mapsto G(t, x):[0, \tau[\times X \rightarrow \mathbb{R}$ for some $\tau>0$. Assume that
(i) for all $t, x \in X$, and $v, w \in S$ the following semidifferentials

$$
\begin{gathered}
d_{x} G(t, x ; v) \stackrel{\text { def }}{=} \lim _{\theta \searrow 0} \frac{G(t, x+\theta v)-G(t, x)}{\theta} \\
d_{x}^{2} G(t, x ; v ; w) \stackrel{\text { def }}{=} \lim _{\theta \searrow 0} \frac{d_{x} G(t, x+\theta w ; v)-d_{x} G(t, x ; v)}{\theta}
\end{gathered}
$$

exist, that the function $v \mapsto d_{x} G(t, x ; v): S \rightarrow \mathbb{R}$ is linear,
(ii) and, for all $t \in\left[0, \tau\left[, x^{0} \in X(0)\right.\right.$, and $x^{t} \in X(t)$, the function
$\theta \mapsto G\left(t, x^{t}+\theta\left(x^{0}-x^{t}\right)\right):[0,1] \rightarrow \mathbb{R}$ and its derivative are absolutely continuous.

Theorem (X be an affine subspace of a vector space)

Let (A0) and the following hypotheses be satisfied:
(H1) for all $t \in[0, \tau[, g(t)$ is finite, $X(t) \neq \varnothing$;
(H2) for each $x^{0} \in X(0)$, the one-sided t-derivative of $G\left(t, x^{0}\right)$ at $t=0$,

$$
\begin{equation*}
d_{t} G\left(0, x^{0}\right) \stackrel{\text { def }}{=} \lim _{\theta \searrow 0} \frac{G\left(\theta, x^{0}\right)-G\left(0, x^{0}\right)}{\theta} \quad \text { exists and is finite; } \tag{5.8}
\end{equation*}
$$

(H3) for each $t_{n} \searrow 0$, there exist $x^{0} \in X(0)$ and $\left\{x_{n}\right\}, x_{n} \in X\left(t_{n}\right)$, such that

$$
\lim _{n \rightarrow \infty}-\frac{1}{2} \int_{0}^{1} d_{x}^{2} G\left(t_{n}, x_{n}+\theta\left(x^{0}-x_{n}\right) ; \frac{x^{0}-x_{n}}{t_{n}^{1 / 2}} ; \frac{x^{0}-x_{n}}{t_{n}^{1 / 2}}\right) d \theta=R\left(x^{0}\right)
$$

where $R: X(0) \rightarrow[-\infty, 0]$ is defined as

$$
\begin{equation*}
R\left(x^{0}\right) \stackrel{\text { def }}{=} \limsup _{t \searrow 0} \frac{g(t)-G\left(t, x^{0}\right)}{t} \tag{5.9}
\end{equation*}
$$

Then, $d g(0)$ exists and there exists $\bar{x}^{0} \in X(0)$ such that

$$
\begin{equation*}
d g(0)=\inf _{x^{0} \in X(0)}\left[d_{t} G\left(0, x^{0}\right)+R\left(x^{0}\right)\right]=d_{t} G\left(0, \bar{x}^{0}\right)+R\left(\bar{x}^{0}\right) \tag{5.10}
\end{equation*}
$$

If, in addition, $X(0)$ is a singleton, the infimum can be dropped.

EXAMPLE (SHAPE DERIVATIVE OF THE EARLIER EXAMPLE 21)

We now go back to Example 21 of a shape derivative. Let $\Omega=(0,1) \subset \mathbb{R}, \Gamma=\{0,1\}$, and $u^{0} \in V(\Omega)=\left\{v \in H^{1}(0,1): v(1)=2 / 3\right\}$ be the minimizer

$$
\inf _{v \in V(\Omega)} E(\Omega, v), \quad E(\Omega, v) \stackrel{\text { def }}{=} \int_{0}^{1}\left[\frac{1}{2}\left|v^{\prime}\right|^{2}-f v\right] d x, \quad f(x) \stackrel{\text { def }}{=}-\frac{1}{2} \frac{1}{x^{1 / 2}}
$$

and use Theorem 31 to compute the missing extra term:

$$
\begin{gathered}
d_{x}^{2} G(t, u ; v ; v)=\int_{\Omega} A(t) \nabla v \cdot \nabla v d x=\int_{0}^{1} A(t) \nabla v \cdot \nabla v d x \\
-R\left(u^{0}\right)=\lim _{t \searrow 0} \frac{1}{2} \int_{0}^{1} A(t) \frac{\left(u^{t}-u^{0}\right)^{\prime}}{t^{1 / 2}} \frac{\left(u^{t}-u^{0}\right)^{\prime}}{t^{1 / 2}} d x=\lim _{t \searrow 0}(1-t) \frac{1}{2} \int_{0}^{1}\left|\frac{\left(u^{t}-u^{0}\right)^{\prime}}{t^{1 / 2}}\right|^{2} d x
\end{gathered}
$$

The derivative of $u^{t}=u_{t} \circ T_{t}$ is $\left(u^{t}\right)^{\prime}(x)=D T_{t}(x)\left(u_{t}\right)^{\prime}\left(T_{t}(x)\right)$

$$
\begin{gathered}
\left.\qquad u^{t}\right)^{\prime}(x)=(1-t)\left[(t+(1-t) x)^{1 / 2}-t^{1 / 2}\right] \\
\Rightarrow \frac{\left(u^{t}-u^{0}\right)^{\prime}}{t^{1 / 2}}(x) \rightarrow-1 \text { in } L^{2}(0,1) \text {-norm }, \quad \frac{u^{t}-u^{0}}{t^{1 / 2}}(x) \rightarrow 1-x \text { in } H^{1}(0,1) \text {-norm. }
\end{gathered}
$$

$R\left(u^{0}\right)=-1 / 2$ corrects the t-derivative $d_{t} G\left(0, u^{0}\right)=0$ to give $d g(0)=-1 / 2$ as predicted by the previous direct computation (4.34) of $d g(0)$.
(1) OvERVIEW
(2) GEOMETRY AS A VARIABLE

- Shape Variations
- Topological Variations

Hadamard Semidifferentiable Functions

- Hadamard Geometric Definition of the Differential
- Fréchet Drops the Linearity of the Directional Derivative
- Semidifferentials for Functions on Unstructured Sets
- Variational Principle and an Example from Plasma Physics
- M-semidifferentiability, Lipschitz and Convex Functions
- Strict Differentiability, Upper/Lower Semidifferentiability

4
One-sided Derivative of Parametrized Minima: an Extra Term

- Some Background and the Seesaw Problem of Danskin in 1966
- Some Generic Examples: Eigenvalue and Compliance Problems
- Main Theorems without and with an Extra Term
- Examples of Shape Derivatives without and with an Extra TermSpecialization of the Main Theorem
- X Convex and $x \mapsto G(t, x)$ Semi-Diifferentiable
- X Affine and $x \mapsto G(t, x)$ Twice Semi-differentiable
(6) Examples of Topological Derivative - Two- and One-Dimensional Examples

