Linearization of balanced and unbalanced optimal transport

Bernhard Schmitzer

IFIP TC7 online lecture, April 2023

1 Introduction to optimal transport

1.1 Measures for data modelling

Comparing and understanding data

- 'Are two samples similar?'

Language: probability measures $\mathcal{P}(X)$ on metric space (X, d)

- similarity of samples \leftrightarrow metric on $\mathcal{P}(X)$

1.2 Kantorovich formulation of optimal transport

Couplings

- $\Pi(\mu, \nu):=\left\{\pi \in \mathcal{M}_{+}(X \times X): \mathrm{P}_{1 \sharp} \pi=\mu, \mathrm{P}_{2 \sharp} \pi=\nu\right\}$
- marginals: $\mathrm{P}_{1 \sharp} \pi(A):=\pi(A \times X), \mathrm{P}_{2 \sharp} \pi(B):=\pi(X \times B)$
- rearrangement of mass, generalization of map

Optimal transport [Kantorovich, 1942]

$$
C(\mu, \nu):=\inf \left\{\int_{X \times X} c(x, y) \mathrm{d} \pi(x, y) \mid \pi \in \Pi(\mu, \nu)\right\}
$$

- cost function $c: X \times X \rightarrow \mathbb{R}$ for moving unit mass from x to y
- convex problem: linear program

Wasserstein distance on probability measures $\mathcal{P}(X)$

$$
W_{p}(\mu, \nu):=(C(\mu, \nu))^{1 / p} \text { for } c(x, y):=d(x, y)^{p}, \quad p \in[1, \infty)
$$

1.3 Some important properties of Wasserstein distances

$$
W_{2}(\mu, \nu):=\inf \left\{\int_{X \times X} d(x, y)^{2} \mathrm{~d} \pi(x, y) \mid \pi \in \Pi(\mu, \nu)\right\}^{1 / 2}
$$

- intuitive, robust to positional noise

Transport maps [Brenier, 1991]

- $\left[X=\mathbb{R}^{d}, \mu \ll \mathcal{L}, c=d^{p}\right] \Rightarrow\left[\pi=(\mathrm{id}, T)_{\sharp \mu}\right]$
- $W_{2}(\mu, \nu)^{2}=\int_{X}\|T(x)-x\|^{2} \mathrm{~d} \mu(x)$

Displacement interpolation [McCann, 1997]

- $[(X, d)$ length space $] \Rightarrow\left[\left(\mathcal{P}(X), W_{p}\right)\right.$ length space $]$
- $X=\mathbb{R}^{d}: \rho_{t}:=[(1-t) \cdot \mathrm{id}+t \cdot T]_{\sharp} \mu$
- velocity field v_{t} : mass particle starting at x travels with constant speed along straight line to $T(x)$

Dynamic formulation: Benamou-Brenier formula (on $X=\mathbb{R}^{d}$)
[Benamou and Brenier, 2000]

- (weak) continuity equation: mass ρ, velocity field v

$$
\mathcal{C E}(\mu, \nu):=\left\{(\rho, v): \partial_{t} \rho+\nabla(v \cdot \rho)=0, \rho_{0}=\mu, \rho_{1}=\nu\right\}
$$

- least action principle: minimize Lagrangian / kinetic energy

$$
W_{2}(\mu, \nu)^{2}=\inf _{(\rho, v) \in \mathcal{C E}(\mu, \nu)} \int_{0}^{1} \int_{X}\left\|v_{t}\right\|^{2} \mathrm{~d} \rho_{t} \mathrm{~d} t
$$

- $\left(\mathcal{P}(X), W_{2}\right)$ has weak Riemannian structure [Otto, 2001]

1.4 Wasserstein distances: what now?

Attractive properties

\checkmark intuitive, robust, flexible metric for probability measures
X numerically involved, $\sqrt{ }$ but good solvers exist
\checkmark rich geometric structure (barycenter, interpolation, Riemannian flavour...)

