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Overview

OVERVIEW
GEOMETRY AS A VARIABLE

• Motivated by shape and topological derivatives, we revisit the Hadamard
semidifferential, for which a complete semidifferential calculus is available, including
the chain rule. The conical derivative of Mignot [Contrôle dans les inéquations
variationelles elliptiques, J. Funct. Anal., 22 (1976)] is a Hadamard semidifferential. It
is also a natural tool for differentiation along trajectories in automatic differentiation.
• For real-valued functions we recall the generalized directional derivative (an upper

semidifferential) for which some form of differential calculus is restored by going to
subdifferentials. Both families of functions contain the continuous convex functions,
but they are not contained in one another. The choice is problem dependent, but the
Hadamard semidifferential is more convenient in most applications.

• The second object of this lecture is the differentiation of the infimum of
parametrized objective functions with respect to the parameters as in Danskin [The
theory of max-min, with applications, SIAM J. on Appl. Math. 14 (1966)] who obtained
a semidifferential equal to the infimum over the set of minimizers of the one-sided
directional derivative with respect to the parameters. Yet, in applications to the
topological and shape derivatives of the compliance, examples reveal the possible
occurrence of an extra negative term: the so-called polarization term in Mechanics.
• For the shape derivative, the associated technique is a change of variable to work

on the fixed initial domain; for the topological derivative, it is an extension over the hole
created by the topological perturbation of the domain.
• This work has applications to compliance problems and to eigenvalue problems

where the first eigenvalue is not simple.
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Geometry as a Variable Shape Variations
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Geometry as a Variable Shape Variations

SHAPE VARIATIONS

When the variable at hand is a geometric object in the n-dimensional Euclidean
space Rn, it is natural to introduce a space of subsets of some fixed holdall D ⊂ Rn

and to give it an appropriate structure (group, metric) to deal with optimal
design/control problems and a framework to do sensitivity analysis (differential
calculus). There are several ways to do it mathematically.

For shape variations, choose the variable sets as the images of a fixed set Ω0 by a
group of diffeomorphisms with a metric and a differential structure such as the metric
groups introduced by Anna-Maria Micheletti [76] in 1972

F(Ck
0 (Rn;Rn))

def
=
{

F : Rn → Rn bijective : F − I and F−1 − I ∈ Ck
0 (Rn;Rn)

}
,

where Ck
0 (Rn;Rn) is the space of Ck mappings of Rn going to zero at infinity.

Obviously, such diffeomorphisms can only induce changes in the shape of the set Ω0.
This group was endowed with a metric that she called Courant metric. This

approach is not limited to Ck
0 (Rn;Rn), but extends to other spaces such as the

Lipschitzian mappings ([43, Chapter 3]).
Since the tangent space to that metric group F(Ck

0 (Rn;Rn)) is precisely the linear
space Ck

0 (Rn;Rn), we have a notion of shape derivative.
The velocity method of Zolésio [108] in 1979 corresponds to a trajectory t 7→ Tt in

the group of diffeomorphisms for which the velocity V (t) ◦ Tt at Tt belongs to the
tangent space Ck

0 (Rn;Rn) and dTt/dt = V (t) ◦ Tt .
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Geometry as a Variable Shape Variations

SHAPE DERIVATIVE VIA VELOCITY METHOD

Perturb the bounded open domain Ω by a family of diffeomorphisms Tt generated by
a smooth velocity field V (t):

Ωt
def
= Tt (Ω) , Tt (X )

def
= x(t ; X ), t ≥ 0,

dx
dt

(t ; X ) = V (t , x(t ; X )), x(0; X ) = X .

Given f ∈ H1(Rn), consider the volume integral and the change of variable Tt

J(Ωt ) =

∫
Ωt

f dx =

∫
Ω

f ◦ Tt jt dx . jt = det DTt , DTt is the Jacobian matrix,

dJ(Ω; V )
def
= lim

t↘0

J(Ωt )− J(Ω)

t
=

∫
Ω

∇f ◦ V (0) + f div V (0) dx =

∫
Ω

div (f V (0)) dx .

Tt will also be used in integrals involving functions ut and vt in H1(Ωt ) to obtain an
integral over Ω and functions ut = ut ◦ Tt and v t = vt ◦ Tt in the fixed space H1(Ω):∫

Ωt

∇ut · ∇vt − a v dx =

∫
Ω

[
A(t)∇ut · ∇v t − a ◦ Tt v t jt

]
dx (2.1)

A(t) = jt DTt
−1 (DTt

−1)>, jt = det DTt , DTt is the Jacobian matrix, (2.2)

where (DTt
−1)> is the transpose of the inverse of DTt .
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Geometry as a Variable Topological Variations

For topological variations the variable sets A are identified with a family of
set-parametrized functions such as, for instance, the characteristic function

χA(x)
def
=

{
1, x ∈ A

0, x /∈ A

}
. (2.3)

Given a holdall D (a Lebesgue measurable subset of Rn), let P(D) be the σ-algebra of
Lebesgue measurable subsets of D and mn the Lebesgue measure in Rn.

Identify the measurable subsets Ω of the hold-all D with their characteristic functions

Ω ∈ P(D)←→ χΩ ∈ X(D)
def
= {f ∈ L∞(D) : f (1− f ) = 0 a.e.}, (2.4)

where Lp(D) = Lp(D,mn). Introduce the Abelian group structure

A M B def
= (A\B) ∪ (B\A), (χA M χB)(x)

def
= χAMB(x) = |χA(x)− χB(x)| , (2.5)

where A M B is the symmetric difference, χ∅ = 0 is the neutral element, and χA is its
own inverse. The group X(Rn) is a closed subset without interior of L∞(Rn) with the
associated metric on equivalence classes of measurable subsets of Rn:

ρ([Ω2], [Ω1])
def
= ‖χΩ2 − χΩ1‖L∞(Rn) = ‖χΩ2 ∆χΩ1‖L∞(Rn),

where the operation ∆ is continuous. Hence a complete metric group.
Given a topological vector space Y , we are interested in functions of the type

χ 7→ F (χ) : X(D)→ Y . (2.6)

M. C. Delfour Semidifferentials of Parametrized Minima IFIP - March 22nd, 2023 8 / 89



Geometry as a Variable Topological Variations

VOLUME INTEGRAL

The original notion of topological derivative by removing a small ball around a point
x̄ in an open set Ω is the set derivative of Lebesgue (or Lebesgue differentiation
theorem) with respect to the dilatation of a point x̄ ∈ Ω. It corresponds to a delta
function in the tangent space to the group X(D), that is, a bounded measure.

For instance, consider the volume integral of a function f ∈ L1(D)

χΩ 7→ V (χΩ)
def
=

∫
Rn
χΩ f dmn =

∫
Ω

f dx : X(D)→ R

E = {x̄}

Er = Br (x̄) ⊂ Ω

Ωr = Ω\Br (x̄)

Er = Br (x̄)

x̄

radius r

lim
r↘0

V (χΩr )− V (χΩ)

αnr n =

∫
Rn

χΩr − χΩ

αnr n f dx

= − lim
r↘0

1
αnr n

∫
Br (x̄)

f dx = −f (x̄)

αn = volume of the unit ball in Rn

This idea of dilatation extends to curves, surfaces, and d-rectifiable subsets E of Rn,
where 0 ≤ d < n is the dimension of the perturbing subset E of Rn.

We obtain a semidifferential (one-sided directional derivative) with respect to
bounded measures corresponding to points (d = 0), curves (d = 1), surfaces (d = 2),
or closed d-rectifiable subsets E ⊂ Ω ([27, 28, 31, 32]).
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Geometry as a Variable Topological Variations

Γ

n = 2
d = 1

Ωr = Ω\Er

E is a line

∂Er

using the d-dimensional Minkowski content
0 ≤ d < n, E closed, d-rectifiable, Hd (E) <∞

t > 0, r =
(

t
αn−d

)1/(n−d)

perturbed set Ωt
def
= Ω\Er

V (χΩt )− V (χΩ)

t
=

∫
Rn

χΩt − χΩ

t
f dx

= − 1
αn−d r n−d

∫
Er

f dx

dV (χΩ : δE,Hd ) = −
∫

E f dHd

The definition of the topological derivative as a semidifferential was introduced at
IFIP 2015 in Sophia Antipolis in “System Modeling and Optimization (CSMO 2015),”
L. Bociu, J. A. Desideri and A. Habbal, eds., pp. 230–239, Springer, 2017.

- Topological derivative: a semidifferential via the Minkowski content, Journal of
Convex Analysis (3) 25 (2018), 957–982.

- Topological Derivative of State Constrained Objective Functions: a Direct
Approach, SIAM J. on Control and Optim. (1) 60 (2022), 22–47.

- Topological derivatives via one-sided derivative of parametrized minima and
minimax, Engineering Computations (1) 39 (2022), pp. 34–59.

- One-sided Derivative of Parametrized Minima for Shape and Topological
Derivatives, SIAM J. Control and Optim., accepted December 2022.
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Geometry as a Variable Topological Variations

TOPOLOGICAL DERIVATIVE
TECHNICALLY MORE CHALLENGING

This topological derivative is technically more challenging than the shape derivative.
In the literature it is obtained by compound and matched asymptotic expansions

Quoting S.A. Nazarov [83],

Formulas for increments in the three-dimensional problem, obtained in
[85] by the shape optimization tools [98, 43], involve the so-called material
derivatives of the energy functionals, which (i.e. the derivatives) are not
easily interpreted in natural mechanical terms, and, consequently, one is not
able to derive a formula for increments in a simple and clear form. Similar
difficulties arise if one calculates the topological derivative of the shape
functional. A method for checking the coincidence of formulas obtained by
different methods was suggested in [84], but it requires complicated
transformations, in particular, multiply repeated integration by parts.

There is a definite interest in developing this idea of the topological derivative as a
semidifferential and direct methods such as the t-derivative and the parametrized
minima and minimax formulations for constrained objective functions as an alternative
and a complement to compound and matched asymptotic expansions.
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Hadamard Semidifferentiable Functions Hadamard Geometric Definition of the Differential

NON-DIFFERENTIABLE FUNCTIONS
HADAMARD SEMIDIFFERENTIABLE FUNCTIONS

According to Tihomirov [102], “the correct definition of derivative and differential of a
function of many variables was given by K. Weierstrass in his lectures in the eighties of
the 19th century. These lectures were published in the thirties of our century (20th). ”

Over the years equivalent definitions became available, but the geometrical one of
J. Hadamard [62] in 1923 revisited by Fréchet of [57] in 1937 is especially interesting.

DEFINITION

An admissible trajectory at x ∈ X in a topological vector space (TVS) X is a function
h : (−τ, τ)→ X , for some τ > 0, such that

h(0) = x and h′(0)
def
= lim

t→0

h(t)− h(0)

t
exists in X , (3.1)

where h′(0) is the tangent to the trajectory h at h(0) = x .

DEFINITION

Let X and Y be topological vector spaces.
A function f : X → Y . is Hadamard differentiable at x ∈ X if there exists a linear
function Df (x) : X → Y such that for each admissible trajectory h in X at x ,

(f ◦ h)′(0) exists and (f ◦ h)′(0) = Df (x)h′(0).

All operations of the differential calculus including the chain rule are available.
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Hadamard Semidifferentiable Functions Hadamard Geometric Definition of the Differential

HADAMARD VERSUS FRÉCHET

In 1925 Fréchet extended his 1911 definition1 in [53] for functions of several
variables to functions of functions (functionals).

DEFINITION (FRÉCHET [56] IN 1925)

Let X be a normed space and Y a topological vector space. The function f : X → Y is
Fréchet differentiable at x ∈ X if there exists a continuous linear mapping
Df (x) : X → Y such that

lim
‖v‖→0

f (x + v)− f (x)− Df (x)v
‖v‖ = 0 in Y . (3.2)

The linear mapping v 7→ Df (x)v : X → Y is the differential of f at x .