Let Ω be a bounded open in \mathbb{R}^{n} with Lipschitz boundary $\Gamma, b \in H^{1 / 2}(\Gamma), f \in L^{2}(\Omega)$,

$$
\begin{equation*}
V_{b}(\Omega) \stackrel{\text { def }}{=}\left\{v \in H^{1}(\Omega):\left.v\right|_{r}=b\right\} \quad \Rightarrow V_{0}(\Omega)=H_{0}^{1}(\Omega) . \tag{6.1}
\end{equation*}
$$

Let u_{0} be the minimizer

$$
\begin{aligned}
F(\Omega) & =\inf _{v \in V_{b}(\Omega)} F(\Omega ; v), \quad F(\Omega ; v) \stackrel{\text { def }}{=} \int_{\Omega} \frac{1}{2}\|\nabla v\|^{2}-f v d x, \\
u_{0} & \in V_{b}(\Omega), \forall v \in V_{0}\left(\Omega, \quad \int_{\Omega} \nabla u_{0} \cdot \nabla v-f v d x=0,\right. \\
& \Rightarrow u_{0} \in V_{b}(\Omega), \quad \Delta u_{0}+f=0, \quad u_{0}=b \text { on } \Gamma .
\end{aligned}
$$

$$
E=\{\bar{x}\}
$$

$$
E_{r}=\overline{B_{r}(\bar{X})} \subset \Omega
$$

Figure 7: Dilated set E_{r} and perturbed domain $\Omega_{r}=\Omega \backslash E_{r}$

Associate with $r, 0<r \leq R$, the perturbed domain $\Omega_{r}=\Omega \backslash E_{r}$, where, by assumption, $\partial \Omega_{r}=\Gamma \cup \partial E_{r}, \Gamma \cap \partial E_{r}=\varnothing$, and ∂E_{r} is $C^{1,1}$.

Figure 8: Dilated set E_{r} and perturbed domain Ω_{r} with a single connected component
Let $u_{r} \in V_{b}\left(\Omega_{r}\right)=\left\{v \in H^{1}\left(\Omega_{r}\right): v=b\right.$ on $\left.\Gamma\right\}$ be the solution of the problem

$$
\begin{align*}
& F\left(\Omega_{r}\right)=\inf _{v \in V_{b}\left(\Omega_{r}\right)} F\left(\Omega_{r} ; v\right), \quad F\left(\Omega_{r} ; v\right) \stackrel{\text { def }}{=} \int_{\Omega_{r}} \frac{1}{2}\|\nabla v\|^{2}-f v d x, \tag{6.4}\\
& \exists u_{r} \in V_{b}\left(\Omega_{r}\right), \forall v \in V_{0}\left(\Omega_{r}\right), \quad \int_{\Omega_{r}} \nabla u_{r} \cdot \nabla v-f v d x=0, \tag{6.5}\\
& \Rightarrow-\Delta u_{r}=f \text { in } \Omega_{r}, \quad u_{r}=b \text { on } \Gamma \quad \text { and } \quad \frac{\partial u_{r}}{\partial n_{\Omega_{r}}}=0 \text { on } \partial E_{r} . \tag{6.6}
\end{align*}
$$

The application of Theorem 31 of section 5.2 requires a fixed affine subset X of the space $H^{1}(\Omega)$. So, the solution $u_{r} \in V_{b}\left(\Omega_{r}\right) \subset H^{1}\left(\Omega_{r}\right)$ need to be extended to the affine subspace $V_{b}(\Omega) \subset H^{1}(\Omega)$.

Consider the extension $u^{r}: \Omega \rightarrow \mathbb{R}$ obtained by introducing the solution $u_{r}^{o}: E_{r}^{o} \rightarrow \mathbb{R}$ of the problem

$$
\begin{equation*}
-\Delta u_{r}^{o}=f \text { in } E_{r}^{o}, \quad u_{r}^{o}=u_{r} \text { on } \partial E_{r} . \tag{6.7}
\end{equation*}
$$

By near boundary regularity near the boundary ∂E_{r}, for all $1<p<\infty, u_{r}$ belongs to $V_{b}\left(\Omega_{r}\right) \cap W^{2, p}\left(E_{2 R}^{o} \backslash E_{r}\right)$ (cf. [61, Cor. 9.18, p. 243]). Therefore, $u_{r} \in V_{b}\left(\Omega_{r}\right) \cap C^{1, \alpha}\left(E_{R} \backslash E_{r}^{o}\right)$ for all $0<\alpha<1$.
The traces of u_{r} and ∇u_{r} belong to $C^{0, \alpha}\left(\partial E_{r}\right)$. But, since $\partial u_{r} / \partial n=0$ on ∂E_{r}, the trace of ∇u_{r} coincides with the tangential gradient of u_{r} on ∂E_{r} and $u_{r} \in C^{1, \alpha}\left(\partial E_{r}\right)$. As a result, the problem (6.7) has a unique solution $u_{r}^{o} \in C^{1, \alpha}\left(E_{r}\right) \cap H^{1}\left(E_{r}^{o}\right)$. The extended fonction $u^{r}: \Omega \rightarrow \mathbb{R}$ constructed from u_{r} in Ω_{r} and u_{r}^{o} in E_{r}^{o} belongs to the fixed space $V_{b}(\Omega) \cap C^{0}\left(E_{R}\right)$ with a discontinuity in its normal derivative across ∂E_{r}.

We use Theorem 31 with $X=V_{b}(\Omega) \cap C^{0}\left(E_{R}\right)$ where the sets $X(t)$ for $t>0$ are not singletons since the $H^{1}(\Omega)$-extension u^{r} is not unique for $r>0$, but $X(0)$ is a singleton.