Challenge \#1

X analyzing point clouds in non-linear metric space is tricky
\checkmark approximate Euclidean embeddings
X interpretation not obvious
X requires computation of all pairwise distances
\checkmark remedy through local linearization [Wang et al., 2012]

Challenge \#2

$\mathrm{X} W_{2}$ susceptible to small non-local mass fluctuations
\checkmark remedy through unbalanced transport, in particular Hellinger-Kantorovich distance

In this talk: combine both ingredients

2 Interlude: a little bit of Riemannian geometry

2.1 Basic concepts

Riemannian manifold \mathbb{M}

- locally homeomorphic to \mathbb{R}^{d}, tangent space $T_{z} \mathbb{M} \simeq \mathbb{R}^{d}$ at z
- at each point: inner product $\langle\cdot, \cdot\rangle_{z}$ and norm $\|\cdot\|_{z}$: angles and speed
- examples: \mathbb{R}^{d}, torus, sphere

Length and distance

- length $(\gamma):=\int_{0}^{1}\|\dot{\gamma}(t)\|_{\gamma(t)} \mathrm{d} t$ for $\gamma \in C^{1}([0,1], \mathbb{M})$
- distance $d(x, y):=\inf \{\operatorname{length}(\gamma) \mid \gamma(0)=x, \gamma(1)=y\}$
- $d(x, y)^{2}=\inf \left\{\int_{0}^{1}\|\dot{\gamma}(t)\|_{\gamma(t)}^{2} \mathrm{~d} t \mid \gamma(0)=x, \gamma(1)=y\right\}$
- minimal γ called geodesics, generalization of straight line

2.2 Local linearization of Riemannian manifold

Exponential map $\operatorname{Exp}_{z}: T_{z} \mathbb{M} \rightarrow \mathbb{M}$

- $\operatorname{Exp}_{z}(v)=$ start walking at z with velocity v until time 1
- 'follow curvature' of \mathbb{M}

Inverse: logarithmic map $\log _{z}: \mathbb{M} \rightarrow T_{z} \mathbb{M}$

- may not be defined on full $\mathbb{M} \rightarrow$ cut-locus
- Thm: $\left\|\log _{z}(y)\right\|_{z}=d(z, y)$

Local linearization of d

- $\operatorname{Lin}_{z}(x, y):=\left\|\log _{z}(x)-\log _{z}(y)\right\|_{z}$
$\mathrm{X} \operatorname{Lin} d_{z} \neq d$ on curved manifolds, $\sqrt{ }$ error small when x, y, z close and bounded curvature R

$$
d(x, y)^{2}=\operatorname{Lin} d_{z}(x, y)^{2}+O\left(R \cdot \varepsilon^{4}\right) \quad \text { if } \quad d(z, x)=d(z, y)=O(\varepsilon)
$$

$\checkmark\left(T_{z} \mathbb{M}, \operatorname{Lin} d_{z}\right)$ is linear \Rightarrow many data analysis tools available

- interpretation: approximate curved surface locally by tangent plane

3 Linearization of Wasserstein-2

3.1 Riemannian structure of Wasserstein-2

Recall Benamou-Brenier formula (on $X=\mathbb{R}^{d}$)

- (weak) continuity equation: mass ρ, velocity field v

$$
\mathcal{C E}(\mu, \nu):=\left\{(\rho, v): \partial_{t} \rho+\nabla(v \cdot \rho)=0, \rho_{0}=\mu, \rho_{1}=\nu\right\}
$$

- least action principle: minimize Lagrangian / kinetic energy

$$
W_{2}(\mu, \nu)^{2}=\inf _{(\rho, v) \in \mathcal{C E}(\mu, \nu)} \int_{0}^{1} \int_{X}\left\|v_{t}\right\|^{2} \mathrm{~d} \rho_{t} \mathrm{~d} t=\inf _{(\rho, v) \in \mathcal{C E}(\mu, \nu)} \int_{0}^{1}\left\|v_{t}\right\|_{\rho_{t}}^{2} \mathrm{~d} t
$$

