Model Order Reduction of Parametrized Nonlinear Evolution Equations with Applications in Chromatography

Peter Benner

Max Planck Institute for Dynamics of Complex Technical Systems
Magdeburg, Germany
Email: benner@mpi-magdeburg.mpg.de
Outline

1 Motivation
 • General set-up: nonlinear parametric systems
 • Motivating Examples

2 Model Order Reduction
 • Petrov-Galerkin Projection
 • Empirical Interpolation Method

3 Error Bound
 • Primal-only Error Bound
 • Primal-dual Output Error Bound

4 Basis Construction and Adaptive Snapshot Selection
 • POD-Greedy Algorithm
 • Adaptive Snapshot Selection

5 Numerical Results

6 Conclusions and Outlook
Collaborators

Lihong Feng

Yongjin Zhang

Andreas Seidel-Morgenstern

MPI Magdeburg
Computational Methods in Systems and Control (CSC)
Physical and Chemical Foundations of Process Engineering (PCF)
Motivation

General set-up: nonlinear parametric systems

Nonlinear Parametric Systems

\[E(t, \mu) \frac{dx}{dt} = A(t, \mu)x + f(x, \mu), \]

or

\[E(t^k, \mu)x^{k+1} = A(t^k, \mu)x^k + f(x^k, \mu), \]

\(x, x^k \in \mathcal{W}^n \subset \mathbb{R}^n, E, A \in \mathbb{R}^{n \times n}, n \) is large.

Often, the output \(y = g(x) \), or \(y = Cx \), is of interest \(\leadsto \) quantities-of-interest.

Multi-query context:
Solve the ODE system for many varying values of \(\mu \in \Omega \subset \mathbb{R}^d \), e.g., optimization, real-time control, inverse problems, \ldots
Motivation

Motivating Example: Batch Chromatography

Principle of batch chromatography for binary separation.
Principle of batch chromatography for binary separation.

\[
\begin{align*}
\frac{\partial c_z}{\partial t} + \frac{1 - \epsilon}{\epsilon} \frac{\partial q_z}{\partial t} &= - \frac{\partial c_z}{\partial x} + \frac{1}{Pe} \frac{\partial^2 c_z}{\partial x^2}, & 0 < x < 1, \\
\frac{\partial q_z}{\partial t} &= \frac{L}{Q/(\epsilon A_c)} \kappa_z (q^\text{Eq}_z - q_z), & 0 \leq x \leq 1,
\end{align*}
\]

- A convection-dominated system, the Péclet number Pe is large.
Motivation

Motivating Example: Batch Chromatography

Principle of batch chromatography for binary separation.

\[
\begin{aligned}
\frac{\partial c_z}{\partial t} + \frac{1 - \epsilon}{\epsilon} \frac{\partial q_z}{\partial t} &= - \frac{\partial c_z}{\partial x} + \frac{1}{Pe} \frac{\partial^2 c_z}{\partial x^2}, & 0 < x < 1, \\
\frac{\partial q_z}{\partial t} &= \frac{L}{Q/(\epsilon A_c)} \kappa_z (q_z^{\text{Eq}} - q_z), & 0 \leq x \leq 1,
\end{aligned}
\]

- A convection-dominated system, the Péclet number Pe is large.
- Requires long-time integration process.
Motivation

Motivating Example: Batch Chromatography

Principle of batch chromatography for binary separation.

\[
\begin{align*}
\frac{\partial c_z}{\partial t} + \frac{1 - \epsilon}{\epsilon} \frac{\partial q_z}{\partial t} &= -\frac{\partial c_z}{\partial x} + \frac{1}{Pe} \frac{\partial^2 c_z}{\partial x^2}, \\
\frac{\partial q_z}{\partial t} &= \frac{L}{Q/(\epsilon A_c)} \kappa_z(q_z^{Eq} - q_z),
\end{align*}
\]

- A convection-dominated system, the Péclet number Pe is large.
- Requires long-time integration process.
- A nonlinear parametric coupled system, parameters $\mu := (Q, t_{in})$.
Motivation