For the t-derivative of $G\left(t, u_{0}\right)$, since $u_{0} \in V_{b}(\Omega) \cap C^{1}\left(E_{R}\right)$,

$$
\begin{aligned}
\frac{G\left(t, u_{0}\right)-G\left(0, u_{0}\right)}{t} & =\frac{\int_{\Omega_{r}} \frac{1}{2}\left\|\nabla u_{0}\right\|^{2}-f u_{0} d x-\int_{\Omega} \frac{1}{2}\left\|\nabla u_{0}\right\|^{2}-f u_{0} d x}{t} \\
= & -\frac{\int_{E_{r}} \frac{1}{2}\left\|\nabla u_{0}\right\|^{2}-f u_{0} d x}{t} \\
& \Rightarrow d_{t} G\left(0, x_{0}\right)=-\int_{E} \frac{1}{2}\left\|\nabla u_{0}\right\|^{2}-f u_{0} d H^{d} .
\end{aligned}
$$

For the extra term $R\left(u_{0}\right)$, we have

$$
\begin{gathered}
d_{x}^{2} G(t, \varphi ; \psi ; \psi)=\int_{\Omega_{r}} \nabla \psi \cdot \nabla \psi d x \\
\Rightarrow \int_{0}^{1} d_{x}^{2} G\left(t, x^{t}+\theta\left(x^{0}-x^{t}\right) ; \frac{x^{0}-x^{t}}{t^{1 / 2}} ; \frac{x^{0}-x^{t}}{t^{1 / 2}}\right) d \theta \\
=\int_{\Omega_{r}} \nabla\left(\frac{u_{r}-u_{0}}{t^{1 / 2}}\right) \cdot \nabla\left(\frac{u_{r}-u_{0}}{t^{1 / 2}}\right) d x=\int_{\Omega_{r}}\left\|\nabla\left(\frac{u_{r}-u_{0}}{t^{1 / 2}}\right)\right\|^{2} d x .
\end{gathered}
$$

Thus, in view of Assumption (H3) of Theorem 31, the topological derivative exists if and only if the following limit exists:

$$
R\left(u_{0}\right)=-\lim _{\substack{t=22 \\ r \geq 0}} \frac{1}{2} \int_{\Omega_{r}}\left\|\nabla\left(\frac{u_{r}-u_{0}}{t^{1 / 2}}\right)\right\|^{2} d x=\lim _{r \searrow 0} \frac{1}{2} \frac{1}{2 r} \int_{\partial E_{r}} \frac{\partial u_{0}}{\partial n_{\Omega_{r}}}\left(u_{r}-u_{0}\right) d H^{n-1} .
$$

ASSUMPTION

Let E be a closed connected subset of \mathbb{R}^{n} and $R>0$ such that $E_{2 R}=\left\{x \in \mathbb{R}^{n}: d_{E}(x) \leq 2 R\right\} \subset \Omega$.
Assume that E has positive reach greater than $2 R$ (reach $E>2 R$) and that $0<H^{d}(E)<\infty$ for an integer $d, 0 \leq d<n$. Let $f \in L^{2}(\Omega) \cap C^{0}\left(E_{2 R}\right)$.

THEOREM ([29])

Let the above Assumption 6.1 be verified ${ }^{a}$ and $t=\alpha_{n-d} r^{n-d}$.
The d-topological derivative with respect to the set E exists if and only if the following limit ${ }^{b}$ exists

$$
R\left(u_{0}\right) \stackrel{\text { def }}{=}-\lim _{t \searrow 0} \frac{1}{2} \int_{\Omega_{r}}\left\|\nabla\left(\frac{u_{r}-u_{0}}{t^{1 / 2}}\right)\right\|^{2} d x\left(=\lim _{t \searrow 0} \frac{1}{2} \frac{1}{t} \int_{\partial E_{r}} \frac{\partial u_{0}}{\partial n_{\Omega_{r}}}\left(u_{r}-u_{0}\right) d H^{n-1}\right) .
$$

Then it is given by the formula

$$
\begin{equation*}
d F\left(\chi_{\Omega} ; \delta_{E, H^{d}}\right)=d_{t} G\left(0, u_{0}\right)+R\left(u_{0}\right) \tag{6.8}
\end{equation*}
$$

where

$$
\begin{equation*}
d_{t} G\left(0, u_{0}\right)=-\int_{E}\left(\frac{1}{2}\left\|\nabla u_{0}\right\|^{2}-f u_{0}\right) d H^{d} \tag{6.9}
\end{equation*}
$$

[^3]```
\[
\Omega=B_{R}(0)=\left\{(x, y) \in \mathbb{R}^{2}:\|(x, y)\|<R\right\}
\]
```