In finite dimension Hadamard coincides with the Fréchet differential.
But in abstract vector spaces without a norm or a metric, Hadamard’s definition is
more general as acknowledged by Fréchet [57, Abstract, pp. 233] in 1937:

Abstract. The author shows that the definition of the total derivative of
Stolz-Young is equivalent to the definition of Mr Hadamard. On the other
hand, when the latter is extended to functionals, it becomes more general
than the one of the author. Lastly the definition due to M. Paul Lévy, not
necessarily verifying the theorem of composite functions, is still more
general, but for this very reason, perhaps too general.

1Stolz [99] in 1893, Pierpont [94, 95] in 1905, Young [104, 103] in 1909. - René Gateaux 1889–1914.
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Hadamard Semidifferentiable Functions Fréchet Drops the Linearity of the Directional Derivative

FRÉCHET DROPS THE LINEARITY

In 1937 Fréchet [57] also boldly drops the linearity and gives examples of
(non-differentiable) homogeneous functions for which the classical differential calculus
is preserved. However, this was not sufficient to catch the norm and the convex
functions but he was very close. He only had to use semitrajectories over trajectories.

DEFINITION

An admissible semitrajectory at x in a topological vector space X is a function
h : [0, τ)→ X , for some τ > 0, such that

h(0) = x and h′(0+)
def
= lim

t↘0

h(t)− h(0)

t
exists in X , (3.3)

where h′(0+) is the semitangent to the trajectory h at h(0) = x .

DEFINITION

Let X and Y be topological vector spaces. A function f : X → Y . is Hadamard
semidifferentiable at x ∈ X if there exists a function v 7→ dH f (x ; v) : X → Y such that
for each admissible semitrajectory h in X at x ,

(f ◦ h)′(0+) exists and (f ◦ h)′(0+) = dH f (x ; h′(0+)).

It can be shown thatt v 7→ dH f (x ; v) : X → Y is positively homogeneous and
sequentially continuous (continuous in Fréchet spaces).
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Hadamard Semidifferentiable Functions Fréchet Drops the Linearity of the Directional Derivative

FRÉCHET DROPS THE LINEARITY
EXAMPLE OF FRÉCHET

Fréchet [57, p. 239] gives the following example.

f (x , y) = x

√
x2

x2 + y2 for (x , y) 6= (0, 0) with f (0, 0) = 0 (3.4)

Indeed, it is readily checked that at (0, 0) with h(t) = (x(t), y(t)). h′(0) 6= (0, 0),

x(t)
√

x(t)2

x(t)2+y(t)2 − 0

t
=

x(t)− x(0)

t

√√√√√√
(

x(t)−x(0)
t

)2

(
x(t)−x(0)

t

)2
+
(

y(t)−y(0)
t

)2

⇒ lim
t→0

f (x(t), y(t))− f (x(0), y0))

t
= x ′(0)

√
(x ′(0))2

(x ′(0))2 + (y ′(0))2

⇒ dH f ((0, 0); (v1, v2) =


v1

√
v2

1

v2
1 + v2

2
(v1, v2) 6= (0, 0)

0, (v1, v2) = (0, 0)

 = f (v1, v2);R2 → R

which is not linear in (v1, v2).
This definition was crticized by Paul Lévy.

Far from discrediting this new notion, this example shows that such functions exist.
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Hadamard Semidifferentiable Functions Fréchet Drops the Linearity of the Directional Derivative

FRÉCHET DROPS THE LINEARITY
EXAMPLE OF THE NORM

By using h′(0) and (f ◦ h)′(0) rather than h′(0+) and (f ◦ h)′(0+), Fréchet was losing
some Hadamard semidifferentiable functions such as the Euclidean norm2 n(x) = ‖x‖
on Rn at x = 0 since the differential quotient

n(h(t))− n(h(0))

t
=
‖h(t)‖ − ‖0‖

t
=
|t |
t

∥∥∥∥h(t)− 0
t

∥∥∥∥ diverges as t → 0. (3.5)

It is really necessary that t be positive (t = |t |) to get the convergence of the limit of
the differential quotient

lim
t↘0

∥∥∥∥h(t)− 0
t

∥∥∥∥ =
∥∥h′(0+)

∥∥ ⇒ dHn(x ; v) =


x
‖x‖ · v , x 6= 0

‖v‖, x = 0.

Yet, it is quite remarkable that, up to the use of the right-hand side derivatives h′(0+)
and (f ◦ h)(0+) rather than the derivatives h′(0) and (f ◦ h)′(0), Fréchet introduced a
class of nondifferentiable functions verifying the theorem of composite functions.

2The inner product in Rn is denoted x · y and the norm ‖x‖ =
√

x · x .
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Hadamard Semidifferentiable Functions Fréchet Drops the Linearity of the Directional Derivative

HADAMARD VERSUS FRÉCHET

This Hadamard semidifferentiability preserves all the operations of the differential
calculus including the chain rule and more. For instance, for f1, f2; X → Y

dH(αf1 + βf2)(x ; v) = αdH f1(x ; v) + βdH f2(x ; v), α, β ∈ R, (3.6)

for g : X → Y and f : Y → Z

dH(f ◦ g)(x ; v) = dH f (g(x); dHg(x ; v)). (3.7)

Moreover, additional operations such as the lower and upper envelops of a finite
family of real-valued functions are available: for fi : X → R, i = 1, . . .m,

dH

(
max

1≤i≤m
fi
)

(x ; v) = max
i∈I(x)

dH fi (x ; v), I(x) = {i : fi (x) = max
1≤j≤m

fj (x)} (3.8)

dH

(
min

1≤i≤m
fi
)

(x ; v) = min
i∈J(x)

dH fi (x ; v), J(x) = {i : fi (x) = min
1≤j≤m

fj (x)}. (3.9)

This includes the functions f +(x) = max{f (x), 0} and f−(x) = min{f (x), 0}.
All continuous convex (resp. concave) functions on X are Hadamard

semidifferentiable in the interior of their domain.
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Hadamard Semidifferentiable Functions Semidifferentials for Functions on Unstructured Sets

HADAMARD SEMIDIFFERENTIAL
FUNCTIONS DEFINED ON A CLOSED SUBSET

The Hadamard semidifferential is the natural choice for functions on a subset A of X .
For a closed sufficiently smooth embedded submanifold A of X = Rn of dimension

d < n, Rn \A = Rn, A = ∂A, and the smoothness insures that, at each point of A, the
tangent space is a d-dimensional linear subspace. This is illustrated below in Figure 1

!

A

TA(x) = R is a linear subspace of R2

h(0) = x

trajectory h(t)

h′(0)
def
= limt→0

h(t)−x
t exists

FIGURE 1: Tangent h′(0) to the trajectory h in A at the point h(0) = x .

for a smooth curve A in R2.
But, the linearity of TA(x) puts a severe restriction on the choice of sets A. For

instance, the requirement that TA(x) be linear rules out a curve in R2 with a kink at x
as shown in the Figure 2.

!

A

h(0) = x

semitrajectory h(t)

h′(0+)
def
= limt↘0

h(t)−x
t exists

TA(x) is a non-convex cone in 0

FIGURE 2: Half-tangent h′(0+) to the semitrajectory h in A at the point h(0) = x .
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Hadamard Semidifferentiable Functions Semidifferentials for Functions on Unstructured Sets

HADAMARD SEMIDIFFERENTIAL
FUNCTIONS DEFINED ON AN UNSTRUCTURED SUBSET

DEFINITION ([32])

Let A 6= ∅ be a subset of a topological vector space X .
An admissible semitrajectory at x ∈ A in A is a function h : [0, τ)→ A such that

h(0) = x and h′(0+)
def
= lim

t↘0

h(t)− h(0)

t
exists in X , (3.10)

where h′(0+) is the semitangent to the trajectory h in A at h(0) = x .

DEFINITION (AUBIN-FRANKOWSKA [6, DFN. 4.1.5, PP. 127–128 AND P. 161], [32])

Let A 6= ∅ be a subset of a topological vector space X .
The adjacent tangent cone to A at x ∈ A is defined as

T [A(x)
def
=

{
v ∈ X : ∀{tn ↘ 0}, ∃{xn} ⊂ A such that lim

n→∞

xn − x
tn

= v
}
.

For x ∈ int A, T [A(x) = X . For x ∈ ∂A, the relevant tangent cone to A is T [A(x).

THEOREM ([32])

Let A 6= ∅ be a subset of a topological vector space X.

∀x ∈ A. T [A(x) =
{

h′(0+) : h an admissible semitrajectory in A at x
}
. (3.11)
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Hadamard Semidifferentiable Functions Semidifferentials for Functions on Unstructured Sets

HADAMARD SEMIDIFFERENTIAL
FUNCTIONS DEFINED ON AN UNSTRUCTURED SUBSET

We now have all the elements to extend the definition of the Hadamard
semidifferential to a subset A of a TVS X .

DEFINITION ([32])

Let X and Y be topological vector spaces, A, ∅ 6= A ⊂ X , and f : A→ Y .

(i) f is Hadamard semidifferentiable at x ∈ A if there exists a function
v 7→ dH f (x ; v) : T [A(x)→ Y such that for all admissible semitrajectories h in A at x

(f ◦ h)′(0+)
def
= lim

t↘0

f (h(t))− f (h(0))

t
= dH f (x ; h′(0+)) (3.12)

(ii) f is Hadamard differentiable at x ∈ A if f is Hadamard semidifferentiable at x ∈ A,
T [A(x) is a linear subspace, and the function v 7→ dH f (x ; v) : T [A(x)→ Y is linear
in which case it will be denoted Df (x).

REMARK

(i) The conical derivative of Mignot [77, Dfn. 2.1 and Prop, 2.3, pp.141–142] in 1976
[Contrôle dans les inéquations variationelles elliptiques] is a Hadamard
semidifferential.
(ii) By its very definition, the Hadamard semidifferentiabilty is differentiation along
trajectories as in automatic differentiation (see, for instance, the paper of J. Bolte and
E. Pauwels [9] in 2021 [Conservative set valued fields, automatic differentiation,
stochastic gradient methods and deep learning]).
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Hadamard Semidifferentiable Functions Semidifferentials for Functions on Unstructured Sets

HADAMARD SEMIDIFFERENTIAL
FUNCTIONS DEFINED ON AN UNSTRUCTURED SUBSET

THEOREM ([32])

Let X and Y be topological vector spaces and A, ∅ 6= A ⊂ X.

(i) If f : A→ Y is Hadamard semidifferentiable at x ∈ A, then the mapping

v 7→ dH f (x ; v) : T [A(x)→ T [f (A)(f (x)) ⊂ Y (3.13)

is sequentially continuous for the induced topologies.

(ii) If f1 : A→ Y and f2 : A→ Y are Hadamard semidifferentiable at x ∈ A, then for
all α and β in R,

∀v ∈ T [A(x), dH(αf1 + βf2)(x ; v) = α dH f1(x ; v) + β dH f2(x ; v), (3.14)

and αf1 + βf2 is Hadamard semidifferentiable at x.

(iii) (Chain rule) Let X , Y , Z be topological vector spaces, g : A ⊂ X → Y, and
f : g(A)→ Z be functions such as g is Hadamard semidifferentiable at x and f is
Hadamard semidifferentiable at g(x) in g(A). Then dHg(x ; v) ∈ T [g(A)(x), f ◦ g is
Hadamard semidifferentiable at x, and

∀v ∈ T [A(x), dH(f ◦ g)(x ; v) = dH f (g(x); dHg(x ; v)). (3.15)

We obtain notions of semidifferential and differential without introducing coordinate
spaces, charts, local bases, or Christoffel symbols.
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Hadamard Semidifferentiable Functions Variational Principle and an Example from Plasma Physics

HADAMARD SEMIDIFFERENTIAL
VARIATIONAL THEORY

We begin with the standard first order necessary condition for a local minimum.

THEOREM ([33])

Let X be a topological vector space, A 6= ∅ be a subset of X , and f : A→ R be
Hadamard semidifferentiable at x ∈ A.