Motivating Example: Batch Chromatography

Principle of batch chromatography for binary separation.

\[
\begin{align*}
\frac{\partial c_z}{\partial t} + \frac{1 - \epsilon}{\epsilon} \frac{\partial q_z}{\partial t} &= -\frac{\partial c_z}{\partial x} + \frac{1}{Pe} \frac{\partial^2 c_z}{\partial x^2}, \\
\frac{\partial q_z}{\partial t} &= \frac{L}{Q/(\epsilon A_c)} k_{\kappa_z}(q_{E z}^z - q_z),
\end{align*}
\]

- A convection-dominated system, the Péclet number Pe is large.
- Requires long-time integration process.
- A nonlinear parametric coupled system, parameters $\mu := (Q, t_{in})$.
- What are the optimal operating conditions?
 \[\mapsto\text{PDE constrained optimization.}\]
Motivation
Motivating Example: Simulated Moving Bed (SMB) Chromatography

SMB chromatographic process with 4 zones and 8 columns.
Governing equations are similar, but:

SMB chromatographic process with 4 zones and 8 columns.
Motivation

Motivating Example: SMB Chromatography

Governing equations are similar, but:

- More parameters, \(\mu := (m_1, \ldots, m_4, Q_F) \)
- Multi-switching system
- Cyclic steady state computation

SMB chromatographic process with 4 zones and 8 columns.
Motivation

4-column SMB plant at MPI Magdeburg
Motivation

SMB Chromatography — a practical application

Purified Artemisinin

- Artemisinin is the basic compound for producing the malaria medication Artesunate.
- New SMB-based process developed at MPI Magdeburg (PCF group) yields 99.5% purity (exceeding the limits set by WHO and FDA), based on new synthesis process invented by Peter Seeberger (MPI Colloids and Interfaces, Potsdam).
- Process can be easily implemented in low-cost plants in the countries where the plant Artemisia annua grows, mostly, in East Asia.
- Much cheaper than current anti-Malaria medication, and much higher degree of purity!
Motivation
SMB Chromatography — a practical application

Purified Artemisinin

Artemisinin is the basic compound for producing the malaria medication Artesunate.

New SMB-based process developed at MPI Magdeburg (PCF group) yields 99.5% purity (exceeding the limits set by WHO and FDA), based on new synthesis process invented by Peter Seeberger (MPI Colloids and Interfaces, Potsdam).

Process can be easily implemented in low-cost plants in the countries where the plant *Artemisia annua* grows, mostly, in East Asia.

Model plant built in Vietnam.

Much cheaper than current anti-Malaria medication, and much higher degree of purity!

Seeberger and Seidel-Morgenstern were awarded the Humanity in Science Prize 2015 for this.

MOR for Nonlinear Parametric Systems

Original full order system (FOM)

\[E(t, \mu) \frac{dx}{dt} = A(t, \mu)x + f(x, \mu), \]

or

\[E(t^k, \mu)x^{k+1} = A(t^k, \mu)x^k + f(x^k, \mu), \]

\(x, x^k \in \mathcal{W}^n \subset \mathbb{R}^n, E, A \in \mathbb{R}^{n \times n}, n \) is large.

Often the output \(y = g(x) \), or \(y =Cx \) is of interest.
MOR for Nonlinear Parametric Systems

Original full order system (FOM)

\[E(t, \mu) \frac{dx}{dt} = A(t, \mu)x + f(x, \mu), \]

or

\[E(t^k, \mu)x^{k+1} = A(t^k, \mu)x^k + f(x^k, \mu), \]

\(x, x^k \in \mathcal{W}^n \subset \mathbb{R}^n, E, A \in \mathbb{R}^{n \times n}, n \) is large.

Often the output \(y = g(x) \), or \(y = Cx \) is of interest.