```
\[
\Delta u_{0}=0 \text { in } B_{R}(0), \quad u_{0}(x, y)=x \text { on } \partial B_{R}(0)
\]
\[
\text { Perturbed domain } \quad \Omega_{r}=\Omega \backslash E_{r}
\]
\[
\Delta u_{r}=0 \text { in } \Omega_{r}, \quad u_{r}=x \text { on } \partial B_{R}(0)
\]
\[
\frac{\partial u_{r}}{\partial n}=0 \text { on } \partial B_{r}(0)
\]
```

dilated set $E_{r}$
$E=\{(0,0)\}$ is a point
Figure 9: Domain $\Omega$, dilated set $E_{r}$, and perturbed domain $\Omega_{r}$

## Examples in dimension 2.

## EXAMPLE ([97, EXAMPLE 1, SEC. 3, P. 1258])

Let $\Omega=B_{R}(0) \subset \mathbb{R}^{2}$,

$$
\begin{equation*}
\Delta u_{0}=0 \text { in } B_{R}(0), \quad u_{0}=x \text { on } \partial B_{R}(0) \quad \Rightarrow u_{0}(x, y)=x \text { in } \overline{B_{R}(0)} \tag{6.10}
\end{equation*}
$$

For $E=\{0\}$ and $0<r<R$, let $E_{r}=\overline{B_{r}(0)}, \Omega_{r}=B_{R}(0) \backslash E_{r}, u_{r} \in H^{1}\left(\Omega_{r}\right)$ solution of

$$
\begin{gather*}
\Delta u_{r}=0 \text { in } \Omega_{r}, \quad u_{r}=x \text { on } \partial B_{R}(0), \quad \frac{\partial u_{r}}{\partial n}=0 \text { on } \partial B_{r}(0)  \tag{6.11}\\
\Rightarrow u_{r}(x, y)=\frac{R^{2}}{R^{2}+r^{2}}\left(\frac{r^{2}}{x^{2}+y^{2}}+1\right) x \text { in } \Omega_{r}  \tag{6.12}\\
\left(u_{r}-u_{0}\right)(x, y)=\frac{R^{2}}{R^{2}+r^{2}}\left(\frac{r^{2}}{x^{2}+y^{2}}\right) x-\frac{r^{2}}{R^{2}+r^{2}} x=\frac{x r^{2}}{R^{2}+r^{2}}\left[\frac{R^{2}}{x^{2}+y^{2}}-1\right] \\
\lim _{r \searrow 0} \int_{\Omega_{r}}\left|\frac{u_{r}-u_{0}}{t^{1 / 2}}\right|^{2} d x=0 \quad \text { and } \lim _{r \searrow 0} \int_{\Omega_{r}}\left\|\nabla\left(\frac{u_{r}-u_{0}}{t^{1 / 2}}\right)\right\|^{2} d x=1  \tag{6.13}\\
\Rightarrow R\left(u_{0}\right)=-\frac{1}{2}  \tag{6.14}\\
d_{t} G\left(0, u_{0}\right)=-\int_{E}\left(\frac{1}{2}\left\|\nabla u_{0}\right\|^{2}-a u_{0}\right) d H^{0}=-\frac{1}{2}, \quad d F\left(\chi_{\Omega} ; \delta_{E}\right)=-\frac{1}{2}-\frac{1}{2}=-1 .
\end{gather*}
$$


blind part $\Omega_{r}^{b}$

Figure 10: Domain $\Omega$, dilated set $E_{r}$, and the two connected components $\Omega_{r}^{m}$ and $\Omega_{r}^{b}$ of the perturbed domain $\Omega_{r}$

## EXAMPLE

Let $\Omega=B_{R}(0) \subset \mathbb{R}^{2}$, the open ball of radius $R$ and

$$
\begin{equation*}
\Delta u_{0}=0 \text { in } B_{R}(0), \quad u_{0}=x \text { on } \partial B_{R}(0) \quad \Rightarrow u_{0}(x, y)=x \text { in } \overline{B_{R}(0)} \tag{6.15}
\end{equation*}
$$

Go back to Example 34 but with a circle $E=\partial B_{R / 2}(0)$ of dimension $d=1$ instead of a point $E=\{0\}$ of dimension $d=0$.
For $0<r<R / 8$, the perturbed domain $\Omega_{r}$ has two connected components:
$\Omega_{r}^{m}=B_{R}(0) \backslash \overline{B_{R / 2+r}(0)}$ and $\Omega_{r}^{b}=B_{R / 2-r}(0)$.
By choosing $u_{r}=u_{0}$ on $\Omega_{r}^{b}$ we only have to work with $\Omega_{r}^{m}$. Let $u_{r} \in H^{1}\left(\Omega_{r}\right)$ be the solution of

$$
\begin{gather*}
\Delta u_{r}=0 \text { in } \Omega_{r}, \quad u_{r}=x \text { on } \partial B_{R}(0), \quad \frac{\partial u_{r}}{\partial n}=0 \text { on } \partial B_{r}(0)  \tag{6.16}\\
\Rightarrow u_{r}(x, y)= \begin{cases}\frac{R^{2}}{R^{2}+r^{2}}\left(\frac{r^{2}}{x^{2}+y^{2}}+1\right) x, & (x, y) \in B_{R}(0) \backslash \overline{B_{R / 2+r}(0)} \\
u_{0}(x, y),\end{cases}  \tag{6.17}\\
w_{r}(x, y) \stackrel{\text { def }}{=}\left(u_{r}-u_{0}\right)(x, y)= \begin{cases}\frac{x r^{2}}{R^{2}+r^{2}}\left[\frac{R^{2}}{x^{2}+y^{2}}-1\right], & (x, y) \in B_{R / 2-r}(0) \backslash \overline{B_{R / 2+r}(0)} \\
0, & (x, y) \in B_{R / 2-r}(0) .\end{cases}
\end{gather*}
$$

## EXAMPLE

So the $L^{2}$ - integral over $\Omega_{r}$ is equal to the $L^{2}$ integral over $B_{R}(0) \backslash \overline{B_{R / 2+r}(0)}$. Here, $t=\alpha_{1} r=2 r$. Since $r+R / 2<\rho \leq R$

$$
\frac{1}{2 r} \int_{\Omega_{r}}\left|w_{r}\right|^{2} d x=\frac{r^{4}}{2 r} \int_{\Omega_{r}^{m}}\left|\frac{x}{R^{2}+r^{2}}\left[\frac{R^{2}}{x^{2}+y^{2}}-1\right]\right|^{2} d x \leq \frac{r^{4}}{2 r}\left|\frac{5}{R}\right|^{2} \pi R^{2} \rightarrow 0
$$

For the gradient

$$
\nabla w_{r}= \begin{cases}\frac{r^{2} R^{2}}{R^{2}+r^{2}}\left\{\left[\frac{1}{\rho^{2}}-\frac{1}{R^{2}}\right](1,0)-\frac{2 x}{\rho^{4}}(x, y)\right\}, & \text { in } B_{R}(0) \backslash \overline{B_{R / 2+r}(0)} \\ 0, & \text { in } B_{R / 2-r}(0)\end{cases}
$$

Therefore, for $\rho>R / 2+r,(x, y)=\rho(\cos \theta, \sin \theta)$, and $t=\alpha_{1} r=2 r$, as $r \rightarrow 0$

$$
\begin{gathered}
\nabla\left(\frac{w_{r}}{t^{1 / 2}}\right)=\frac{r^{3 / 2}}{\sqrt{2 \pi}} \frac{R^{2}}{R^{2}+r^{2}}\left\{\left[\frac{1}{\rho^{2}}-\frac{1}{R^{2}}\right](1,0)-\frac{2 \cos \theta}{\rho^{2}}(\cos \theta, \sin \theta)\right\} \\
\lim _{r \searrow 0} \int_{\Omega_{r}}\left|\frac{u_{r}-u_{0}}{t^{1 / 2}}\right|^{2}+\left\|\nabla\left(\frac{u_{r}-u_{0}}{t^{1 / 2}}\right)\right\|^{2} d x=0 \Rightarrow R\left(u_{0}\right)=0 \\
d_{t} G\left(0, u_{0}\right)=-\int_{E}\left(\frac{1}{2}\left\|\nabla u_{0}\right\|^{2}-a u_{0}\right) d H^{0}=-\frac{1}{2}\|(1,0)\|^{2}=-\frac{1}{2}, \quad d F\left(\chi_{\Omega} ; \delta_{E}\right)=-\frac{1}{2}
\end{gathered}
$$

We give examples in dimension $n=1$ for $\Omega=(-1,1), E=\{0\}$, and $t=\alpha_{1} r=2 r$, where the polarization term $R\left(x^{0}\right)$ is 0 , finite non-zero, and infinite.

$$
\left\{\begin{array}{l}
-u_{0}^{\prime \prime}=f, \quad(-1,1)  \tag{6.18}\\
u_{0}( \pm 1)=b_{ \pm}
\end{array}\right\} \quad\left\{\begin{array}{l}
-u_{r}^{\prime \prime}=f, \quad(-1,-r) \cup(r, 1) \\
u_{r}( \pm 1)=b_{ \pm}, \quad u_{r}^{\prime}( \pm r)=0