(i) If x ∈ A is a local minimizer of f with respect to A, then

dH f (x ; v) ≥ 0 for all v ∈ T [A(x), (3.16)

where T [A(x) is the adjacent tangent cone.

(ii) Il A is convex and x ∈ A is a minimizer of f with respect to A, then

dH f (x ; y − x) ≥ 0 for all y ∈ A. (3.17)

If, in addition, f is convex, condition (3.17) is necessary and sufficient.

M. C. Delfour, Hadamard Semidifferential of Functions on an Unstructured Subset of
a TVS, J. Pure and Applied Functional Analysis 5, no. 5, (2020), 1039-1072.

M. C. Delfour, Hadamard Semidifferential, Oriented Distance Function, and some
Applications, Communications on Pure and Applied Analysis, 21, no. 6 (2022),
1917-1951. doi:10.3934/cpaa.2021076

M. C. Delfour, Introduction to Optimization and Hadamard Semidifferential Calculus,
2nd edition, MOS-SIAM Series, Phil., USA, 2012. (thanks to Keneth Lange, UCLA)
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Hadamard Semidifferentiable Functions Variational Principle and an Example from Plasma Physics

HADAMARD SEMIDIFFERENTIAL
VARIATIONAL THEORY

Mossino and Zolésio [81] in 1977 and Zolésio [107, 108] in 1979 considered the
infimum of the following non-differentiable convex continuous functional on H1

0 (Ω)

f (v)
def
=

∫
Ω

(
‖∇v(x)‖2 + |Ω| v(x)

)
dx +

∫
Ω

∫
Ω

[v(x)− v(y)]+ dx dy , (3.18)

where [y ]+ = max{y , 0}.
It provided a direct way to get the Grad-Mercier equation in Plasma Physics.

THEOREM (MOSSINO-ZOLÉSIO [81] AND ZOLÉSIO [107, 108])

Assume that Ω is a bounded open domain with locally Lipschitzian boundary Γ and
that f is given by (3.18).

(i) There exists a unique minimizer u ∈ H1
0 (Ω)

(ii) u is the solution in H1
0 (Ω) ∩ H2(Ω) of the following (non-local) system

−∆u + β−(u) = 0 in Ω, u = 0 on Γ, meas ({y ∈ Ω : u(x) = u(y)}) = 0, (3.19)

where

β−(u)(x) = meas ({y ∈ Ω : u(x) > u(y)}). (3.20)

It says that the variational solution u is not constant on any subset of Ω of positive
measure and is the unique solution of the first equation (3.19) with that property.
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Hadamard Semidifferentiable Functions M-semidifferentiability, Lipschitz and Convex Functions

HADAMARD SEMIDIFFERENTIAL
M-SEMIDIFFERENTIABILITY AND CONVEX FUNCTIONS

In 1978 Penot [92] introduces the following stronger definition

DEFINITION (PENOT [92, P. 250], 1978)

Let X and Y be topological vector spaces. A function f : X → Y is
M-semidifferentiablea at x ∈ X if

∀v ∈ X , dM f (x ; v)
def
= lim

w→v
t↘0

f (x + tw)− f (x)

t
exists in Y . (3.21)

aA. D. Michal [71, 72] in 1938 and 1939.

If f : X → Y is M-semidifferentiable at x , it is Hadamard semidifferentiable at x .

The next theorem connects continuity and semidifferentiability for a convex function.

THEOREM

Let X be a locally convex topological vector space,
f : dom f → R a convex function, and x a point in the interior of its domain dom f .

(i) If f is continuous.at x, then f is M-semidifferentiable at x.

(ii) If f is sequentially continuous at x, then f is Hadamard semidifferentiable at x.

(iii) If X is a Fréchet space, then f is continuous at x if and only if f is Hadamard
semidifferentiable at x.
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Hadamard Semidifferentiable Functions M-semidifferentiability, Lipschitz and Convex Functions

HADAMARD SEMIDIFFERENTIAL
LOCALLY LIPSCHITZ FUNCTIONS

THEOREM (NORMED VECTOR SPACES)

Let X and Y be normed vector spaces, f : X → Y a function, and x ∈ X.
The function f is M-semidifferentiable at x if and only if it is Hadamard
semidifferentiable at x, that is, dM f (x ; v) = dH f (x ; v).

DEFINITION (LIPSCHITZ FUNCTIONS)

Let X and Y be normed spaces. A function f : X → Y is Lipschitz continuous at x ∈ X
if there exists a constant c(x) > 0 and a ball Br (x) of radius r > 0 such that

∀y , z ∈ Br (x), ‖f (y)− f (z)‖Y ≤ c(x) ‖y − z‖X . (3.22)

THEOREM

Let X and Y be normed vector spaces, f : X → Y a function, and x ∈ X.
If f : X → Y is Lipschitz at x, then

(i) f is Hadamard semidifferentiable at x if and only if

∀v ∈ X , lim
t↘0

f (x + tv)− f (x)

t
exists. (3.23)

(ii) In particular, if f is convex and x is an interior point of its domain dom f , then
(3.23) is verified and f is Hadamard semidifferentiable at x.
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Hadamard Semidifferentiable Functions Strict Differentiability, Upper/Lower Semidifferentiability

LOCALLY LIPSCHITZ FUNCTIONS
UPPER/LOWER SEMIDIFFERENTIAL

To complete this section, we quote the definition of strict differentiability introduced
by the school of Bourbaki in the fifties, which is strictly stronger than the M-,
Hadamard, and Fréchet differentiabilities.

DEFINITION (CLARKE [19, P. 30–31])

Given two Banach spaces X and Y , a function f : X → Y is strictly differentiable at x if
there exists a continuous linear function Df (x) : X → Y such that

∀v ∈ X , lim
t↘0
y→x

f (y + tv)− f (y)

t
= Df (x)v . (3.24)

• According to [19, Prop. 2.2.1. p. 31] such a function is Lipschitz continuous at x.

For real-valued functions f : X → R Lipschitz continuous at x ∈ X , lower and upper
notions of Gateaux, M-, and strict differentiabilty can be introduced by replacing the
limit by the lim inf or the lim sup. They are called upper and lower semidifferentials in
the terminology of Cannarsa and Sinestrari [14].

Upper and lower semidifferentials of locally Lipschitz functions are more general, but
the basic operations of the differential calculus are lost and one resorts to the notion of
subdifferential and the tools of set-valued analysis to restore some form of calculus.

This is a disadvantage over the Hadamard semidifferential.
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Hadamard Semidifferentiable Functions Strict Differentiability, Upper/Lower Semidifferentiability

LOCALLY LIPSCHITZ FUNCTIONS
UPPER/LOWER SEMIDIFFERENTIAL

df (x ; v)
def
= lim inf

t↘0

f (x + tv)− f (x)

t
lower Gateaux semidifferential

at x in the direction v

df (x ; v)
def
= lim sup

t↘0

f (x + tv)− f (x)

t
upper Gateaux semidifferential

at x in the direction v

dM f (x ; v)
def
= lim inf

t↘0
w→v

f (x + tw)− f (x)

t

lower M-semidifferential

at x in the direction v

dM f (x ; v)
def
= lim sup

t↘0
w→v

f (x + tw)− f (x)

t

upper M-semidifferential

at x in the direction v .

dC f (x ; v)
def
= lim inf

t↘0
y→x

f (y + tv)− f (y)

t

Clarke lower semidifferential

at x in the direction v

dC f (x ; v)
def
= lim sup

t↘0
y→x

f (y + tv)− f (y)

t

Clarke upper semidifferential

at x in the direction v

The upper notion of strict differentiability dC f (x ; v) corresponds to the upper
semidifferential developed by Clarke [18] in 1973 under the name generalized
directional derivative.
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Hadamard Semidifferentiable Functions Strict Differentiability, Upper/Lower Semidifferentiability

For a convex function f at a point x in the interior of its domain dom f (see, for
instance, [19, Prop. 2.2.7, p. 36]).

∀v , dC f (x ; v) = df (x ; v)
def
= lim

t↘0

f (x + tv)− f (x)

t
.

Hence, from our previous considerations,

∀v , dC f (x ; v) = df (x ; v) = dH f (x ; v).

•What is happening at boundary points of a closed convex U ?

0 2 0 2

f1(x) Lipschitz continuous in [0.2] f2(x) = 1−
√

1− (x − 1)2

continous in [0, 2]

but not Lipschitz at x = 0 and x = 2

1 1

Note that for a concave function we have dC f (x ; v) = dH f (x ; v) for all v .
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Hadamard Semidifferentiable Functions Strict Differentiability, Upper/Lower Semidifferentiability

CONTINUOUS CONVEX FUNCTIONS

For the Lipschitz continuous function f1 on U = [0, 2]

∀v ∈ T [x (U), dC f (x ; v) = dH f (x ; v).

For the continuous convex function f2 : [0, 1]→ R

f2(x) = 1−
√

1− (x − 1)2 (3.25)

choose an admissible semitrajectory h : [0, 1) such that

h(0) = 0 and h′(0+) = 1. (3.26)

Then for t > 0 and h(t)/t → 1

f2(h(t))− f2(h(0))

t
= −

√
1− (h(t)− 1)2

t
= −

√
2
t

h(t)
t
−
(

h(t)
t

)2

→ −∞.

Moreover, setting y ↘ 0 and t ↘ 0 in the strict differential quotient
f2(y + t)− f2(y)

t
→ −∞ ⇒ dC f (x ; v) = −∞ = dH f (x ; v). (3.27)

Therefore, if we allow in the definition of dH f (x ; v) the value −∞, f2 is Hadamard
semidifferentiable at x = 0 for directions in the cone T [0 ([0, 2]) = [0,∞).

If a convex function f : U → R is continuous on a closed convex subset U

∀x ∈ ∂U, ∀v ∈ R+(U − x), dC f (x ; v) = dH f (x ; v),

where this semidifferential can be −∞ as for the example of the function f2.
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Hadamard Semidifferentiable Functions Strict Differentiability, Upper/Lower Semidifferentiability

LOCALLY LIPSCHITZ FUNCTIONS
UPPER/LOWER SEMIDIFFERENTIAL

In the next two slides, we give two examples:

(i) a function which is Hadamard semidifferentiable at 0, but is not Lipschitz in any
neighborhood of x = 0;

(ii) a Lipschitz function f which is not Hadamard semidifferentiable at 0.

They shows that
the Hadamard semififferentiable functions are not contained in the Lipschitzian
functions with a generalized directional derivative

and that
the Lipschitzian functions with a generalized directional derivative are not contained in
the Hadamard semififferentiable functions.
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Hadamard Semidifferentiable Functions Strict Differentiability, Upper/Lower Semidifferentiability

LOCALLY LIPSCHITZ FUNCTIONS
UPPER/LOWER SEMIDIFFERENTIAL

0 0.25 0.5 0.75 1

-0.25

0.25

0.5

f (x) = x3/2 sin
1
x

f ′(x) =
3
2

x1/2 sin
1
x
− 1

x1/2 cos
1
x
, x 6= 0

f ′(x) = 0, x = 0

x

FIGURE 3: A function which is Hadamard semidifferentiable at 0 which is not Lipschitz in any
neighborhood of x = 0.
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Hadamard Semidifferentiable Functions Strict Differentiability, Upper/Lower Semidifferentiability

0

0.5

1

f (x)

0 0.5 1
x

1
2(n+1) <

3
2n+2 <

1
2n

f (x) = 3
[ 1

2n − x
]
, 3

2(n+2) < x ≤ 1
2n

f (x) = 3
[
x − 1

2n+1

]
, 1

2(n+1) < x ≤ 3
2n+2

n = −1, 0, 1, 2, . . .

f (x) = 0, x ≤ 0

FIGURE 4: A Lipschitz function f which is not Hadamard semidifferentiable at 0.