Reduced-order model (ROM)

\[\hat{E}(t, \mu) \frac{dz}{dt} = \hat{A}(t, \mu)z + W^T f(Vz, \mu), \quad \hat{x} := Vz, \]

or

\[\hat{E}(t^k, \mu)z^{k+1} = \hat{A}(t^k, \mu)z^k + W^T f(Vz^k, \mu) \quad \hat{x}^k := Vz^k, \]

\(\hat{E} = W^T E V, \hat{A} = W^T A V, W, V \in \mathbb{R}^{n \times N}, z, z^k \in \mathbb{R}^N, N \ll n. \)
Let \(\hat{y}(t, \mu) \) be the approximate output of interest. Arising questions are:

1. How to deal with the nonlinearity and/or non-affinity, i.e., efficiently compute \(W^T f(Vz, \mu) \) or \(W^T f(Vz^k, \mu)? \)

2. How to estimate the error in the quantities-of-interest, i.e., \(\|y - \hat{y}\| \leq \? \)?

3. How to efficiently construct the projection matrices \(V \) and \(W \)?

\(\Rightarrow \) EIM.
Let $\hat{y}(t, \mu)$ be the approximate output of interest. Arising questions are:

1. How to deal with the nonlinearity and/or non-affinity, i.e., efficiently compute $W^T f(Vz, \mu)$ or $W^T f(Vz^k, \mu)$? \leadsto EIM.

2. How to estimate the error in the quantities-of-interest, i.e., $\|y - \hat{y}\| \leq ? \leadsto$ Output error bound.
Let $\hat{y}(t, \mu)$ be the approximate output of interest. Arising questions are:

1. How to deal with the nonlinearity and/or non-affinity, i.e., efficiently compute $W^T f(Vz, \mu)$ or $W^T f(Vz^k, \mu)$? \rightsquigarrow EIM.

2. How to estimate the error in the quantities-of-interest, i.e., $\|y - \hat{y}\| \leq ?$ \rightsquigarrow Output error bound.

Empirical Interpolation Method (EIM)

Idea: construct a basis of interpolation functions (vectors), and use an affine expression to approximate $W^T f(Vz, \mu)$, i.e.,

$$W^T f(Vz, \mu) \approx W^T U \beta(z, \mu).$$

Precomputed

Different methods have been proposed to construct the basis $U \in \mathbb{R}^{n \times M}$ and the corresponding coefficients $\beta(z, \mu)$:

Empirical interpolation method (EIM)

[BARRAULT/MADAY/NGUYEN/PATERA ’04]

Missing point estimation (MPE)

[ASTRID/WEILAND/WILLCOX/BACKX ’08, FASSBENDER/VENDL ’11]

Discrete empirical interpolation method (DEIM)

[CHATURANTABUT/SORENSEN ’10]

Empirical operator interpolation

[DROHMANN/HAASDONK/OHLBERGER ’12]
MOR for Nonlinear Parametric Systems

Original full order system (FOM)

\[E(t, \mu) \frac{dx}{dt} = A(t, \mu)x + f(x, \mu), \]

or

\[E(t^k, \mu)x^{k+1} = A(t^k, \mu)x^k + f(x^k, \mu). \]

Reduced-order model (ROM)

\[\hat{E}(t, \mu) \frac{dz}{dt} = \hat{A}(t, \mu)z + W^T f(Vz, \mu), \quad \hat{x} := Vz, \]

or

\[\hat{E}(t^k, \mu)z^{k+1} = \hat{A}(t^k, \mu)z^k + W^T f(Vz^k, \mu) \quad \hat{x}^k := Vz^k, \]

\[\hat{E} = W^T EV, \quad \hat{A} = W^T AV, \quad W, V \in \mathbb{R}^{n \times N}, \quad z, z^k \in \mathbb{R}^N, \quad N \ll n. \]
Original full order system (FOM)

\[E(t, \mu) \frac{dx}{dt} = A(t, \mu)x + f(x, \mu), \]

or

\[E(t^k, \mu)x^{k+1} = A(t^k, \mu)x^k + f(x^k, \mu). \]