\end{array}\right\}
$$

The polarization term $R\left(u_{0}\right)$ is the following limit as $r$ goes to zero

$$
\begin{equation*}
R\left(u_{0}\right)=-\frac{1}{2} \lim _{r \searrow 0} \frac{u_{0}^{\prime}(-r)^{2}+u_{0}^{\prime}(r)^{2}}{2 r}(1-r)=-\frac{1}{2} \lim _{r \searrow 0} \frac{u_{0}^{\prime}(-r)^{2}+u_{0}^{\prime}(r)^{2}}{2 r} \leq 0 \tag{6.19}
\end{equation*}
$$

If $\left(f u_{0}\right)(x)=a(x) u_{0}(x)$ is continuous in $(-r, r)$, the $t$-derivative is also a limit as $r$ goes to zero:

$$
\begin{equation*}
d_{t} G\left(0, u_{0}\right)=-\lim _{r \searrow 0} \frac{1}{2 r} \int_{-r}^{r} \frac{1}{2}\left|u_{0}^{\prime}\right|^{2}-f u_{0} d x=-\left[\frac{1}{2}\left|u_{0}^{\prime}\right|^{2}(0)-\left(f u_{0}\right)(0)\right] . \tag{6.20}
\end{equation*}
$$

In view of this simple expression, the polarization term can be controlled by choosing $u_{0}$ and computing $f$ and $b_{-}$, and $b_{+}$.


Figure 11: Domains $\Omega$ and $\Omega_{r}$

## EXAMPLE

Let $\Omega=(-1,1)$ and $E=\{0\}$.

$$
\begin{gathered}
u_{0}(x)=\frac{1}{2} x^{2}, u_{0}^{\prime}(x)=x,\left\{\begin{array}{l}
f(x)=-1 \\
u_{0}( \pm 1)=1 / 2
\end{array}\right\} \Rightarrow R\left(u_{0}\right)=-\frac{1}{2} \lim _{r \geq 0} \frac{r^{2}}{r}(1-r)=0 \\
d_{t} G\left(0, u_{0}\right)=\frac{1}{2}\left|u_{0}^{\prime}\right|^{2}(0)-f(0) u_{0}(0)=0 \Rightarrow d F\left(\chi_{\Omega} ; \delta_{E}\right)=0 .
\end{gathered}
$$

The next example is a variation of the previous one.

## EXAMPLE

Let $\Omega=(-1,1)$ and $E=\{0\}$.

$$
u_{0}(x)=\frac{1}{2}\left[1-x^{2}\right], u_{0}^{\prime}(x)=-x,\left\{\begin{array}{l}
f(x)=1  \tag{6.21}\\
u_{0}( \pm 1)=0
\end{array}\right\} \Rightarrow R\left(u_{0}\right)=-\frac{1}{2} \lim _{r \searrow 0} \frac{r^{2}}{r}(1-r)=0
$$

$$
\begin{equation*}
d_{t} G\left(0, u_{0}\right)=-\left[\frac{1}{2}\left|u_{0}^{\prime}\right|^{2}(0)-f(0) u_{0}(0)\right]=\frac{1}{2} \Rightarrow d F\left(\chi_{\Omega} ; \delta_{E}\right)=\frac{1}{2} \tag{6.22}
\end{equation*}
$$

## EXAMPLE

Let $\Omega=(-1,1)$ and $E=\{0\}$.

$$
\begin{align*}
& u_{0}(x)=x, u_{0}^{\prime}(x)=1,\left\{\begin{array}{l}
f(x)=0 \\
u_{0}( \pm 1)= \pm 1
\end{array}\right\} \Rightarrow R\left(u_{0}\right)=-\frac{1}{2} \lim _{r>0} \frac{1}{r}(1-r)=-\infty  \tag{6.23}\\
& d_{t} G\left(0, u_{0}\right)=-\left[\frac{1}{2}\left|u_{0}^{\prime}\right|^{2}(0)-f(0) u_{0}(0)\right]=-\frac{1}{2} \Rightarrow d F\left(\chi_{\Omega} ; \delta_{E}\right)=-\infty \tag{6.24}
\end{align*}
$$

In the next example we choose $u_{0}$ in such a way that $R\left(u_{0}\right)$ be finite and non-zero:

## EXAMPLE

Let $\Omega=(-1,1)$ and $E=\{0\}$.

$$
u_{0}(x)=\frac{2}{3}|x|^{3 / 2}, u_{0}^{\prime}(x)=\frac{x}{|x|}|x|^{1 / 2},\left\{\begin{array}{l}
f(x)=-\frac{1}{2} \frac{1}{|x|^{1 / 2}} \\
u_{0}( \pm 1)=2 / 3
\end{array}\right\} \Rightarrow R\left(u_{0}\right)=-\frac{1}{2}
$$

where $a$ is continuous except at $x=0$ but $a \in L^{2-\varepsilon}(\Omega)$ for all $\varepsilon, 0<\varepsilon<1$. Yet,

$$
f(x) u_{0}(x)=-\frac{1}{2} \frac{1}{|x|^{1 / 2}} \frac{2}{3}|x|^{3 / 2}=-\frac{1}{3}|x|
$$

is continuous, and, since $u_{0}^{\prime}$ is continuous and $u_{0}^{\prime}(0)=0, d_{t} G\left(0, u_{0}\right)=0$, and

$$
d F\left(\chi_{\Omega} ; \delta_{E}\right)=-\frac{1}{2} .
$$

So, the continuity of $a$ is not a necessary condition. Moreover,

$$
\int_{\Omega_{r}}\left|\frac{u_{r}-u_{0}}{\sqrt{2 r}}\right|^{2} d x=\frac{2 r}{2 r} \frac{(1-r)^{3}}{3} \rightarrow \frac{1}{3}, \quad \int_{\Omega_{r}}\left|\frac{u_{r}^{\prime}-u_{0}^{\prime}}{\sqrt{2 r}}\right|^{2} d x=\frac{2 r}{2 r}(1-r) \rightarrow 1
$$

and $\left(u_{r}-u_{0}\right) / \sqrt{2 r}$ is the restriction of the $H^{1}(\Omega)$-function $w_{0}(x)=(1-|x|) / \sqrt{2}$ to $\Omega_{r}$.

## - Thank you for your attention -

[1] L. Ambrosio, A. Colesanti, and E. Villa, Outer Minkowski content for some classes of closed sets, Math. Ann. (4) 342 (2008), 727-748.
[2] L. Ambrosio, N. Fusco, and D. Pallara, Functions of Bounded Variation and Free Discontinuity Problems, The Clarendon Press, Oxford University Press, New York, 2000.
[3] H. Ammari and H. Kang, Polarization and Moment Tensors with Applications to Inverse Problems and Effective Medium Theory, Springer Applied Mathematical Sciences vol. 162, 2007.
[4] S. Amstutz, An introduction to the topological derivative, Engineering Computations (1) 39 (2022), 3-33. https://doi.org/10.1108/EC-07-2021-0433
[5] J.-P. Aubin, Gradients géneralisés de Clarke, Ann. Sc. Math. Québec (2) 11 (1978), 197-252.
[6] J.-P. Aubin and H. Frankowska, Set-valued Analysis, Birkhäuser, Boston, 1990.
[7] P. Auscher and Ph. Tchamitchian, Square root problem for divergence operators and related topics, Astérisque 249 (1998).
[8] R. L. Baire, Sur les fonctions de variables réelles, Thesis. École Normale Sup., Paris 1899.
[9] J. Bolte and E. Pauwels, Conservative set valued fields, automatic differentiation, stochastic gradient methods and deep learning, Mathematical Programming: Series A and B, Volume 188, Issue 1 (2021), 19-51
[10] J. F. Bonnans and A. Shapiro, Optimization problems with perturbations, a guided tour, SIAM Review 40 (1998), 202-227.
[11] J. F. Bonnans and A. Shapiro, Perturbation analysis of optimization problems, Springer-Verlag, N. Y., 2000.
[12] J. M. Borwein and A. S. Lewis, Convex analysis and nonlinear optimization. Theory and examples, CMS (Canadian Mathematical Society) Books in Mathematics, Volume 3, Springer-Verlag, New York, 2000.
[13] G. Bouchitté, I. Fragalà, and I. Lucardesi, Shape derivatives for minima of integral functionals, Math. Program., 148 (1-2, Ser. B):111-142, $2014 .$.