For v = 1

lim inf
t↘0

f (0 + tv)− f (0)

t
= 0, lim sup

t↘0

f (0 + tv)− f (0)

t
= 1. (3.28)
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Whether dealing with differentiation in a function space or with shape or topological
derivatives, the problem can be put in the following general form:

g(t) def
= inf

x∈X
G(t , x), (t , x) 7→ G(t , x) : [0, τ)× X → R, τ > 0, (4.1)

to find and characterize dg(0)
def
= lim

t↘0

g(t)− g(0)

t
. (4.2)

Let X (t) def
= {x t ∈ X : g(t) = G(t , x t )} be the set of minimizers at t ≥ 0.

Even if, in many cases, dg(0) is simply given in terms of the one-sided derivative of
G(t , x) with respect to t (in the sequel we shall use the terminology t-derivative)

dg(0) = inf
x0∈X(0)

dtG(0, x0), where dtG(0, x0)
def
= lim

t↘0

G(t , x0)−G(0, x0)

t
, (4.3)

there are examples where an extra negative term occurs.
This extra term is known as the polarization term in the literature on the topological

derivative which is often obtained by resorting to compound and matched asymptotic
expansions (see, for instance, Sokołowski and Zȯchowski [97], Nazarov and
Sokołowski [84], [3]), [83], [86], [15], . . . )

In general, those methods are global and do not separate the computation of the
extra term from the one of the t-derivative of G(t , x0). For instance, see the joint use
of Fenchel duality and Gamma-convergence techniques by Bouchité, Fragala, and
Lucardes. [13] to obtain the shape derivative of minima of integral functionals (see
also Ngom, Faye, and Seck [87] for minimax of Lagrangian).
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THE SEESAW PROBLEM OF DANSKIN
FORMULATION

Danskin [22] in 1966 gives several simple examples in which the function g is not
differentiable even if G is very smooth. This type of nondifferentiability is closely
related to the fact that the set of minimizers Y (x) is not a singleton as illustrated in his
example of the seesaw problem ([22, p. 643]).

y = 0 x

y
y = +1

y = −1

height of the point (x , y): G(x , y) = y sin x

• JY minimizes the height over Y def
= {y ∈ R : |y | ≤ 1}

g(x) = min|y|≤1 G(x , y) = −| sin x |

• JX maximizes g(x) over X def
= {x ∈ R : |x | ≤ π/2}

max|x|≤π/2 min|y|≤1(y sin x) = max|x|≤π/2 g(x) = 0

where the maximum is reached at x = 0

FIGURE 5: The seesaw problem of Danskin where (x , y) ∈ [−π/2, π/2]× [−1, 1].
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THE SEESAW PROBLEM OF DANSKIN
NON-DIFFERENTIABILITY

Player JX chooses the angle x ∈ X (see Figure 5) of the seesaw, player JY chooses
any point y between the extremities −1 and +1. Consider the function

g(x) = inf
y∈Y

G(x , y), G(x , y)
def
= y sin x , Y def

= {y ∈ R : |y | ≤ 1}, (4.4)

It is readily seen that

g(x) = min
|y|≤1

(y sin x) = −| sin x |, set of minimizers Y (x) =


{
− sin x
| sin x |

}
, x 6= 0,

Y , x = 0.

The directional derivative of G(x , y) with respect to x in the direction v

dx G(x , y ; v) = (y cos x)v (4.5)

and the directional derivative of g(x) with respect to x in the direction v

dg(x ; v) = inf
y∈Y (x)

(y cos x)v =


− sin x cos x

| sin x | v , x 6= 0,

inf
|y|≤1

y v = −|v |, x = 0.
(4.6)

The function g(x) is not differentiable at x = 0, where the maximum of g(x) occurs.
It is neither convex nor concave. The nondifferentiability at x = 0 arises from the

fact that the set Y (x) of minimizers of G(x , y) is not a singleton at x = 0.
Yet, the function g is Hadamard semidifferentiable.
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Let Ω ⊂ Rn be a bounded open domain with Lipschitz boundary Γ and let A be a
symmetric n × n matrix such that

∃α > 0, ∀x ∈ Rn, Ax · x ≥ α ‖x‖2. (4.7)

The first eigenvalue can be obtained via the Rayleigh quotient

λ(Ω,A)
def
= inf

v∈H1
0 (Ω), v 6=0

F (Ω,A; v), F (Ω,A; v)
def
=

∫
Ω

A∇v · ∇v dx∫
Ω
|v |2 dx

.

The corresponding eigenspace is

E(Ω,A)
def
=
{

v ∈ H1
0 (Ω) : −div (A∇v) = λ(Ω,A)v

}
.

Given a symmetric n × n matrix B, we are interested in the limit

dλ(Ω,A; B)
def
= lim

t↘0

λ(Ω,A + tB)− λ(Ω,A)

t
= inf

v∈E(Ω,A)
v 6=0

∫
Ω

B∇v · ∇v dx∫
Ω
|v |2 dx

.

This problem is defined on the fixed space X = H1
0 (Ω) for the function

v 7→ G(t , v)
def
= F (Ω,A + tB; v) : X → R,

g(t) def
= inf

v∈X
G(t , v), X (t) def

= {u ∈ X : G(t , u) = g(t)},

⇒ dλ(Ω,A; B) = dg(0)
def
= lim

t↘0

g(t)− g(0)

t
.

Another example is the first eigenvalue of the bi-Laplacian which is not simple.
Similar constructions can be made for the shape derivative (see, for instance, [43,

Chapter 10. sec. 4, pp. 535–552] for examples including linear elasticity).
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The first eigenvalue λ(Ω,A) can also be obtained via the Auchmuty’s dual principle
as follows

µ(Ω,A)
def
= inf

v∈H1
0 (Ω)

F (Ω,A; v),

F (Ω,A; v)
def
=

1
2

∫
Ω

A∇v · ∇v dx −
[∫

Ω

|v |2 dx
]1/2

∣∣∣∣∣∣∣∣∣ λ(Ω,A) = − 1
2µ(Ω,A)

. (4.8)

The main advantage of µ(Ω,A) is that the minimization is over the linear space H1
0 (Ω).

It is shown in [59, Chapter 9, sec 2.3.3, pp. 203–205] that this relation holds
between the infima of the quotient of two symmetric bilinear forms defined over a
Hilbert space X . For 0 ≤ t ≤ τ ,

λ(t) def
= inf

06=v∈X
f (t , v), f (t , v)

def
=

a(t , v , v)

b(t , v , v)
, 0 6= v ∈ X , (4.9)

df (t , u; v) =
2

b(t , u, u)
[a(t , u, v)− f (t , u) b(t , u, v)] , u 6= 0, (4.10)

under the assumption that b(t , v , v) ≥ 0 and b(t , v , v) = 0 implies v = 0 in X .
The corresponding Auchmuty Dual Problem is

µ(t) def
= inf

v∈X
g(t , v), m(t , v)

def
=

1
2

a(t , v , v)− b(t , v , v)1/2, λ(t) = − 1
2µ(t)

, (4.11)

dm(t , u; v) = a(t , u, v)− 1
b(t , u, u)1/2 b(t , u, v), u 6= 0. (4.12)
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Let Ω ⊂ Rn be bounded open with smooth boundary Γ and A a symmetric n × n
matrix verifying (4.7). Given f ∈ L2(Rn), let u ∈ H1

0 (Ω) be the solution of

− div (A∇u) = f in Ω, u = 0 on Γ. (4.13)

The compliance is defined as the work of the applied forces

J(Ω,A)
def
= −

∫
Ω

f u dx . (4.14)

The function u ∈ H1
0 (Ω) is the minimizing element of the energy functional

E(Ω,A; u) = inf
v∈H1

0 (Ω)
E(Ω,A; v), E(Ω,A; v)

def
=

∫
Ω

A∇v · ∇v − 2f v dx , (4.15)

⇒ ∃u ∈ H1
0 (Ω) such that ∀v ∈ H1

0 (Ω),

∫
Ω

A∇u · ∇v − f v dx = 0. (4.16)

⇒ J(Ω,A) = −
∫

Ω

A∇u · ∇u dx = inf
v∈H1

0 (Ω)
E(Ω,A; v). (4.17)

If B is a symmetrical n × n matrix and t > 0, we are interested in computing

dJ(Ω,A; B)
def
= lim

t↘0

J(Ω,A + tB)− J(Ω,A)

t
.

Again for the fixed space X = H1
0 (Ω)

v 7→ G(t , v)
def
= E(Ω,A + tB; v) : X → R, g(t) def

= inf
v∈X

G(t , v), dJ(Ω,A; B) = dg(0).
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One-sided Derivative of Parametrized Minima: an Extra Term Main Theorems without and with an Extra Term

The objective is twofold: firstly to revisit the assumptions used in [42, Thm. 2.1, p.
394] dating back to 2001 in order to avoid conditions of the type lim inf’s of
t-derivatives of G(t , x) and secondly to catch the extra term.

For instance, if the set of minimizers X (0) = {x0} at t = 0 is a singleton, for t > 0

g(t)− g(0)

t
=

g(t)−G(t , x0)

t︸ ︷︷ ︸
≤0

+
G(t , x0)−G(0, x0)

t︸ ︷︷ ︸
→dt G(0,x0)=limt↘0

G(t,x0)−G(0,x0)
t

dg(0) = lim
t↘0

g(t)− g(0)

t
= lim

t↘0

g(t)−G(t , x0)

t︸ ︷︷ ︸
=R(x0)≤0

+ dtG(0, x0).

What makes the next two theorems very attractive is that there is a priori no
assumption on the set X or the differentiability of G(t , x) with respect to x . In
particular, they can be used for continuous convex non-differentiable functions
x 7→ G(t , x) as we shall see in a series of simple examples.

The new theorem and its two subsequent specialized versions, which respectively
assume first and second order semi-differentiability of the function x 7→ G(t , x), set the
stage to handle perturbations of the form ([28, 31, 32])

(i) perturbations x + tv in a vector space,
(ii) admissible trajectories in a group of diffeomorphisms, and
(ii) admissible semitrajectories in the group X(D) of characteristic functions.
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We first consider the case where the extra term is zero.

THEOREM (NO EXTRA TERM)

Let X be an arbitrary set, τ > 0, (t , x) 7→ G(t , x) : [0, τ [×X → R, and

g(t) def
= inf

x∈X
G(t , x), X (t) def

= {x ∈ X : G(t , x) = g(t)}, 0 ≤ t < τ.

Assume that the following conditions are satisfied:

(H1) for all t ∈ [0, τ [, X (t) 6= ∅;

(H2) for each x0 ∈ X (0) the one-sided t-derivative

dtG(0, x0)
def
= lim

t↘0

G(t , x0)−G(0, x0)

t
exists and is finite; (4.18)

(H3) for each tn ↘ 0, there exists x0 ∈ X (0) such that

lim
n→∞

g(tn)−G(tn, x0)

tn
= 0. (4.19)

Then there exists x̄0 ∈ X (0) such thata

dg(0)
def
= lim

t↘0

g(t)− g(0)

t
= inf

x0∈X(0)
dtG(0, x0) = dtG(0, x̄0). (4.20)

If, in addition, X (0) is a singleton, the infimum can be dropped.
aSo, as a by-product, there exists a x̄0 ∈ X(0) which minimizes dt G(0, x0) over X(0).
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REMARK

Theorem 19 is a generalization of [43, Thm. 2.1, p. 524] first formulated in [42, Thm.
2.1, p. 394] in 2001. It was recently used for eigenvalue problems (see [16] for
elasticity theory in 2021 and [17] for the case of Steklov or Wentzell boundary
conditions in 2022).

It relaxes the stronger assumptions (H̄2), (H̄3), and (H̄4) that we briefly recall:

(H̄2) for all x in
⋃

s∈[0,τ [ X (s) and t ∈ [0, τ), the t-derivative

dtG(t , x)
def
= lim

θ→0, 0≤t+θ<τ

G(t + θ, x)−G(t , x)

θ
exists; (4.21)

(H̄3) for each tn ↘ 0, there exist x0 ∈ X (0) and {xn}, xn ∈ X (tn), such that

lim inf
n→∞ s↘0

dtG(s, xn) ≥ dtG(0, x0); (4.22)

(H̄4) for all x in X (0), the map t 7→ dtG(t , x) is upper semicontinuous at t = 0.