Use Empirical Interpolation to efficiently compute \(W^T f(Vz, \mu) \)

\[\hat{E}(t, \mu) \frac{dz}{dt} = \hat{A}(t, \mu)z + W^T U \beta(z, \mu), \]

or

\[\hat{E}(t^k, \mu)z^{k+1} = \hat{A}(t^k, \mu)z^k + W^T U \beta^k(z, \mu). \]

The fast computation can be achieved by the strategy of offline-online decomposition, i.e., \(\hat{E}, \hat{A} \) and \(W^T U \) can be precomputed once \(V, W, U \) are obtained.
Consider the evolution scheme,

\[\begin{align*}
E(t^k, \mu)x^{k+1} &= A(t^k, \mu)x^k + f(x^k, \mu), \\
y^{k+1} &= Cx^{k+1}.
\end{align*} \]

The reduced-order model (ROM):

\[\begin{align*}
\hat{E}(t^k, \mu)z^{k+1} &= \hat{A}(t^k, \mu)z^k + W^T f(Vz^k, \mu), \\
\hat{y}^{k+1} &= CVz^{k+1}.
\end{align*} \]

Here, \(\hat{E}(t^k, \mu) = W^T E(t^k, \mu) V \), \(\hat{A}(t^k, \mu) = W^T A(t^k, \mu) V \), \(\hat{x}^k := Vz^k \) approximates \(x^k \), \(k = 0, \ldots, T_n \).

Define the residual:

\[r^{k+1}(\mu) := A(t^k, \mu)\hat{x}^k + f(\hat{x}^k, \mu) - E(t^k, \mu)\hat{x}^{k+1}. \]

We have the following error estimations.
Primal-only Error Bound
Field Variable Error Bound

Theorem (Error Bound 1)

[DROHMANN/HAA SDONK/OHLBERGER ’12, ZHANG/FENG/LI/BENNER ’14]

Let $e^k(\mu) := x^k - \hat{x}^k$ and $e^k_O(\mu) := y^k - \hat{y}^k$ be the error for the solution and the output at time step t^k, respectively. Under certain assumptions, we have:

\[
\|e^1(\mu)\| \leq \eta^1_{N,M}(\mu) := R^{(0)}_{F,\mu},
\]
\[
\|e^k(\mu)\| \leq \eta^k_{N,M}(\mu) := R^{(k-1)}_{F,\mu} + \sum_{i=0}^{k-2} \left(\prod_{j=i+1}^{k-1} G^{(j)}_{F,\mu} \right) R^{(i)}_{F,\mu}, \quad k = 2, \ldots, T_n.
\]

where

\[
R^{(i)}_{F,\mu} = \|E(t^i, \mu)^{-1} r^{i+1}(\mu)\|, \quad i = 0, \ldots, k - 1,
\]
\[
G^{(j)}_{F,\mu} = \|E(t^j, \mu)^{-1} A(t^j, \mu)\| + L_f \|E(t^j, \mu)^{-1}\|, \quad j = i + 1, \ldots, k - 1.
\]
Theorem (Output Error Bound 1) [Zhang/Feng/Li/Benner '14]

Under the assumptions of Prop. 1, we have:

\[\| e_O^{k+1}(\mu) \| \leq G_O^{(k)} \eta_{N,M}^{k}(\mu) + \| C \| \| E(t^k, \mu)^{-1} r^{k+1}(\mu) \|, \]

where

\[G_O^{(k)} = \| CE(t^k, \mu)^{-1} A(t^k, \mu) \| + L_f \| CE(t^k, \mu)^{-1} \|. \]
Primal-dual Output Error Bound

"Dual" system and the reduced "dual" system

\[E(t^k, \mu)^T x_{du}^{k+1} = -C^T, \quad W_{du}^T E(t^k, \mu)^T V_{du} z_{du}^{k+1} = -W_{du}^T C^T. \]

Here, \(\hat{x}_{du}^k := V_{du} z_{du}^k \) approximates \(x_{du}^k, k = 1, \ldots, T_n. \)
Primal-dual Output Error Bound

"Dual" system and the reduced "dual" system

\[E(t^k, \mu)^T x_{du}^{k+1} = -C^T, \quad W_{du}^T E(t^k, \mu)^T V_{du} z_{du}^{k+1} = -W_{du}^T C^T. \]