[14] P. Cannarsa and C. Sinestrari, Semiconcave functions, Hamilton-Jacobi equations, and optimal control, Progress in Nonlinear Differential Equations and Their Applications, Volume 58, Birkhäuser Boston, MA, 2004.
[15] G. Cardone, S. A. Nazarov and J. Sokołowski, Asymptotic analysis, polarization matrices and topological derivatives for piezoelectric materials with small voids, SIAM J. Control Optim. (6) 48 (2010), 3925-3961.
[16] F. Caubet, M. Dambrine, and R. Mahadevan, Shape derivative for some eigenvalue functionals in elasticity theory, SIAM J. Control Optim. (2) 59 (2021), 1218-1245).
[17] F. Caubet, M. Dambrine, and R. Mahadevan, Shape sensitivity of eigenvalue functionals for scalar problems: computing the semi-derivative of a minimum, Appl. Math. Optim. (1) 86 (2022.): Article No. 10, 34.
[18] F. H. Clarke, Necessary Conditions for Nonsmooth Problems in Optimal Control and the Calculus of Variations, Ph.D. thesis, Univ. of Washington, Seattle, WA, 1973.
[19] F. H. Clarke, Optimization and nonsmooth analysis, John Wiley and Sons, New York, Chichester, Brisbane, Toronto, Singapore, 1983.
[20] Correa R. and Seeger A. (1985), Directional derivatives of a minimax function, Nonlinear Anal. Theory Methods and Appl. 9, 13-22.
[21] G. Crasta and I. Fragala, On the characterization of some classes of proximally smooth sets, ESAIM Control Optim. Calc. Var. 22 (2016), 710-727.
[22] J. M. Danskin, The theory of max-min, with applications, SIAM J. on Appl. Math. (4) 14 (1966), 641-644.
[23] J. M. Danskin, The theory of max-min and its application to weapons allocation problems, Econometrics and Operations Research, Vol. V, Springer-Verlag New York, Inc., New York 1967.
[24] M. C. Delfour, Introduction to optimization and semidifferential calculus, MOS-SIAM Series, Philadelphia, USA, 2012.
[25] M. C. Delfour, Groups of Transformations for Geometrical Identification Problems: Metrics, Geodesics, pp. 3403-3406, Mini-Workshop: Geometries, Shapes and Topologies in PDE-based Applications, M. Hintermüller, G. Leugering, and J. Sokolowski, organizers, Mathematisches Forschungsinstitut Oberwolfach, 2012 (Report No. 57/2012, DOI: 10.4171/OWR/2012/57).
[26] M. C. Delfour, Metrics spaces of shapes and geometries from set parametrized functions, in "New Trends in Shape Optimization", A. Pratelli and G. Leugering, eds., pp. 57-101, International Series of Numerical Mathematics vol. 166, Birkhäuser Basel, 2015.
[27] M. C. Delfour, Differentials and semidifferentials for metric spaces of shapes and geometries, in "System Modeling and Optimization, (CSMO 2015)," L. Bociu, J. A. Desideri and A. Habbal, eds., pp. 230-239, AICT Series, Springer, 2017.
[28] M. C. Delfour, Topological derivative: a semidifferential via the Minkowski content, Journal of Convex Analysis (3) 25 (2018), 957-982.
[29] M. C. Delfour, Topological derivatives via one-sided derivative of parametrized minima and minimax, Engineering Computations (1) 39 (2022), pp. 34-59. https://doi.org/10.1108/EC-06-2021-0318.
[30] M. C. Delfour, Topological Derivative of State Constrained Objective Functions: a Direct Approach, SIAM J. on Control and Optim. (1) 60 (2022), 22-47.
[31] M. C. Delfour, Control, shape, and topological derivatives via minimax differentiability of Lagrangians, in "Numerical Methods for Optimal Control Problems," M. Falcone, R. Ferretti, L. Grüne, W. McEneaney, eds., pp. 137-164, Springer INdAM Series Vol. 29, Springer, Cham, Switzerland AG 2018.
[32] M. C. Delfour, Hadamard Semidifferential of Functions on an Unstructured Subset of a TVS, J. Pure and Applied Functional Analysis (5) 5 (2020), 1039-1072.
[33] M. C. Delfour, Hadamard Semidifferential, Oriented Distance Function, and some Applications, Communications on Pure and Applied Analysis (6) 21 (2022), 1917-1951.
[34] M. C. Delfour, Topological derivatives via one-sided derivative of parametrized minima and minimax, Engineering Computations (1) 39 (2022), pp. 34-59. https://doi.org/10.1108/EC-06-2021-0318.
[35] M. C. Delfour, Topological Derivative of State Constrained Objective Functions: a Direct Approach, SIAM J. on Control and Optim. (1) 60 (2022), 22-47.
[36] M. C. Delfour, One-sided Derivative of Parametrized Minima for Shape and Topological Derivatives, SIAM J. Control Optim., accepted December 2022.
[37] M. C. Delfour and K. Sturm, Parametric Semidifferentiability of Minimax of Lagrangians: Averaged Adjoint Approach, Journal of Convex Analysis 24 (2017), No. 4, to appear.
[38] M. C. Delfour and K. Sturm, Minimax differentiability via the averaged adjoint for control/shape sensitivity, Proc. of the 2nd IFAC Workshop on Control of Systems Governed by Partial Differential quations, IFAC-PaperOnLine 49-8 (2016), pp. 142-149.
[39] M. C. Delfour and J.-P. Zolésio, Dérivation d'un min max et application à la dérivation par rapport au contrôle d'une observation non-différentiable de l'état [Minimax differentiability and application to a nondifferentiable cost function in optimal control], C. R. Acad. Sci. Paris Sér. I Math. (16) 302 (1986), 571-574.
[40] M. C. Delfour and J.-P. Zolésio, Differentiability of a min max and application to optimal control and design problems. I, II, in "Control problems for systems described by partial differential equations and applications" (Gainesville, Fla., 1986), I. Lasiecka and R. Triggiani, eds., 204-219 and 220-229, Lecture Notes in Control and Inform. Sci., 97, Springer, Berlin, 1987.
[41] M. C. Delfour and J.-P. Zolésio, Shape sensitivity analysis via min max differentiability, SIAM J. on Control and Optimization 26 )1988), 834-862.