Assumption (H̄4) turns out to be unnecessary and assumptions (H̄2) and (H̄3) are
replaced by the weaker and simpler assumptions (H2) and (H3) of Theorem 19, which
only require the existence of dtG(0, x0) at all x0 ∈ X (0). Condition (4.19) in
Assumption (H3) only involving G(t , x) is easier to check than the condition in the
older Assumption (H̄3) involving the t-derivative of G(t , x).
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THEOREM (GENERAL CASE: OCCURENECE OF THE EXTRA TERM R(x0))

Let X be an arbitrary set, τ > 0, (t , x) 7→ G(t , x) : [0, τ [×X → R, and

g(t) def
= inf

x∈X
G(t , x), X (t) def

= {x ∈ X : G(t , x) = g(t)}, 0 ≤ t < τ.

Assume that the following conditions are satisfied:

(H1) for all t ∈ [0, τ [, g(t) is finite and X (t) 6= ∅;

(H2) for each x0 ∈ X (0), the one-sided t-derivative of G(t , x0) at t = 0,

dtG(0, x0)
def
= lim

θ↘0

G(θ, x0)−G(0, x0)

θ
exists and is finite; (4.23)

(H3) for each tn ↘ 0, there exists x0 ∈ X (0) such thata

lim
n→∞

g(tn)−G(tn, x0)

tn
= R(x0), (4.24)

where x0 7→ R(x0)
def
= lim sup

t↘0

g(t)−G(t , x0)

t
: X (0)→ [−∞, 0]. (4.25)

Then, dg(0) exists and there exists x̄0 ∈ X (0) such thatb

dg(0) = inf
x0∈X(0)

[
dtG(0, x0) + R(x0)

]
= dtG(0, x̄0) + R(x̄0). (4.26)

If, in addition, X (0) is a singleton, the infimum can be dropped.
aNote that, condition (4.24) is equivalent to lim infn→∞[g(tn)− G(tn, x0]/tn ≥ R(x0).
bAs a by-product, there exists a x̄0 ∈ X(0) which minimizes dt G(0, x0) over X(0). So the

theorem could potentially be applied to the computation of second order derivatives,

M. C. Delfour Semidifferentials of Parametrized Minima IFIP - March 22nd, 2023 51 / 89



One-sided Derivative of Parametrized Minima: an Extra Term Examples of Shape Derivatives without and with an Extra Term

OUTLINE

1 OVERVIEW
2 GEOMETRY AS A VARIABLE

Shape Variations
Topological Variations

3 HADAMARD SEMIDIFFERENTIABLE FUNCTIONS
Hadamard Geometric Definition of the Differential
Fréchet Drops the Linearity of the Directional Derivative
Semidifferentials for Functions on Unstructured Sets
Variational Principle and an Example from Plasma Physics
M-semidifferentiability, Lipschitz and Convex Functions
Strict Differentiability, Upper/Lower Semidifferentiability

4 ONE-SIDED DERIVATIVE OF PARAMETRIZED MINIMA: AN EXTRA TERM
Some Background and the Seesaw Problem of Danskin in 1966
Some Generic Examples: Eigenvalue and Compliance Problems
Main Theorems without and with an Extra Term
Examples of Shape Derivatives without and with an Extra Term

5 SPECIALIZATION OF THE MAIN THEOREM
X Convex and x 7→ G(t , x) Semi-Diifferentiable
X Affine and x 7→ G(t , x) Twice Semi-differentiable

6 EXAMPLES OF TOPOLOGICAL DERIVATIVE
Two- and One-Dimensional Examples

7 REFERENCES

M. C. Delfour Semidifferentials of Parametrized Minima IFIP - March 22nd, 2023 52 / 89



One-sided Derivative of Parametrized Minima: an Extra Term Examples of Shape Derivatives without and with an Extra Term

SHAPE DERIVATIVE VIA VELOCITY METHOD

Perturb the bounded open domain Ω by a family of diffeomorphisms Tt generated by
a smooth velocity field V (t):

Ωt
def
= Tt (Ω) , Tt (X )

def
= x(t ; X ), t ≥ 0,

dx
dt

(t ; X ) = V (t , x(t ; X )), x(0; X ) = X .

Given f ∈ H1(Rn), consider the volume integral and the change of variable Tt

J(Ωt ) =

∫
Ωt

f dx =

∫
Ω

f ◦ Tt jt dx . jt = det DTt , DTt is the Jacobian matrix,

dJ(Ω; V )
def
= lim

t↘0

J(Ωt )− J(Ω)

t
=

∫
Ω

∇f ◦ V (0) + f div V (0) dx =

∫
Ω

div (f V (0)) dx .

Tt will also be used in integrals involving functions ut and vt in H1(Ωt ) to obtain an
integral over Ω and functions ut = ut ◦ Tt and v t = vt ◦ Tt in the fixed space H1(Ω):∫

Ωt

∇ut · ∇vt − a v dx =

∫
Ω

[
A(t)∇ut · ∇v t − a ◦ Tt v t jt

]
dx (4.27)

A(t) = jt DTt
−1 (DTt

−1)>, jt = det DTt , DTt is the Jacobian matrix, (4.28)

where (DTt
−1)> is the transpose of the inverse of DTt .

M. C. Delfour Semidifferentials of Parametrized Minima IFIP - March 22nd, 2023 53 / 89



One-sided Derivative of Parametrized Minima: an Extra Term Examples of Shape Derivatives without and with an Extra Term

Tt (0.1) = (t , 1)

Ω = (0, 1)

0 1/2 1

Tt (X ) = t + (1− t)X , V (t , x) =
1− x
1− t

0 1/2t 1

FIGURE 6: Domains Ω = (0, 1) and Ωt = Tt (Ω) = (t , 1)

DTt = jt = 1− t , A(t) = jt [DTt ]
−1[DTt ]

−> =
1

1− t
, A′(t) =

1
(1− t)2 , (4.29)

div V (t) = − 1
1− t

, div V (0) = − 1
1− t

∣∣∣∣
t=0

= −1, A′(0) =
1

(1− t)2

∣∣∣∣
t=0

= 1
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One-sided Derivative of Parametrized Minima: an Extra Term Examples of Shape Derivatives without and with an Extra Term

EXAMPLE (EXAMPLE 1 WITH AN EXTRA TERM)

Let Ω = (0, 1) ⊂ R and u0 ∈ V (Ω) = {v ∈ H1(0, 1) : v(1) = 2/3} be the minimizing
element for the compliance

inf
v∈V (Ω)

E(Ω, v), E(Ω, v)
def
=

∫ 1

0

[
1
2
|v ′|2 − f v

]
dx , f (x)

def
= −1

2
1

x1/2 ,

where f belongs to L2−ε(0, 1), 0 < ε < 1, but not to L2(0, 1). Then u0 is a solution of

(u0)′′ + f = 0 in (0, 1), u0(1) = 2/3 and (u0)′(0) = 0, (4.30)

⇒ u0(x) =
2
3

x3/2, (u0)′(x) = x1/2, (u0)′′(x) =
1
2

1
x1/2 . (4.31)

For 0 ≤ t < 1, choose the transformation Tt and the velocity field V (t , x)

X 7→ Tt (X ) = t + (1− t)X : [0, 1]→ [t , 1], V (t , x) =
1− x
1− t

. (4.32)

Then Ωt = Tt ((0, 1)) = (t , 1), V (Ωt ) = {v ∈ H1(t , 1) : v(1) = 2/3}, and

inf
v∈V (Ωt )

E(Ωt , v), E(Ωt , v)
def
=

∫ 1

t

[
1
2
|v ′|2 − f v

]
dx ,
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EXAMPLE (EXAMPLE 1 WITH AN EXTRA TERM)

The minimizer ut ∈ V (Ωt ) is the solution of

(ut )
′′ + f = 0 in (t , 1), ut (1) = 2/3, u′t (t) = 0, (4.33)

⇒ ut (x) = t1/2[1− x ] +
2
3

x3/2, u′t (x) = −t1/2 + x1/2.

The function g(t) can now be computed directly

g(t) =

∫ 1

t

[
1
2
|u′t |2 − f ut

]
dx

=

∫ 1

t

[
1
2
| − t1/2 + x1/2|2 +

1
2

1
x1/2

(
t1/2[1− x ] +

2
3

x3/2
)]

dx

g(t) = − t
2

+
5

12
− t2

12
⇒ g′(t) = −1

2
− t

6
, and dg(0) = −1

2
. (4.34)
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One-sided Derivative of Parametrized Minima: an Extra Term Examples of Shape Derivatives without and with an Extra Term

EXAMPLE (EXAMPLE 1 WITH AN EXTRA TERM)

For the (right-hand side) t-derivative dtG(0, u0) at t = 0 of

G(t , u0) = E
(

Tt (Ω), u0 ◦ T−1
t

)
=

∫
Ω

1
2

A(t)∇u0 · ∇u0 − jt (f ◦ Tt )u0 dx , (4.35)

dtG(0, u0) =

∫
Ω

[
1
2

A′(0)∇u0 · ∇u0 − [(div V (0)) f +∇f · V (0)] u0

]
dx . (4.36)

where for the transformation Tt and velocity field V (t , x) chosen in (4.32)

DTt = jt = 1− t , A(t) = jt [DTt ]
−1[DTt ]

−> =
1

1− t
, A′(t) =

1
(1− t)2 , (4.37)

div V (t) = − 1
1− t

, div V (0) = − 1
1− t

∣∣∣∣
t=0

= −1, A′(0) =
1

(1− t)2

∣∣∣∣
t=0

= 1

dtG(0, u0) =

∫
Ω

[
1
2

x −
(

1
2x1/2 +

1
4

1
x3/2 (1− x)

)
2
3

x3/2
]

dx

=

∫ 1

0

[
1
2

x − 2
3

(
x
2

+
1
4

(1− x)

)]
dx =

∫ 1

0

[
1
3

x − 1
6

]
dx= 0.

(4.38)

So we don’t recover the previously computed dg(0) = −1/2.
There is a missing negative term as in the example provided in Delfour-Sturm [38,
sec. 2.5, pp. 145–148] of a constrained objective function.
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One-sided Derivative of Parametrized Minima: an Extra Term Examples of Shape Derivatives without and with an Extra Term

EXAMPLE (EXAMPLE 1 WITH AN EXTRA TERM IN HIGHER DIMENSIONS)

This example can be extended to higher dimensions. For instance In R2, let

Ω = (0, 1)× (0, 1), Γ1 = {(1, y) : 0 ≤ y ≤ 1}.

Let u0 ∈ V (Ω) = {v ∈ H1(Ω) : v = 2/3 on Γ1} be the unique minimizing element for
the compliance

inf
v∈V (Ω)

E(Ω, v), E(Ω, v)
def
=

∫
Ω

[
1
2
‖∇v‖2 − f v

]
dx , f (x , y)

def
= −1

2
1

x1/2 .

The minimizer u0 is solution of the problem

∆u0(x , y)− 1
2

1
x1/2 = 0 in Ω, u0|Γ1 = 2/3,

∂u0

∂n
= 0 on Γ\Γ1, (4.39)

and the minimizer is u0(x , y) = (2/3) x3/2. For 0 ≤ t < 1, choose the transformation

(X ,Y ) 7→ Tt (X ,Y ) = (t + (1− t)X ,Y ) : [0, 1]× [0, 1]→ [t , 1]× [0, 1] (4.40)

Ωt
def
= Tt (Ω) = {(x , y) : x ∈ (t , 1), y ∈ (0, 1)}. (4.41)
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One-sided Derivative of Parametrized Minima: an Extra Term Examples of Shape Derivatives without and with an Extra Term

The next example involves a convex continuous non-differentiable functional.