Formal comparison with Riemannian geometry

$$
d(x, y)^{2}=\inf \left\{\int_{0}^{1}\|\dot{\gamma}(t)\|_{\gamma(t)}^{2} \mathrm{~d} t \mid \gamma(0)=x, \gamma(1)=y\right\}
$$

$\Rightarrow v_{t}$ represents tangent vector
Logarithmic and exponential map for W_{2}

- let $\pi=(\mathrm{id}, T)_{\sharp} \mu$ optimal for $W_{2}^{2}(\mu, \nu)$

$$
\log _{\mu}(\nu)=v_{0}=T-\mathrm{id}, \quad \operatorname{Exp}_{\mu}\left(v_{0}\right)=\left(\mathrm{id}+v_{0}\right)_{\sharp \mu}
$$

3.2 Local linearization of Wasserstein-2

Proposed for data analysis in [Wang et al., 2012]

- set of samples $\left\{\nu_{i}\right\}_{i=1}^{N}$, 'reference' measure μ
- represent ν_{i} by optimal T_{i} for $W_{2}\left(\mu, \nu_{i}\right)$, Lagrangian representation

$$
\log _{\mu}\left(\nu_{i}\right)=T_{i}-\mathrm{id}
$$

\checkmark approximate distance

$$
\operatorname{Lin} W_{2}\left(\nu_{i}, \nu_{j}\right):=\left\|\log _{\mu}\left(\nu_{i}\right)-\log _{\mu}\left(\nu_{j}\right)\right\|_{L^{2}\left(\mu, \mathbb{R}^{d}\right)}=\left\|T_{i}-T_{j}\right\|_{L^{2}\left(\mu, \mathbb{R}^{d}\right)}
$$

- $\left\{T_{i}-\mathrm{id}\right\}_{i=1}^{N}$ lie in $L^{2}\left(\mu, \mathbb{R}^{d}\right) \Rightarrow$ vector space
\checkmark only OT problems $W_{2}\left(\mu, \nu_{i}\right)$ need to be solved, not all $W_{2}\left(\nu_{i}, \nu_{j}\right)$
\checkmark simple post-processing (dimensionality reduction, classifiers, ...)

3.3 A simple numerical example

Input data:

- (truncated) Gaussians with different means and variances on $[0,1]$

Lin W_{2}-analysis and PCA embedding

- captured variance by two modes: > 99%

L^{2}-analysis and PCA embedding

- captured variance by two modes: $\approx 90 \%$

3.4 Basic properties and some references

Approximation quality $\operatorname{Lin} W_{2}$ vs W_{2}

- upper bound: $\operatorname{Lin} W_{2}\left(\nu_{i}, \nu_{j}\right) \geq W_{2}\left(\nu_{i}, \nu_{j}\right)$, proof via gluing lemma, \Rightarrow non-negative curvature of $\left(\mathcal{P}\left(\mathbb{R}^{d}\right), W_{2}\right)$
- $\operatorname{Lin} W_{2}\left(\nu_{i}, \nu_{j}\right)=W_{2}\left(\nu_{i}, \nu_{j}\right)$ on $\left(\mathcal{P}_{2}(\mathbb{R}), W_{2}\right)$, isometric embedding into $L^{2}([0,1])$
- scale and translation are 'simple flat submanifolds' of $\mathcal{P}\left(\mathbb{R}^{d}\right)$:

$$
\left\{T_{\#} \mu \mid T: x \mapsto s \cdot x+t, s \in \mathbb{R}_{++}, t \in \mathbb{R}^{d}\right\}
$$

can be embedded isometrically into $L^{2}(\mu)$

- map $\nu \mapsto \log _{\mu}(\nu)$ is continuous in $\left(W_{2}, L^{2}(\mu)\right)$, but not Lipschitz or even Hölder, Hölder regularity only under additional regularity assumptions [Gigli, 2011; Delalande and Merigot, 2021]
- there are always tangent vectors along which we can only move in one direction