Here, \(\hat{x}_{du}^k := V_{du} z_{du}^k \) approximates \(x_{du}^k, k = 1, \ldots, T_n. \)

Residual of the reduced dual system:

\[r_{du}^{k+1}(\mu) := -C^T - E(t^k, \mu)^T \hat{x}_{du}^{k+1}. \]

Recall residual of the ROM:

\[r^{k+1}(\mu) := A(t^k, \mu) \hat{x}^k + f(\hat{x}^k, \mu) - E(t^k, \mu) \hat{x}^{k+1}. \]
"Dual" system and the reduced "dual" system

\[
E(t^k, \mu)^T x_{du}^{k+1} = -C^T, \quad W_{du}^T E(t^k, \mu)^T V_{du} z_{du}^{k+1} = -W_{du}^T C^T.
\]

Here, \(\hat{x}_{du}^k := V_{du} z_{du}^k\) approximates \(x_{du}^k\), \(k = 1, \ldots, T_n\).

Residual of the reduced dual system:

\[
r_{du}^{k+1}(\mu) := -C^T - E(t^k, \mu)^T \hat{x}_{du}^{k+1}.
\]

Recall residual of the ROM:

\[
r^{k+1}(\mu) := A(t^k, \mu) \hat{x}^k + f(\hat{x}^k, \mu) - E(t^k, \mu) \hat{x}^{k+1}.
\]

Define an auxiliary vector,

\[
\tilde{r}^{k+1}(\mu) := A(t^k, \mu) x^k + f(x^k, \mu) - E(t^k, \mu) \hat{x}^{k+1} - E(t^k, \mu) x^{k+1}.
\]
Theorem (Output Error Bound 2) [Zhang/Feng/Li/Benner ’15]

Assume that $E(t^k, \mu)$ is invertible, then the output error $e^k_O(\mu) := y^k - \hat{y}^k$ satisfies

$$\|e^k_O(\mu)\| \leq \tilde{\Delta}^k(\mu), \quad k = 1, \ldots, T_n,$$

where

$$\tilde{\Delta}^k(\mu) := \Phi^k(\mu)\|\tilde{r}^k(\mu)\|,$$

$$\Phi^k(\mu) = \|E(t^{k-1}, \mu)^{-T}\| \|r^k_{du}(\mu)\| + \|\hat{x}^k_{du}(\mu)\|. $$
Assume that $E(t^k, \mu)$ is invertible, then the output error $e^k_O(\mu) := y^k - \hat{y}^k$ satisfies

$$\|e^k_O(\mu)\| \leq \tilde{\Delta}^k(\mu), \quad k = 1, \ldots, T_n,$$

where

$$\tilde{\Delta}^k(\mu) := \Phi^k(\mu)\|\tilde{r}^k(\mu)\|,$$

$$\Phi^k(\mu) = \|E(t^{k-1}, \mu)^{-T}\|\|r^k_{du}(\mu)\| + \|\hat{x}^k_{du}(\mu)\|.$$

Define

$$\rho^k(\mu) := \frac{\|\tilde{r}^k(\mu)\|}{\|r^k(\mu)\|}.$$

It can be shown that $\rho^k(\mu)$ is bounded, i.e.,

$$\underline{\rho}^k(\mu) \leq \rho^k(\mu) \leq \bar{\rho}^k(\mu).$$
Corollary 1

Under the assumptions of Theorem 1, for all $\mu \in \mathcal{P}$, assume that

1. $\{\|\tilde{r}^k(\mu)\|\} \colon \exists \alpha \in \mathbb{R}^+, \text{s.t.},$
 \begin{align*}
 \alpha & \leq \|\tilde{r}^{k+1}(\mu)\|/\|\tilde{r}^k(\mu)\| \quad \forall \quad k = 1, \ldots, T_n - 1;
 \end{align*}