EXAMPLE (EXAMPLE 2. THE EXTRA TERM IS ZERO)

Let a > 0, b ∈ R, Ω = (0, 1), and for v ∈ H1
0 (0, 1) the convex continuous

non-differentiable function

inf
v∈H1

0 (0,1)
E(Ω, v), E(Ω, v)

def
=

∫ 1

0

[(
|v ′| − a

)2
+ b
]

dx . (4.42)

The function

u0(x) = a
(∣∣∣∣x − 1

2

∣∣∣∣− 1
2

)
(4.43)

is a minimizer, but it is not unique. The minimizers are characterized by

|u′0(x)| = a a.e in (0, 1), u0(0) = u0(1) = 0 (4.44)

⇒ g(0) = inf
v∈H1

0 (0,1)
E(Ω, v) =

∫ 1

0

(
|u′0| − a

)2
+ b dx = b. (4.45)

For the perturbed problem indexed by 0 ≤ t < 1 choose the shape perturbation

Tt (X ) = t + (1− t)X , V (t , x) =
1− x
1− t

, DTt = 1− t . (4.46)

Therefore, Tt (0.1) = (t , 1).
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EXAMPLE (EXAMPLE 2. THE EXTRA TERM IS ZERO)

Therefore, the minimization problem on Tt (0.1) = (t , 1) is

inf
v∈H1

0 (t,1)
E(Ωt , v), E(Ωt , v)

def
=

∫ 1

t

(
|v ′| − a

)2
+ b dx . (4.47)

The function

ut (x) = a
(∣∣∣∣x − 1 + t

2

∣∣∣∣− 1− t
2

)
(4.48)

is a minimizer, but it is not unique. The minimizers are characterized by

|u′t (x)| = a a.e in (t , 1), u0(t) = u0(1) = 0 (4.49)

⇒ g(t) = inf
v∈H1

0 (t,1)
E(Ωt , v) =

∫ 1

t

(
|u′t | − a

)2
+ b dx = (1− t)b, (4.50)

and dg(0) = −b. For the t-derivative and u0 ∈ H1
0 (0, 1)

G(t , u0) = E
(

Tt (Ω), u0 ◦ T−1
t

)
=

∫ 1

0

[(
1

1− t
|u′0| − a

)2

+ b

]
(1− t) dx

=

∫ 1

0

[(
1

1− t
a− a

)2

+ b

]
(1− t) dx = a2 t2

1− t
+ b (1− t)

(4.51)

and dtG(0, u0) = −b.
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EXAMPLE (EXAMPLE 2. THE EXTRA TERM IS ZERO)

Finally, Hypothesis (H3) of Theorem 19 is verified:

g(t)−G(t , u0)

t
=

(1− t)b −
[
a2 t2

1−t + b(1− t)
]

t
= −a2 t

1− t

⇒ R(u0) = lim
t↘0

g(t)−G(t , u0)

t
= lim

t↘0
−a2 t

1− t
= 0.

Since the expressions of R(u0) = 0 and dtG(0, u0) = −b are independent of the
choice of u0 ∈ X (0), the infimum in the expression of dg(0) can be dropped even if
X (0) is not a singleton.
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One-sided Derivative of Parametrized Minima: an Extra Term Examples of Shape Derivatives without and with an Extra Term

EXAMPLE (EXAMPLE 4 WITH AN EXTRA TERM)

Consider a variant of Example 25 for a slightly different convex continuous
non-differentiable function v 7→ E(Ω, v) to be minimized over H1

0 (0, 1)

inf
v∈H1

0 (0,1)
E(Ω, v), E(Ω, v)

def
=

∫ 1

0

∣∣|v ′| − a
∣∣+ b dx , a > 0, b ∈ R . (4.52)

The minimizers are the same as in Example 25 and g(0) = b. For the same
perturbations (4.46) the minimization problem parametrized by 0 ≤ t < 1 is

inf
v∈H1

0 (t1)
E(Ωt , v), E(Ωt , v)

def
=

∫ 1

t

∣∣|v ′| − a
∣∣+ b dx . (4.53)

It has the same minimizers as in Example 25, g(t) = (1− t)b, and dg(0) = −b.
For the t-derivative with u0 ∈ H1

0 (0, 1)

G(t , u0)
def
= E(Ωt , u0 ◦ T−1

t ) =

∫ 1

0

(∣∣∣∣ 1
1− t

|u′0| − a
∣∣∣∣+ b

)
(1− t) dx

=

∫ 1

0

(∣∣∣∣ 1
1− t

a− a
∣∣∣∣+ b

)
(1− t) dx = a

t
1− t

+ b(1− t)

and dtG(0, u0) = a− b.
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EXAMPLE (EXAMPLE 4 WITH AN EXTRA TERM)

Hypothesis (H3) of Theorem 20 is satisfied,

g(t)−G(t , u0)

t
=

(1− t)b −
[
a t

1−t + b(1− t)
]

t
= −a

1
1− t

⇒ R(u0) = lim
t↘0

g(t)−G(t , u0)

t
= lim

t↘0
−a

1
1− t

= −a < 0,

and there is a non-zero extra term R(u0) = −a.
The terms R(u0) = −a and dtG(0, u0) = a− b are independent of the choice of
u0 ∈ X (0).
Therefore the infimum in the expression of dg(0) = −b can be dropped even if X (0) is
not a singleton.
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Specialization of the Main Theorem X Convex and x 7→ G(t, x) Semi-Diifferentiable

The minimizers can often be characterized by a variational equation or inequality
when the function x 7→ G(t , x) enjoys some form of differentiability.

For instance, If x ∈ A is a local minimizer of f with respect to A, then

dH f (x ; v) ≥ 0 for all v ∈ T [A(x), variational inequality (5.1)

When T [A(x) is linear and v 7→ dH f (x ; v) is linear, then

dH f (x ; v) = 0 for all v ∈ T [A(x), variational equation. (5.2)

This differentiability assumption can be used to characterize the negative extra term.

To keep things simple we assume that X is respectively convex and affine.
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Specialization of the Main Theorem X Convex and x 7→ G(t, x) Semi-Diifferentiable

Let X be a convex subset of a vector space. For t > 0, x0 ∈ X (0), and x t ∈ X (t),
let θ 7→ G(t , x0 + θ(x t − x0)) on [0, 1] satisfy

g(t) = G(t , x t ) = G(t , x0) +

∫ 1

0
dx G(t , x + θ(x t − x0); x t − x0) dθ.

As a consequence, for t > 0, x0 ∈ X (0), and x t ∈ X (t)

g(t)− g(0)

t
=

∫ 1

0
dx G

(
t , x0 + θ(x t − x0);

x t − x0

t

)
dθ +

G(t , x0)−G(0, x0)

t
,

where the second term would converge to dtG(0; x0) as t > 0 goes to zero.

HYPOTHESIS (H0)

Let X be a convex subset of a vector space, (t , x) 7→ G(t , x) : [0, τ [×X → R, τ > 0,
and the associated minimization problems

g(t) def
= inf

x∈X
G(t , x), X (t) def

= {x ∈ X : G(t , x) = g(t)}, 0 ≤ t < τ.

Assume that

(i) for all t ∈ [0, τ [ and x , y ∈ X the following limit exists

dx G(t , x ; y − x)
def
= lim

θ↘0

G(t , x + θ(y − x))−G(t , x)

θ
(5.3)

(ii) and, for all t ∈ [0, τ [, x0 ∈ X (0), and x t ∈ X (t), the function

θ 7→ G(t , x0 + θ(x t − x0)) : [0, 1]→ R is absolutely continuous. (5.4)
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Specialization of the Main Theorem X Convex and x 7→ G(t, x) Semi-Diifferentiable

Let X be a convex subset of a vector space. For t > 0, x0 ∈ X (0), and x t ∈ X (t),
let θ 7→ G(t , x0 + θ(x t − x0)) on [0, 1] satisfy

g(t) = G(t , x t ) = G(t , x0) +

∫ 1

0
dx G(t , x + θ(x t − x0); x t − x0) dθ.

As a consequence, for t > 0, x0 ∈ X (0), and x t ∈ X (t)

g(t)− g(0)

t
=

∫ 1

0
dx G

(
t , x0 + θ(x t − x0);

x t − x0

t

)
dθ +

G(t , x0)−G(0, x0)

t
,

where the second term would converge to dtG(0; x0) as t > 0 goes to zero.

HYPOTHESIS (H0)

Let X be a convex subset of a vector space, (t , x) 7→ G(t , x) : [0, τ [×X → R, τ > 0,
and the associated minimization problems

g(t) def
= inf

x∈X
G(t , x), X (t) def

= {x ∈ X : G(t , x) = g(t)}, 0 ≤ t < τ.

Assume that

(i) for all t ∈ [0, τ [ and x , y ∈ X the following limit exists

dx G(t , x ; y − x)
def
= lim

θ↘0

G(t , x + θ(y − x))−G(t , x)

θ
(5.3)

(ii) and, for all t ∈ [0, τ [, x0 ∈ X (0), and x t ∈ X (t), the function

θ 7→ G(t , x0 + θ(x t − x0)) : [0, 1]→ R is absolutely continuous. (5.4)
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Specialization of the Main Theorem X Convex and x 7→ G(t, x) Semi-Diifferentiable

THEOREM (X BE A CONVEX SUBSET OF A VECTOR SPACE)

Let (H0) and the following hypotheses be satisfied:

(H1) for all t ∈ [0, τ [, g(t) is finite, X (t) 6= ∅;

(H2) for each x0 ∈ X (0), the one-sided t-derivative of G(t , x0) at t = 0,

dtG(0, x0)
def
= lim

θ↘0

G(θ, x0)−G(0, x0)

θ
exists and is finite; (5.5)

(H3) for each tn ↘ 0, there exist x0 ∈ X (0) and {xn}, xn ∈ X (tn), such that

lim
n→∞

∫ 1

0
dx G

(
tn, x0 + θ

(
xn − x0

)
;

xn − x0

tn

)
dθ = R(x0),

where R : X (0)→ [−∞, 0] is defined as

R(x0)
def
= lim sup

t↘0

g(t)−G(t , x0)

t
. (5.6)

Then, dg(0) exists and there exists x̄0 ∈ X (0) such that

dg(0) = inf
x0∈X(0)

[
dtG(0, x0) + R(x0)

]
= dtG(0, x̄0) + R(x̄0). (5.7)

If, in addition, X (0) is a singleton, the infimum can be dropped.

REMARK

This theorem and the next one reveal a separation principle between the computation
of the t-derivative diG(0, x0) at the minimizers x0 in X (0) and the study of the
differential or fractional differential quotient of the minimizers (states).