Approximation by discretization

- approximate Monge map and logarithm by barycentric projection, convergence as $\left(\mu_{n}, \nu_{n}\right) \stackrel{*}{\rightharpoonup}(\mu, \nu)$ [Sarrazin and Schmitzer, 2023]

Other interesting directions

- multiple support points for classification [Khurana et al., 2022]
- Linearized Gromov-Wasserstein distance [Beier et al., 2021]
- Many nice applications to real data, 'sliced linearized OT', by Kolouri, Rohne et al.

3.5 Comparing Eulerian and Lagrangian representation

Eulerian

Lagrangian

x	y	m
1.1	0.2	0.1
1.9	-0.1	0.2
\vdots	\vdots	\vdots

- better choice depends on problem / context
- Eulerian representation sensitive to 'horizontal perturbations'
- Lagrangian representation order invariant, but consistent order makes comparison easier
- LinOT provides canonical order, 'know which list items to compare'

4 Hellinger-Kantorovich distance

[Kondratyev et al., 2016; Chizat et al., 2018b; Liero et al., 2018]

- unbalanced continuity equation: mass ρ, velocity v, source α

$$
\mathcal{C E}(\mu, \nu):=\left\{(\rho, v, \alpha): \partial_{t} \rho+\nabla(v \cdot \rho)=\alpha \cdot \rho, \rho_{0}=\mu, \rho_{1}=\nu\right\}
$$

- unbalanced Benamou-Brenier formula:

$$
\operatorname{HK}(\mu, \nu)^{2}:=\inf _{(\rho, v, \alpha) \in \mathcal{C} \mathcal{E}(\mu, \nu)} \int_{[0,1] \times X}\left[\left\|v_{t}\right\|^{2}+\frac{\kappa^{2}}{4} \alpha_{t}^{2}\right] \mathrm{d} \rho_{t} \mathrm{~d} t
$$

- other unbalanced models: [Dolbeault et al., 2009; Caffarelli and McCann, 2010; Piccoli and Rossi, 2016]. . .
- Thm: HK is geodesic distance on non-negative measures
- geodesics well understood, weak Riemannian structure
- transport up to $\frac{\kappa \pi}{2}$, pure Hellinger after that, choose κ by physical intuition and cross-validation, equiv. to spatial scaling
- Thm: Kantorovich-type soft-marginal formulation

$$
\operatorname{HK}(\mu, \nu)^{2}=\kappa^{2} \min _{\pi \in \mathcal{M}_{+}(X \times X)} \int_{X \times X} c \mathrm{~d} \pi+\mathrm{KL}\left(\mathrm{P}_{1} \pi \mid \mu\right)+\mathrm{KL}\left(\mathrm{P}_{2} \pi \mid \nu\right)
$$

for $c(x, y)= \begin{cases}-2 \log \cos (\|x-y\| / \kappa) & \text { if }\|x-y\|<\frac{\kappa \pi}{2} \\ +\infty & \text { else }\end{cases}$

- simple numerical approximation via entropic regularization and Sinkhorn-type algorithm [Chizat et al., 2018a]
- barycenters [Chung and Phung, 2020; Friesecke et al., 2021; Bonafini et al., 2023]

4.1 Hellinger-Kantorovich distance: local linearization

[Cai et al., 2022]

$$
\operatorname{HK}(\mu, \nu)^{2}:=\inf _{(\rho, v, \alpha) \in \mathcal{C E}(\mu, \nu)} \int_{[0,1] \times X}\left[\left\|v_{t}\right\|^{2}+\frac{1}{4} \alpha_{t}^{2}\right] \mathrm{d} \rho_{t} \mathrm{~d} t
$$