2. $f(\cdot, \mu)$ is Lipschitz continuous, i.e., $\exists L_f \in \mathbb{R}^+, \text{s.t.},$
 \begin{align*}
 \|f(x_1, \mu) - f(x_2, \mu)\| & \leq L_f \|x_1 - x_2\|, \quad \forall \quad x_1, x_2 \in \mathcal{W}^n;
 \end{align*}

3. $L_f < \alpha/\|E(t^k, \mu)^{-1}\|.$

Then

\[\underline{\rho}^k(\mu) \leq \rho^k(\mu) \leq \bar{\rho}^k(\mu), \]

where $\underline{\rho}^k(\mu) = \frac{\alpha}{\alpha + L_f \|E(t^{k-2}, \mu)^{-1}\|}$, $\bar{\rho}^k(\mu) = \frac{\alpha}{\alpha - L_f \|E(t^{k-2}, \mu)^{-1}\|}$.

Remark: Assumption \#3 is reasonable when $\|E(t^k, \mu)^{-1}\| \lesssim 1.$
Primal-dual Output Error Bound (Cont.)

Efficient Output Error Estimation: Case 2

Corollary 2 [Zhang/Feng/Li/Benner ’15]

Under the assumptions of Theorem 1, for all $\mu \in \mathcal{P}$, assume that

1. $\{\|\tilde{r}^k(\mu)\|\}$: $\exists \alpha, \bar{\alpha} \in \mathbb{R}^+$, s.t.,
 $$\alpha \leq \frac{\|\tilde{r}^k(\mu)\|}{\|\tilde{r}^{k+1}(\mu)\|} \leq \bar{\alpha}, \quad \forall \ k = 1, \ldots, T_n - 1;$$

2. $f(\cdot, \mu)$ is bi-Lipschitz continuous, i.e., $\exists L_f, \bar{L}_f \in \mathbb{R}^+$, s.t.,
 $$L_f \|x_1 - x_2\| \leq \|f(x_1, \mu) - f(x_2, \mu)\| \leq \bar{L}_f \|x_1 - x_2\|, \quad x_1, x_2 \in \mathcal{W}_n;$$

3. $L_f > \alpha^{-1}/\|\mathcal{E}(t^k, \mu)^{-1}\|$.

Then

$$\underline{\rho}^k(\mu) \leq \rho^k(\mu) \leq \bar{\rho}^k(\mu),$$

where

$$\underline{\rho}^k(\mu) = \frac{1}{\alpha \bar{L}_f \|\mathcal{E}(t^{k-2}, \mu)^{-1}\| + 1}, \quad \bar{\rho}^k(\mu) = \frac{1}{\alpha L_f \|\mathcal{E}(t^{k-2}, \mu)^{-1}\| - 1}.$$

Remark: Assumption #3 is reasonable when $\|\mathcal{E}(t^k, \mu)^{-1}\|$ is large.
Recall that \(\| e_O^k(\mu) \| \leq \tilde{\Delta}^k(\mu) = \Phi^k(\mu) \| \tilde{r}^k(\mu) \| \), \(\rho^k(\mu) = \frac{\| \tilde{r}^k(\mu) \|}{\| r^k(\mu) \|} \), we have:

Output Error Bound

\[
\| e_O^k(\mu) \| \leq \Delta^k(\mu) := \Phi^k(\mu) \rho^k(\mu) \| r^k(\mu) \|.
\]
Recall that $\|e^k_O(\mu)\| \leq \Delta^k(\mu) = \Phi^k(\mu)\|\tilde{r}^k(\mu)\|$, $\rho^k(\mu) = \frac{\|\tilde{r}^k(\mu)\|}{\|r^k(\mu)\|}$, we have:

Output Error Bound

$$\|e^k_O(\mu)\| \leq \Delta^k(\mu) := \Phi^k(\mu)\rho^k(\mu)\|r^k(\mu)\|.$$

Estimating the Ratio $\rho^k(\mu)$

$$\rho^k(\mu) \approx \rho_* := \frac{1}{T_n} \sum_{k=1}^{T_n} \rho^k(\mu_\star).$$

A computable output error estimation:

$$\|e^k_O\| \lesssim \Delta^k_{est}(\mu) := \rho_* \Phi^k(\mu)\|r^k(\mu)\|.$$

Here, μ_\star is chosen to be the parameter, so that

$$\mu_\star = \arg\max_{\mu \in P} \psi(\mu), \quad \psi(\mu) = \frac{1}{T_n} \sum_{k=1}^{T_n} \Delta^k_{est}(\mu).$$
POD-Greedy Algorithm

How to compute V ?