M. C. Delfour Semidifferentials of Parametrized Minima IFIP - March 22nd, 2023 67 / 89



Specialization of the Main Theorem X Affine and x 7→ G(t, x) Twice Semi-differentiable

OUTLINE

1 OVERVIEW
2 GEOMETRY AS A VARIABLE

Shape Variations
Topological Variations

3 HADAMARD SEMIDIFFERENTIABLE FUNCTIONS
Hadamard Geometric Definition of the Differential
Fréchet Drops the Linearity of the Directional Derivative
Semidifferentials for Functions on Unstructured Sets
Variational Principle and an Example from Plasma Physics
M-semidifferentiability, Lipschitz and Convex Functions
Strict Differentiability, Upper/Lower Semidifferentiability

4 ONE-SIDED DERIVATIVE OF PARAMETRIZED MINIMA: AN EXTRA TERM
Some Background and the Seesaw Problem of Danskin in 1966
Some Generic Examples: Eigenvalue and Compliance Problems
Main Theorems without and with an Extra Term
Examples of Shape Derivatives without and with an Extra Term

5 SPECIALIZATION OF THE MAIN THEOREM
X Convex and x 7→ G(t , x) Semi-Diifferentiable
X Affine and x 7→ G(t , x) Twice Semi-differentiable

6 EXAMPLES OF TOPOLOGICAL DERIVATIVE
Two- and One-Dimensional Examples

7 REFERENCES

M. C. Delfour Semidifferentials of Parametrized Minima IFIP - March 22nd, 2023 68 / 89



Specialization of the Main Theorem X Affine and x 7→ G(t, x) Twice Semi-differentiable

Let X be an affine subspace of a vector space X , S the unique linear subspace
associated with X . For t > 0, x0 ∈ X (0), and x t ∈ X (t), x0 − x t ∈ S and

G(t , x0) = G(t , x t ) + dx G
(

t , x t ; x0 − x t
)

︸ ︷︷ ︸
=0

+
1
2

∫ 1

0
d2

x G
(

t , x t + θ
(

x0 − x t
)

; x0 − x t ; x0 − x t
)

dθ

since, for a minimizer x t ∈ X (t) at t ,

∀v ∈ S, dx G(t , x t ; v) = 0

⇒ g(t)−G(t , x0)

t
=

G(t , x t )−G(t , x0)

t
=− 1

2

∫ 1

0
d2

x G
(

t , x t + θ
(

x0 − x t
)

;
x0 − x t

t1/2 ;
x0 − x t

t1/2

)
dθ.

g(t)− g(0)

t

= −1
2

∫ 1

0
d2

x G
(

t , x t + θ
(

x0 − x t
)

;
x0 − x t

t1/2 ;
x0 − x t

t1/2

)
dθ+

G(t , x0)−G(0, x0)

t
,

where the second term would converge to dtG(0; x0) as t > 0 goes to zero.
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Specialization of the Main Theorem X Affine and x 7→ G(t, x) Twice Semi-differentiable

HYPOTHESIS (A0)

Let X be an affine subspace of a vector space X , S the unique linear subspace
associated with X , (t , x) 7→ G(t , x) : [0, τ [×X → R for some τ > 0. Assume that

(i) for all t , x ∈ X , and v ,w ∈ S the following semidifferentials

dx G(t , x ; v)
def
= lim

θ↘0

G(t , x + θv)−G(t , x)

θ

d2
x G(t , x ; v ; w)

def
= lim

θ↘0

dx G(t , x + θw ; v)− dx G(t , x ; v)

θ

exist, that the function v 7→ dx G(t , x ; v) : S → R is linear,

(ii) and, for all t ∈ [0, τ [, x0 ∈ X (0), and x t ∈ X (t), the function
θ 7→ G(t , x t + θ(x0 − x t )) : [0, 1]→ R and its derivative are absolutely continuous.
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Specialization of the Main Theorem X Affine and x 7→ G(t, x) Twice Semi-differentiable

THEOREM (X BE AN AFFINE SUBSPACE OF A VECTOR SPACE)

Let (A0) and the following hypotheses be satisfied:

(H1) for all t ∈ [0, τ [, g(t) is finite, X (t) 6= ∅;

(H2) for each x0 ∈ X (0), the one-sided t-derivative of G(t , x0) at t = 0,

dtG(0, x0)
def
= lim

θ↘0

G(θ, x0)−G(0, x0)

θ
exists and is finite; (5.8)

(H3) for each tn ↘ 0, there exist x0 ∈ X (0) and {xn}, xn ∈ X (tn), such that

lim
n→∞

−1
2

∫ 1

0
d2

x G
(

tn, xn + θ
(

x0 − xn

)
;

x0 − xn

tn1/2 ;
x0 − xn

tn1/2

)
dθ = R(x0),

where R : X (0)→ [−∞, 0] is defined as

R(x0)
def
= lim sup

t↘0

g(t)−G(t , x0)

t
. (5.9)

Then, dg(0) exists and there exists x̄0 ∈ X (0) such that

dg(0) = inf
x0∈X(0)

[
dtG(0, x0) + R(x0)

]
= dtG(0, x̄0) + R(x̄0). (5.10)

If, in addition, X (0) is a singleton, the infimum can be dropped.
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Specialization of the Main Theorem X Affine and x 7→ G(t, x) Twice Semi-differentiable

EXAMPLE (SHAPE DERIVATIVE OF THE EARLIER EXAMPLE 21)

We now go back to Example 21 of a shape derivative. Let Ω = (0, 1) ⊂ R, Γ = {0, 1},
and u0 ∈ V (Ω) = {v ∈ H1(0, 1) : v(1) = 2/3} be the minimizer

inf
v∈V (Ω)

E(Ω, v), E(Ω, v)
def
=

∫ 1

0

[
1
2
|v ′|2 − f v

]
dx , f (x)

def
= −1

2
1

x1/2 ,

and use Theorem 31 to compute the missing extra term:

d2
x G(t , u; v ; v) =

∫
Ω

A(t)∇v · ∇v dx =

∫ 1

0
A(t)∇v · ∇v dx

−R(u0) = lim
t↘0

1
2

∫ 1

0
A(t)

(ut − u0)′

t1/2

(ut − u0)′

t1/2 dx = lim
t↘0

(1− t)
1
2

∫ 1

0

∣∣∣∣ (ut − u0)′

t1/2

∣∣∣∣2 dx .

The derivative of ut = ut ◦ Tt is (ut )′(x) = DTt (x)(ut )
′(Tt (x))

(ut )′(x) = (1− t)
[
(t + (1− t)x)1/2 − t1/2

]
⇒ (ut − u0)′

t1/2 (x)→ −1 in L2(0, 1)-norm,
ut − u0

t1/2 (x)→ 1− x in H1(0, 1)-norm.

R(u0) = −1/2 corrects the t-derivative dtG(0, u0) = 0 to give dg(0) = −1/2 as
predicted by the previous direct computation (4.34) of dg(0).
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Examples of Topological Derivative Two- and One-Dimensional Examples

OUTLINE

1 OVERVIEW
2 GEOMETRY AS A VARIABLE

Shape Variations
Topological Variations

3 HADAMARD SEMIDIFFERENTIABLE FUNCTIONS
Hadamard Geometric Definition of the Differential
Fréchet Drops the Linearity of the Directional Derivative
Semidifferentials for Functions on Unstructured Sets
Variational Principle and an Example from Plasma Physics
M-semidifferentiability, Lipschitz and Convex Functions
Strict Differentiability, Upper/Lower Semidifferentiability

4 ONE-SIDED DERIVATIVE OF PARAMETRIZED MINIMA: AN EXTRA TERM
Some Background and the Seesaw Problem of Danskin in 1966
Some Generic Examples: Eigenvalue and Compliance Problems
Main Theorems without and with an Extra Term
Examples of Shape Derivatives without and with an Extra Term

5 SPECIALIZATION OF THE MAIN THEOREM
X Convex and x 7→ G(t , x) Semi-Diifferentiable
X Affine and x 7→ G(t , x) Twice Semi-differentiable

6 EXAMPLES OF TOPOLOGICAL DERIVATIVE
Two- and One-Dimensional Examples

7 REFERENCES
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Examples of Topological Derivative Two- and One-Dimensional Examples

Let Ω be a bounded open in Rn with Lipschitz boundary Γ, b ∈ H1/2(Γ), f ∈ L2(Ω),

Vb(Ω)
def
= {v ∈ H1(Ω) : v |Γ = b} ⇒ V0(Ω) = H1

0 (Ω). (6.1)

Let u0 be the minimizer

F (Ω) = inf
v∈Vb(Ω)

F (Ω; v), F (Ω; v)
def
=

∫
Ω

1
2
‖∇v‖2 − f v dx , (6.2)

u0 ∈ Vb(Ω), ∀v ∈ V0(Ω,

∫
Ω

∇u0 · ∇v − fv dx = 0,

⇒ u0 ∈ Vb(Ω), ∆u0 + f = 0, u0 = b on Γ. (6.3)

E = {x̄}

Er = Br (x̄) ⊂ Ω

Ωr = Ω\Br (x̄)

Er = Br (x̄)

x̄

radius r

FIGURE 7: Dilated set Er and perturbed domain Ωr = Ω\Er
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Examples of Topological Derivative Two- and One-Dimensional Examples

Associate with r , 0 < r ≤ R, the perturbed domain Ωr = Ω\Er , where, by
assumption, ∂Ωr = Γ ∪ ∂Er , Γ ∩ ∂Er = ∅, and ∂Er is C1,1.

Γ

Ωr = Ω\Er

E is a line

∂Er

FIGURE 8: Dilated set Er and perturbed domain Ωr with a single connected component

Let ur ∈ Vb(Ωr ) = {v ∈ H1(Ωr ) : v = b on Γ} be the solution of the problem

F (Ωr ) = inf
v∈Vb(Ωr )

F (Ωr ; v), F (Ωr ; v)
def
=

∫
Ωr

1
2
‖∇v‖2 − f v dx , (6.4)

∃ur ∈ Vb(Ωr ), ∀v ∈ V0(Ωr ),

∫
Ωr

∇ur · ∇v − f v dx = 0, (6.5)

⇒ −∆ur = f in Ωr , ur = b on Γ and
∂ur

∂nΩr

= 0 on ∂Er . (6.6)
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Examples of Topological Derivative Two- and One-Dimensional Examples

The application of Theorem 31 of section 5.2 requires a fixed affine subset X of the
space H1(Ω). So, the solution ur ∈ Vb(Ωr ) ⊂ H1(Ωr ) need to be extended to the affine
subspace Vb(Ω) ⊂ H1(Ω).

Consider the extension ur : Ω→ R obtained by introducing the solution uo
r : Eo

r → R
of the problem

−∆uo
r = f in Eo

r , uo
r = ur on ∂Er . (6.7)

By near boundary regularity near the boundary ∂Er , for all 1 < p <∞, ur belongs to
Vb(Ωr ) ∩W 2,p(Eo

2R\Er ) (cf. [61, Cor. 9.18, p. 243]). Therefore,
ur ∈ Vb(Ωr ) ∩ C1,α(ER\Eo

r ) for all 0 < α < 1.

The traces of ur and ∇ur belong to C0,α(∂Er ). But, since ∂ur/∂n = 0 on ∂Er , the
trace of ∇ur coincides with the tangential gradient of ur on ∂Er and ur ∈ C1,α(∂Er ).
As a result, the problem (6.7) has a unique solution uo

r ∈ C1,α(Er ) ∩ H1(Eo
r ). The

extended fonction ur : Ω→ R constructed from ur in Ωr and uo
r in Eo

r belongs to the
fixed space Vb(Ω) ∩ C0(ER) with a discontinuity in its normal derivative across ∂Er .

We use Theorem 31 with X = Vb(Ω) ∩ C0(ER) where the sets X (t) for t > 0 are not
singletons since the H1(Ω)-extension ur is not unique for r > 0, but X (0) is a
singleton.
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Examples of Topological Derivative Two- and One-Dimensional Examples

For the t-derivative of G(t , u0), since u0 ∈ Vb(Ω) ∩ C1(ER),

G(t , u0)−G(0, u0)

t
=

∫
Ωr

1
2‖∇u0‖2 − f u0 dx −

∫
Ω

1
2‖∇u0‖2 − f u0 dx

t

= −

∫
Eo

r

1
2‖∇u0‖2 − f u0 dx

t

⇒ dtG(0, x0) = −
∫

E

1
2
‖∇u0‖2 − f u0 dHd .

For the extra term R(u0), we have

d2
x G(t , ϕ;ψ;ψ) =

∫
Ωr

∇ψ · ∇ψ dx

⇒
∫ 1

0
d2

x G
(

t , x t + θ(x0 − x t );
x0 − x t

t1/2 ;
x0 − x t

t1/2

)
dθ

=

∫
Ωr

∇
(ur − u0

t1/2

)
· ∇
(ur − u0

t1/2

)
dx =

∫
Ωr

∥∥∥∇(ur − u0

t1/2

)∥∥∥2
dx .