[42] M. C. Delfour and J.-P. Zolésio, Shapes and Geometries: Analysis, Differential Calculus and Optimization, SIAM, Philadelphia, PA 2001.
[43] M. C. Delfour and J.-P. Zolésio, Shapes and Geometries: Metrics, Analysis, Differential Calculus and Optimization, 2nd ed., SIAM, Philadelphia, PA 2011.
[44] Dem'janov V. F. (1969), Differentiation of the maximin function. I, II, (Russian) Ž. Vyčisl. Mat. i Mat. Fiz. 8 (1968), 1186-1195; ibid. 9, 55-67.
[45] Dem'janov V. F. (1974), Minimax: Directional Differentiation, Izdat. Leningrad Gos. Univ., Leningrad.
[46] Dem'janov V. F. and Malozemov V. N. (1974), Introduction to the Minimax, Trans from Russian by D. Louvish, Halsted Press [John Wiley \& Sons], New York-Toronto.
[47] I. Ekeland and R. Temam, Analyse convexe et problèmes variationnels, Dunod Gauthier-Villars, Paris, 1974. English translation: Convex analysis and variational problems, North-Holland Publishing Co., Amsterdam-Oxford; American Elsevier Publishing Co., New York, 1976 (Corrected reprinting, SIAM, Philadelphia, 1999).
[48] Eschenauer H A., Kobelev V. V., and Schumacher A. (1994), Bubble method for topology and shape optimization of structures, Structural Optimization 8, 42-51.
[49] L. C. Evans and R. F. Gariepy, Measure Theory and the Properties of Functions, CRC Press, Boca Raton, FL, 1992.
[50] H. Federer, Curvature measures, Trans. Amer. Math. Soc. 93 (1959), 418-419.
[51] H. Federer, Geometric Measure Theory, Die Grundlehren der mathematischen Wissenschaften, 153. Springer, New York, 1969.
[52] X. Fernández-Real and X. Ros-Oton, Regularity Theory for Elliptic PDE, ETH Zürich, Department of Mathematics, Raemistrasse 101, 8092 Zürich, Switzerland, 2010. (preprint)
[53] M. Fréchet, Sur la notion de différentielle, Comptes rendus de l'Académie des Sciences, 152 (1911), 845-847.
[54] M. Fréchet, Sur la notion de différentielle, Comptes rendus de l'Académie des Sciences, 152 (1911), 1050-1051.
[55] M. Fréchet, Sur la notion de différentielle totale, Nouv. Ann. Math. 12 (1912), 385-403 and 433-449.
[56] M. Fréchet, La notion de différentielle dans l'Analyse générale, Ann. Éc. Norm., XLII (1925), 293-323.
[57] M. Fréchet, Sur la notion de différentielle, Journal de Mathématiques Pures et Appliquées 16 (1937), 233-250.
[58] P. Gangl and K. Sturm, A simplified derivation technique of topological derivatives for quasi-linear transmission problems, ESAIM Control Optim. Calc. Var. 26 (2020), Article No. 106, 20 pp. (https://doi.org/10.1051/cocv/2020035)
[59] A. Garon and M. C. Delfour, Transfinite Interpolations and Euler/Lagrange Dynamics, Vol. DC-38, .Series in Advances in Design and Control, SIAM, Philadelphia, PA 2022.
[60] P. Gangl and K. Sturm, Asymptotic analysis and topological derivative for 3D quasi-linear magnetostatics, ESAIM Math. Model. Numer. Anal. 55 (2021), suppl., S853-S875.
[61] D. Gilbarg and N. S.Trudinger, Elliptic Partial Differential Equations of Second Order, Springer-Verlag, Berlin 1983.
[62] J. Hadamard, La notion de différentielle dans l'enseignement, Scripta Univ. Ab. Bib., Hierosolymitanarum, Jerusalem, 1923. Reprinted in the Mathematical Gazette 19, no. 236 (1935), 341-342.
[63] K. Ito and K. Kunisch, Lagrange multiplier approach to variational problems and applications, Society for Industrial and Applied Mathematics, Philadelphia, PA, 2008.
[64] K. Ito and K. Kunisch, On shape sensitivity analysis of the cost functional without shape sensitivity of the state variable, Control and Cybernetics (4) 40 (2011), 989-1017.
[65] K. Ito, K. Kunisch, and G. H. Peichl, Variational approach to shape derivatives for a class of Bernoulli problems, J. Math. Anal. Appl. (1) 314 (2006), 126Đ149.
[66] K. Ito, K. Kunisch, and G. H. Peichl, Variational approach to shape derivatives, ESAIM Control Optim. Calc. Var. (3) 14 (2008), 517-539.
[67] H. Kasumba and K. Kunisch, On computation of the shape hessian of the cost functional without shape sensitivity of the state variable, Journal of Optimization Theory and Applications (3) 162 (2014), 779-804.
[68] Lemaire B. , Problèmes min-max et applications au contrôle optimal de systèmes gouvernés par des équations aux dérivées partielles linéaires, Thèse de doctorat d'état, Univ. de Montpellier, France 1970.
[69] A. Lytchak, Almost convex subsets, Geom. Dedicata 115 (2005), 201-218.
[70] V.G. Maz'ja, Sobolev Spaces, Springer-Verlag, Berlin 1985.
[71] A. D. Michal, Differential calculus in linear topological spaces. Proc. Nat. Acad. Sci. U.S.A. 24 (1938), 340-342.
[72] A. D. Michal, General differential geometries and related topics.. Bull. Amer. Math. Soc. 45 (1939), no. 8, 529-563.
[73] A. D. Michal, Differentials of functions with argument and values in topological Abelian groups, Proc. Nat. Acad. Sci. U.S.A. 26 (1940), 356-359 (for an expanded version see Revista de Ciensas 43 (1941), 155-176; idid 47 (1945), 389-422).
[74] A. D. Michal, First order differentials of functions with arguments and value in topological Abelian groups, Revista de Ciensas 47 (1945), 389-422).
[75] A. D. Michal, Functional analysis in topological group spaces, Mathematics Magazine 21, no. 2 (1947), 80-90.
[76] A. M. Micheletti, Metrica per famiglie di domini limitati e proprietà generiche degli autovalori, Ann. Scuola Norm. Sup. Pisa (3) 26 (1972), 683-694.
[77] F. Mignot, Contrôle dans les inéquations variationelles elliptiques, J. Funct. Anal., 22 (1976), 130-185.
[78] F. Mignot and J. P. Puel, Contrôle optimal d'un système gouverné par une inéquation variationelle parabolique, Compt. Rend. Acad. Sci. Paris, 298 (1984), 277-280.