Example: (varying ellipticities and radii)

$$
\log _{\mu}^{W_{2}}(\nu)=v_{0}
$$

$$
\log _{\mu}^{\mathrm{HK}}(\nu)=\left(v_{0}, \alpha_{0}, \sqrt{\nu^{\perp}}\right)
$$

PCA in tangent space: W_{2}, constant radii

PCA in tangent space: W_{2}, small radii variations

PCA in tangent space: HK, small radii variations

4.2 Hellinger-Kantorovich distance: logarithmic map

Logarithmic map for W_{2} :

- $\pi=\underset{\pi \in \mathcal{M}_{+}(X \times X)}{\operatorname{argmin}} \int d^{2} \mathrm{~d} \pi+\iota_{\{\mu\}}\left(\mathrm{P}_{X} \pi\right)+\iota_{\{\nu\}}\left(\mathrm{P}_{Y} \pi\right)=(\mathrm{id}, T)_{\sharp} \mu$
- $\log _{\mu}^{W_{2}}(\nu)=v_{0}=T-\mathrm{id}$
- discrete approximation by barycentric projection: $T_{i}=\frac{1}{\mu_{i}} \sum_{j} \pi_{i, j} y_{j}$

Logarithmic map for HK: [Cai et al., 2022; Sarrazin and Schmitzer, 2023]

- $\pi=\underset{\pi \in \mathcal{M}_{+}(X \times X)}{\operatorname{argmin}} \int c^{2} \mathrm{~d} \pi+\mathrm{KL}\left(\mathrm{P}_{X} \pi \mid \mu\right)+\mathrm{KL}\left(\mathrm{P}_{Y} \pi \mid \nu\right)=(\mathrm{id}, T)_{\sharp} \sigma$
- $u=\frac{\mathrm{d} \sigma}{\mathrm{d} \mu}, \nu^{\perp}$: part that is singular w.r.t. $T_{\sharp} \sigma$

$$
v_{0}=\frac{T-\mathrm{id}}{\|T-\mathrm{id}\|} \tan (\|T-\mathrm{id}\|) u \quad \quad \alpha_{0}=2(u-1)
$$

- $\log _{\mu}{ }_{\mu}(\nu)=\left(v_{0}, \alpha_{0}, \sqrt{\nu^{\perp}}\right)$

Additional results [Sarrazin and Schmitzer, 2023]

- dual perspective: $W_{2}: v_{0}=-\frac{1}{2} \nabla \phi$, HK: $\left(v_{0}, \alpha_{0}\right)=\left(-\frac{1}{2} \nabla \phi,-2 \phi\right)$
- convergence of barycentric projection approximation for W_{2} and HK
- extension to OT on manifolds
- extension to spherical Hellinger-Kantorovich distance [Laschos and Mielke, 2019]

5 Example applications

Classification of particle jets [Cai et al., 2022]

- mass represents energy absorbed in detector plane
- separate weak (red) vs strong (green) decay channels

- LDA: better separation with unbalanced HK metric

- AUC curves for various classifiers

Linearized OT for cell nuclei statistics [Eckermann et al., 2021; Frost et al., 2023]

- collaboration with Salditt group, x-ray physics, Göttingen:
phase contrast x-ray tomography, high resolution 3d images of tissue samples
- segmentation of cell nuclei, feature extraction,
each sample \rightarrow nuclei distribution on feature space
- application to Alzheimer and multiple sclerosis data, try to discover systematic shift in cell (nuclei) population
X interpretation of tangent vectors possibly in principle, but still tricky in practice

Linearized OT for microtubule curvature analysis in cell microscopy

- collaboration with Koester group, x-ray physics, Göttingen:
fluorescence microscopy images of cells; study impact of vimentin on microtubule curvature
- segmentation of microtubule network, extraction of curvature distribution, each cell (region) \rightarrow distribution on curvature

Linearized OT on sphere [Sarrazin and Schmitzer, 2023]