Thus, in view of Assumption (H3) of Theorem 31, the topological derivative exists if
and only if the following limit exists:

R(u0) = − lim
t=2r
r↘0

1
2

∫
Ωr

∥∥∥∇(ur − u0

t1/2

)∥∥∥2
dx = lim

r↘0

1
2

1
2r

∫
∂Er

∂u0

∂nΩr

(ur − u0) dHn−1.
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Examples of Topological Derivative Two- and One-Dimensional Examples

ASSUMPTION

Let E be a closed connected subset of Rn and R > 0 such that
E2R = {x ∈ Rn : dE (x) ≤ 2R} ⊂ Ω.
Assume that E has positive reach greater than 2R (reach E > 2R) and that
0 < Hd (E) <∞ for an integer d , 0 ≤ d < n. Let f ∈ L2(Ω) ∩ C0(E2R).

THEOREM ([29])

Let the above Assumption 6.1 be verifieda and t = αn−d r n−d .
The d-topological derivative with respect to the set E exists if and only if the following
limitb exists

R(u0)
def
= − lim

t↘0

1
2

∫
Ωr

∥∥∥∇(ur − u0

t1/2

)∥∥∥2
dx
(

= lim
t↘0

1
2

1
t

∫
∂Er

∂u0

∂nΩr

(ur − u0) dHn−1
)
.

Then it is given by the formula

dF
(
χΩ; δE,Hd

)
= dtG(0, u0) + R(u0), (6.8)

where

dtG(0, u0) = −
∫

E

(
1
2
‖∇u0‖2 − f u0

)
dHd . (6.9)

aRecall that f ∈ L2(Ω) ∩ C0(E2R).
bIt is referred to as the polarization term in the literature ([84], [83], [3]).M. C. Delfour Semidifferentials of Parametrized Minima IFIP - March 22nd, 2023 78 / 89



Examples of Topological Derivative Two- and One-Dimensional Examples

TWO-DIMENSIONAL EXAMPLES
EXAMPLE IN DIMENSION 2.

Perturbed domain Ωr = Ω\Er

∆ur = 0 in Ωr , ur = x on ∂BR(0),
∂ur
∂n = 0 on ∂Br (0)

∆u0 = 0 in BR(0), u0(x , y) = x on ∂BR(0)

Ω = BR(0) = {(x , y) ∈ R2 : ‖(x , y)‖ < R}

E = {(0, 0)} is a point
dilated set Er

FIGURE 9: Domain Ω, dilated set Er , and perturbed domain Ωr

M. C. Delfour Semidifferentials of Parametrized Minima IFIP - March 22nd, 2023 79 / 89



Examples of Topological Derivative Two- and One-Dimensional Examples

TWO-DIMENSIONAL EXAMPLES

Examples in dimension 2.

EXAMPLE ([97, EXAMPLE 1, SEC. 3, P. 1258])

Let Ω = BR(0) ⊂ R2,

∆u0 = 0 in BR(0), u0 = x on ∂BR(0) ⇒ u0(x , y) = x in BR(0). (6.10)

For E = {0} and 0 < r < R, let Er = Br (0), Ωr = BR(0)\Er , ur ∈ H1(Ωr ) solution of

∆ur = 0 in Ωr , ur = x on ∂BR(0),
∂ur

∂n
= 0 on ∂Br (0) (6.11)

⇒ ur (x , y) =
R2

R2 + r 2

(
r 2

x2 + y2 + 1
)

x in Ωr (6.12)

(ur − u0)(x , y) =
R2

R2 + r 2

(
r 2

x2 + y2

)
x − r 2

R2 + r 2 x =
x r 2

R2 + r 2

[
R2

x2 + y2 − 1
]

lim
r↘0

∫
Ωr

∣∣∣ur − u0

t1/2

∣∣∣2 dx = 0 and lim
r↘0

∫
Ωr

∥∥∥∇(ur − u0

t1/2

)∥∥∥2
dx = 1 (6.13)

⇒ R(u0) = −1
2

(6.14)

dtG(0, u0) =−
∫

E

(
1
2
‖∇u0‖2 − a u0

)
dH0 = −1

2
, dF (χΩ; δE ) = −1

2
− 1

2
= −1.

M. C. Delfour Semidifferentials of Parametrized Minima IFIP - March 22nd, 2023 80 / 89



Examples of Topological Derivative Two- and One-Dimensional Examples

TWO-DIMENSIONAL EXAMPLES
EXAMPLE IN DIMENSION 2.

Ωr = Ω\Er

perturbed domain

E = ∂BR/2(0)

∆u0 = 0 in BR(0), u0 = x on ∂BR(0)

Ω = {(x , y) ∈ R2 : ‖(x , y)‖ < R}

blind part Ωb
r

main part Ωm
r

FIGURE 10: Domain Ω, dilated set Er , and the two connected components Ωm
r and Ωb

r of the
perturbed domain Ωr
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Examples of Topological Derivative Two- and One-Dimensional Examples

EXAMPLE

Let Ω = BR(0) ⊂ R2, the open ball of radius R and

∆u0 = 0 in BR(0), u0 = x on ∂BR(0) ⇒ u0(x , y) = x in BR(0). (6.15)

Go back to Example 34 but with a circle E = ∂BR/2(0) of dimension d = 1 instead of a
point E = {0} of dimension d = 0.

For 0 < r < R/8, the perturbed domain Ωr has two connected components:
Ωm

r = BR(0)\BR/2+r (0) and Ωb
r = BR/2−r (0).

By choosing ur = u0 on Ωb
r we only have to work with Ωm

r . Let ur ∈ H1(Ωr ) be the
solution of

∆ur = 0 in Ωr , ur = x on ∂BR(0),
∂ur

∂n
= 0 on ∂Br (0) (6.16)

⇒ ur (x , y) =


R2

R2 + r 2

(
r 2

x2 + y2 + 1
)

x , (x , y) ∈ BR(0)\BR/2+r (0)

u0(x , y), (x , y) ∈ BR/2−r (0)

(6.17)

wr (x , y)
def
= (ur − u0)(x , y) =


x r 2

R2 + r 2

[
R2

x2 + y2 − 1
]
, (x , y) ∈ BR(0)\BR/2+r (0)

0, (x , y) ∈ BR/2−r (0).
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EXAMPLE

So the L2- integral over Ωr is equal to the L2 integral over BR(0)\BR/2+r (0). Here,
t = α1r = 2r . Since r + R/2 < ρ ≤ R

1
2r

∫
Ωr

|wr |2 dx =
r 4

2r

∫
Ωm

r

∣∣∣∣ x
R2 + r 2

[
R2

x2 + y2 − 1
]∣∣∣∣2 dx ≤ r 4

2r

∣∣∣∣ 5
R

∣∣∣∣2 πR2 → 0.

For the gradient

∇wr =


r 2R2

R2 + r 2

{[
1
ρ2 −

1
R2

]
(1, 0)− 2x

ρ4 (x , y)

}
, in BR(0)\BR/2+r (0)

0, in BR/2−r (0).

Therefore, for ρ > R/2 + r , (x , y) = ρ(cos θ, sin θ), and t = α1r = 2r , as r → 0

∇
( wr

t1/2

)
=

r 3/2

√
2π

R2

R2 + r 2

{[
1
ρ2 −

1
R2

]
(1, 0)− 2 cos θ

ρ2 (cos θ, sin θ)

}

lim
r↘0

∫
Ωr

∣∣∣ur − u0

t1/2

∣∣∣2 +
∥∥∥∇(ur − u0

t1/2

)∥∥∥2
dx = 0 ⇒ R(u0) = 0

dtG(0, u0) = −
∫

E

(
1
2
‖∇u0‖2 − a u0

)
dH0 = −1

2
‖(1, 0)‖2 = −1

2
, dF (χΩ; δE ) = −1

2
.
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ONE-DIMENSIONAL EXAMPLES

We give examples in dimension n = 1 for Ω = (−1, 1), E = {0}, and t = α1r = 2r ,
where the polarization term R(x0) is 0, finite non-zero, and infinite.{

− u′′0 = f , (−1, 1)

u0(±1) = b±

} {
− u′′r = f , (−1,−r) ∪ (r , 1)

ur (±1) = b±, u′r (±r) = 0

}
. (6.18)

The polarization term R(u0) is the following limit as r goes to zero

R(u0) = −1
2

lim
r↘0

u′0(−r)2 + u′0(r)2

2r
(1− r) = −1

2
lim
r↘0

u′0(−r)2 + u′0(r)2

2r
≤ 0. (6.19)

If (f u0)(x) = a(x) u0(x) is continuous in (−r , r), the t-derivative is also a limit as r
goes to zero:

dtG(0, u0) = − lim
r↘0

1
2r

∫ r

−r

1
2
|u′0|2 − f u0 dx = −

[
1
2
|u′0|2(0)− (f u0)(0)

]
. (6.20)

In view of this simple expression, the polarization term can be controlled by choosing
u0 and computing f and b−, and b+.
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Examples of Topological Derivative Two- and One-Dimensional Examples

Ωr = (−1,−r) ∪ (r , 1)

Ω = (−1, 1)

−1 0 1

−1 −r r 1

E = {0} Er = [−r , r ]

FIGURE 11: Domains Ω and Ωr
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Examples of Topological Derivative Two- and One-Dimensional Examples

EXAMPLE

Let Ω = (−1, 1) and E = {0}.

u0(x) =
1
2

x2, u′0(x) = x ,

{
f (x) = −1

u0(±1) = 1/2

}
⇒ R(u0) = −1

2
lim
r↘0

r 2

r
(1− r) = 0

dtG(0, u0) =
1
2
|u′0|2(0)− f (0) u0(0) = 0 ⇒ dF (χΩ; δE ) = 0 .

The next example is a variation of the previous one.

EXAMPLE

Let Ω = (−1, 1) and E = {0}.

u0(x) =
1
2

[1− x2], u′0(x) = −x ,

{
f (x) = 1

u0(±1) = 0

}
⇒ R(u0) = −1

2
lim
r↘0

r 2

r
(1− r) = 0

(6.21)

dtG(0, u0) = −
[

1
2
|u′0|2(0)− f (0) u0(0)

]
=

1
2
⇒ dF (χΩ; δE ) =

1
2
. (6.22)
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EXAMPLE

Let Ω = (−1, 1) and E = {0}.

u0(x) = x , u′0(x) = 1,

{
f (x) = 0

u0(±1) = ±1

}
⇒ R(u0) = −1

2
lim
r↘0

1
r

(1− r) = −∞

(6.23)

dtG(0, u0) = −
[

1
2
|u′0|2(0)− f (0) u0(0)

]
= −1

2
⇒ dF (χΩ; δE ) = −∞ (6.24)
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In the next example we choose u0 in such a way that R(u0) be finite and non-zero:

EXAMPLE

Let Ω = (−1, 1) and E = {0}.

u0(x) =
2
3
|x |3/2, u′0(x) =

x
|x | |x |

1/2,

 f (x) = −1
2

1
|x |1/2

u0(±1) = 2/3

 ⇒ R(u0) = −1
2
,

where a is continuous except at x = 0 but a ∈ L2−ε(Ω) for all ε, 0 < ε < 1. Yet,

f (x) u0(x) = −1
2

1
|x |1/2

2
3
|x |3/2 = −1

3
|x |

is continuous, and, since u′0 is continuous and u′0(0) = 0, dtG(0, u0) = 0, and

dF (χΩ; δE ) = −1
2
.

So, the continuity of a is not a necessary condition. Moreover,∫
Ωr )

∣∣∣∣ur − u0√
2r

∣∣∣∣2dx =
2r
2r

(1− r)3

3
→ 1

3
,

∫
Ωr

∣∣∣∣u′r − u′0√
2r

∣∣∣∣2dx =
2r
2r

(1− r)→ 1

and (ur − u0)/
√

2r is the restriction of the H1(Ω)-function w0(x) = (1− |x |)/
√

2 to Ωr .
M. C. Delfour Semidifferentials of Parametrized Minima IFIP - March 22nd, 2023 88 / 89



Examples of Topological Derivative Two- and One-Dimensional Examples

THANK YOU

- Thank you for your attention -
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