[79] F. Mignot and J. P. Puel, Optimal control in some variational inequalities, SIAM J. Control Optim., 22 (1984), 466-476.
[80] I. Mitrea and M. Mitrea, The Poisson Problem with Mixed Boundary Conditions in Sobolev and Besov Spaces in Non-smooth Domains, Trans. of the American Mathematical Society (9) 359 (2007), 4143-4182.
[81] J. Mossino and J. P. Zolésio, Solution variationnelle d'un problème non linéaire de la physique des plasmas, (French) C. R. Acad. Sci. Paris Sér. A-B 285 (1977), no. 16, A1033-A1036..
[82] F. Murat and J. Simon, Sur le contrôle par un domaine géométrique, Rapport 76015, Université Pierre et Marie Curie, Paris, 1976.
[83] S. A. Nazarov, Elasticity polarization tensor, surface enthalpy, and Eshelby theorem, Journal of Mathematical Sciences (2) 159 (2009), 133-167.
[84] S. A. Nazarov and J. Sokołowski, Asymptotic analysis of shape functionals, J. Math. Pures Appl. 82 (2003), 125-196.
[85] S. A. Nazarov, J. Sokołowski, and M. Specovius-Neugebauer, Asymptotic analysis and polarization matrices, Asymptotic Analysis [Submitted]
[86] S. A. Nazarov, J. Sokołowski, and M. Specovius-Neugebauer, Polarization matrices in anisotropic heterogeneous elasticity, Asymptotic Analysis (4)68 (2010), 189-221.
[87] M. G. Ngom, I. Faye, and D. Seck, A minimax method in shape and topological derivatives and homogenization: the case of Helmholtz equation, Nonlinear Studies 30 (2023), 213-247.
[88] A. A. Novotny and J. Sokołowski, Topological Derivatives in Shape Optimization, Interaction of Mechanics and Mathematics, Springer, Heidelberg, New York 2013.
[89] A. A. Novotny and J. Sokołowski, An introduction to the topological derivative method, Springer Briefs in Mathematics, 2020.
[90] A. A. Novotny, J. Sokołowski, and A. Zȯchowski, Applications of the Topological Derivative Method, Springer, 2019.
[91] A. A. Novotny, J. Sokołowski, and A. Zȯchowski, Topological Derivatives of Shape Functionals: Part I: Theory in Singularly Perturbed Geometrical Domains, J. of Optimization Theory and Applications 180 (2019), 341-373; Part II: First Order Method and Applications, J. of Optimization Theory and Applications 180 (2019), 683-710; Part III: Second-Order Mathod and Applications, J. of Optimization Theory and Applications 181 (2019), 1-22.
[92] J. P. Penot, Calcul sous-differentiel et optimisation, J. of Functional Analysis 27 (1978), 248-276.
[93] J. P. Penot, Calculus without Derivatives, Springer, New York Heidelberg Dordrecht London 2013.
[94] J. Pierpotn, The theory of functions of real variables, Vol. I, Ginn and Company, Boston, 1905.
[95] J. Pierpont, The theory of functions of real variables, Vol. II, Ginn and Company, Boston, 1912.
[96] J. Rataj and L. Zajíček, On the structure of sets with positive reach, Math. Nachr. (11-12) 290 (2017), 1806-1829.
[97] J. Sokołowski and A. Zöchowski, On the topological derivative in shape optimization, SIAM J. Control Optim. (4) 37 (1999), 1251-1272.
[98] J. Sokołowski and A. Zolésio, Introduction to shape optimization. Shape sensitivity analysis, Springer Ser. Comput. Math., 16. Springer-Verlag, Berlin, 1992.
[99] O. Stolz, Grundzüge der Differential und Integralrechnung, I, B. G. Teubner, Leipzig, 1893 (The Cornell University Library Collections).
[100] K. Sturm, On shape optimization with non-linear partial differential equations, Doctoral thesis, Technische Universiltät of Berlin, Germany 2014.
[101] K. Sturm, Minimax Lagrangian approach to the differentiability of non-linear PDE constrained shape functions without saddle point assumption, SIAM J. on Control and Optim., 53 (2015), no. 4, 2017-2039.
[102] V. M. Tihomirov, Elements of the theory of extrema, Econometric Institute, Erasmus University Rotterdam, 1997.
[103] W. H. Young, On differentials, Proc. London Mathematical Society, series 2, 7 (1909), 157.
[104] W. H. Young, The fundamental theorems of differential calculus, Cambridge University Press, Cambridge, 1910.
[105] L. C. Young, Partial area. I, Riv. Mat. Univ. Parma 10 (1959), 103-113.
[106] J. P. Zolésio, Solution variationnelle d'un problème non linéaire de la physique des plasmas, (French) C. R. Acad. Sci. Paris Sér. A-B 285 (1977), no. 16, A1033-A1036..
[107] J. P. Zolésio, Solution variationnelle d'un problème de valeur propre non linéaire et frontière libre en physique des plasmas, (French) C. R. Acad. Sci. Paris Sér. A-B 288 (1979), no. 19, A911-A913.
[108] J. P. Zolésio, Identification de domaines par déformation, Thèse de doctorat d'état, Université de Nice, France, 1979.
[109] J. P. Zolésio, Semiderivatives of repeated eigenvalues, in "Optimization of distributed parameter structures," Vol. II (lowa City, IA, 1980), E. J. Haug and J. Céa, eds., 1457-1473, NATO Adv. Sci. Inst. Ser. E: Appl. Sci., 50, Sijhofff and Nordhoff, Alphen aan den Rijn, 1981 (Nijhoff, The Hague).
[110] J. P. Zolésio, The material derivative (Or speed) method for shape optimization, in "Optimization of distributed parameter structures," Vol. II (lowa City, IA, 1980), E. J. Haug and J. Céa, eds., 1089-1151, NATO Adv. Sci. Inst. Ser. E: Appl. Sci., 50, Sijhofff and Nordhoff, Alphen aan den Rijn, 1981 (Nijhoff, The Hague).


[^0]:    ${ }^{1}$ Stolz [99] in 1893, Pierpont [94, 95] in 1905, Young [104, 103] in 1909. =René Gateaux 1889-1914言

[^1]:    ${ }^{1}$ Stolz [99] in 1893, Pierpont [94, 95] in 1905, Young [104, 103] in 1909. ERené Gateaux 1889-1914権

[^2]:    ${ }^{2}$ The inner product in $\mathbb{R}^{n}$ is denoted $x \cdot y$ and the norm $\|x\|=\sqrt{x \cdot x}$.

[^3]:    ${ }^{a}$ Recall that $f \in L^{2}(\Omega) \cap C^{0}\left(E_{2 R}\right)$.