6 Conclusion

6.1 Overview

Optimal transport

\checkmark intuitive, robust, flexible metric for probability measures
$\sqrt{ }$ rich geometric structure (Riemannian flavour...)
\checkmark accessible by convex optimization

Local linearization of OT [Wang et al., 2012]
\checkmark Lagrangian representation: combine OT metric with linear structure
\checkmark intuitive interpretation of tangent vectors
\checkmark useful representation for subsequent machine learning analysis
Unbalanced transport: Hellinger-Kantorovich distance
\checkmark more robust to mass fluctuations
\checkmark carries over to linearization [Cai et al., 2022; Sarrazin and Schmitzer, 2023]
\checkmark hyperparameter κ easy to tune
\checkmark formulas look scary, but numerics almost the same

Example code

- https://github.com/bernhard-schmitzer/UnbalancedLOT
- https://gitlab.gwdg.de/bernhard.schmitzer/linot

6.2 Open questions

How well does the linear approximation work?

- for general Wasserstein-2 case: [Gigli, 2011; Mérigot et al., 2020; Delalande and Merigot, 2021], expect: better on 'nice sub-manifolds'
- still open for HK

Riemannian structure of HK metric

- is $\{$ range of the logarithmic map $\}=\{$ domain of the exponential map\} convex?
\checkmark dual perspective of logarithmic map $\left(W_{2}: v_{0}=-\frac{1}{2} \nabla \phi\right.$. HK: $\left.\left(v_{0}, \alpha_{0}\right)=\left(-\frac{1}{2} \nabla \phi,-2 \phi\right)\right)$
\checkmark regularity of logarithmic map?

Beyond simple one-point-linearization

- multiple support points? 'local triangulation' of a sub-manifold?
- barycentric subspace analysis [Pennec, 2018; Bonneel et al., 2016]?

Statistical questions

- how robust is the analysis under sampling of the samples?
- what if samples are themselves only empirical measures?

Better interpretation of tangent vectors

- relevant for medical imaging

References

F. Beier, R. Beinert, and G. Steidl. On a linear Gromov-Wasserstein distance. arXiv:2112.11964, 2021.
J.-D. Benamou and Y. Brenier. A computational fluid mechanics solution to the MongeKantorovich mass transfer problem. Numerische Mathematik, 84(3):375-393, 2000.
M. Bonafini, O. Minevich, and B. Schmitzer. Hellinger-Kantorovich barycenter between Dirac measures. ESAIM: Control, Optimisation and Calculus of Variations, 29:19, 2023. doi: 10.1 051/cocv/2022088.
N. Bonneel, G. Peyré, and M. Cuturi. Wasserstein barycentric coordinates: Histogram regression using optimal transport. ACM Trans. Graph., 35(4), 2016. doi: 10.1145/2897824.2925918.
Y. Brenier. Polar factorization and monotone rearrangement of vector-valued functions. Comm. Pure Appl. Math., 44(4):375-417, 1991.
L. A. Caffarelli and R. J. McCann. Free boundaries in optimal transport and Monge-Ampère obstacle problems. Annals of Math., 171(2):673-730, 2010.
T. Cai, J. Cheng, B. Schmitzer, and M. Thorpe. The linearized Hellinger-Kantorovich distance. SIAM J. Imaging Sci., 15(1):45-83, 2022. doi: 10.1137/21M1400080.
L. Chizat, G. Peyré, B. Schmitzer, and F.-X. Vialard. Scaling algorithms for unbalanced optimal transport problems. Math. Comp., 87:2563-2609, 2018a. doi: 10.1090/mcom/3303.
L. Chizat, G. Peyré, B. Schmitzer, and F.-X. Vialard. An interpolating distance between optimal transport and Fisher-Rao metrics. Found. Comp. Math., 18(1):1-44, 2018b. doi: 10.1007/s1 0208-016-9331-y.
N.-P. Chung and M.-N. Phung. Barycenters in the Hellinger-Kantorovich space. Appl Math Optim, 2020. doi: $10.1007 / \mathrm{s} 00245-020-09695-\mathrm{y}$.
A. Delalande and Q. Merigot. Quantitative stability of optimal transport maps under variations of the target measure. arXiv:2103.05934, 2021.
J. Dolbeault, B. Nazaret, and G. Savaré. A new class of transport distances between measures. Calc. Var. Partial Differential Equations, 34(2):193-231, 2009. doi: 10.1007/s00526-008-018 2-5.
M. Eckermann, B. Schmitzer, F. van der Meer, J. Franz, O. Hansen, C. Stadelmann, and T. Salditt. Three-dimensional virtual histology of the human hippocampus based on phasecontrast computed tomography. PNAS, 118(48):e2113835118, 2021. doi: 10.1073/pnas. 21138 35118.
G. Friesecke, D. Matthes, and B. Schmitzer. Barycenters for the Hellinger-Kantorovich distance over Rd. SIAM J. Math. Anal., 53(1):62-110, 2021. doi: 10.1137/20M1315555.
J. Frost, B. Schmitzer, M. Toepperwien, M. Eckermann, J. Franz, C. Stadelmann, and T. Salditt. 3d virtual histology reveals pathological alterations of cerebellar granule cells in multiple sclerosis. Neuroscience, 2023. doi: 10.1016/j.neuroscience.2023.04.002.
N. Gigli. On Holder continuity-in-time of the optimal transport map towards measures along a curve. Proceedings of the Edinburgh Mathematical Society, 54(2):401-409, 2011.
L. V. Kantorovich. O peremeshchenii mass. Doklady Akademii Nauk SSSR, 37(7-8):227-230, 1942.
V. Khurana, H. Kannan, A. Cloninger, and C. Moosmüller. Supervised learning of sheared distributions using linearized optimal transport. arXiv:2201.10590, 2022.
S. Kondratyev, L. Monsaingeon, and D. Vorotnikov. A new optimal transport distance on the space of finite Radon measures. Adv. Differential Equations, 21(11-12):1117-1164, 2016.
V. Laschos and A. Mielke. Geometric properties of cones with applications on the HellingerKantorovich space, and a new distance on the space of probability measures. J. Funct. Anal., 276(11):3529-3576, 2019. doi: 10.1016/j.jfa.2018.12.013.
M. Liero, A. Mielke, and G. Savaré. Optimal entropy-transport problems and a new HellingerKantorovich distance between positive measures. Inventiones mathematicae, 211(3):969-1117, 2018. doi: 10.1007/s00222-017-0759-8.
R. J. McCann. A convexity principle for interacting gases. Advances in Mathematics, 128(1): 153-179, 1997.
Q. Mérigot, A. Delalande, and F. Chazal. Quantitative stability of optimal transport maps and linearization of the 2-Wasserstein space. In International Conference on Artificial Intelligence and Statistics, pages 3186-3196, 2020.
F. Otto. The geometry of dissipative evolution equations: the porous medium equation. Comm. Partial Differential Equations, 26(1-2):101-174, 2001. doi: 10.1081/PDE-100002243.
X. Pennec. Barycentric subspace analysis on manifolds. Ann. Statist., 46(6A):2711-2746, 2018. doi: 10.1214/17-AOS1636.
B. Piccoli and F. Rossi. On properties of the generalized Wasserstein distance. Arch. Rat. Mech. Analysis, 222(3):1339-1365, 2016. doi: 10.1007/s00205-016-1026-7.
C. Sarrazin and B. Schmitzer. Linearized optimal transport on manifolds. arXiv:2303.13901, 2023.
W. Wang, D. Slepčev, S. Basu, J. A. Ozolek, and G. K. Rohde. A linear optimal transportation framework for quantifying and visualizing variations in sets of images. Int. J. Comp. Vision, 101:254-269, 2012. doi: 10.1007/s11263-012-0566-z.