Algorithm POD-Greedy

| Input: | $P_{\text{train}}, \mu_0, \varepsilon_{\text{RB}} (< 1)$. |
| Output: | Reduced Basis (RB): $V = [v_1, \ldots, v_N]$. |

1. Initialization: $N = 0$, $V = []$, $\mu_* = \mu_0$, $\psi(\mu_*) = 1$.
2. **while** $\psi(\mu_*) > \varepsilon_{\text{RB}}$ **do**
3. Compute the trajectory $X := [x^1(\mu_*), \ldots, x^{T_n}(\mu_*)]$.
4. **POD process:**
 - If $N \neq 0$, compute $x^k(\mu_*) := x^k(\mu_*) - \text{Proj}_{\mathcal{W}}[x^k(\mu_*)]$, $k = 1, \ldots, T_n$.
 - Do SVD for X: $X = Q\Sigma F^T$, $v_{N+1} := Q(:, 1)$.
 - Enrich V: $V = [V, v_{N+1}]$, $\mathcal{W} := \text{colspan}\{V\}$.
5. $N = N + 1$.
6. Find $\mu_* := \arg \max_{\mu \in P_{\text{train}}} \psi(\mu)$.
7. **end while**

Remark: When T_n is large, adaptive snapshot selection can be applied.
Adaptive Snapshot Selection (ASS)

The idea of ASS is to discard the redundant linear information in the trajectory earlier, before the POD process.

- S_A: selected snapshots subspace,
- x: to be tested,
- $\phi(S_A, x)$: an indicator to measure the linear dependency of S_A and x, e.g.,
 \[\phi(S_A, x) = \angle(S_A, x). \]
- x is taken as a new snapshot only when x is “sufficiently” linearly independent from S_A, i.e., $\phi(S_A, x) > \varepsilon_{ASS}$.

Algorithm Adaptive Snapshot Selection [Zhang/Feng/Li/Benner ’14]

Input: \(\{x^k\}_{k=1}^{T_n}, \varepsilon_{\text{ASS}} \).

Output: Selected snapshot matrix \(S_A = [x^{k_1}, \ldots, x^{k_\ell}] \).

1. Initialization: \(j = 1, k_j = 1, S_A = [x^{k_j}] \).
2. for \(k = 2, \ldots, T_n \) do
3. if \(\phi(S_A, x^k) > \varepsilon_{\text{ASS}} \) then
4. \(j = j + 1 \).
5. \(k_j = k \).
6. \(S_A = [S_A, x^{k_j}] \).
7. end if
8. end for
Algorithm Adaptive Snapshot Selection

[Zhang/Feng/Li/Benner '14]

Input: \(\{x^k\}_{k=1}^{T_n}, \varepsilon_{\text{ASS}} \).

Output: Selected snapshot matrix \(S_A = [x^{k_1}, \ldots, x^{k_\ell}] \).

1. Initialization: \(j = 1, \ k_j = 1, \ S_A = [x^{k_j}] \).
2. for \(k = 2, \ldots, T_n \) do
3. if \(\phi(S_A, x^k) > \varepsilon_{\text{ASS}} \) then
4. \(j = j + 1 \).
5. \(k_j = k \).
6. \(S_A = [S_A, x^{k_j}] \).
7. end if
8. end for

Remark: a relaxed condition \(\phi(S_A, x^k) = \angle(x^{k_j}, x^k) \) can be employed for an efficient implementation.
ASS-POD-Greedy Algorithm

How to compute V ?

Algorithm POD-Greedy
[Haasdonk/Ohlberger '08]

Input: $\mathcal{P}_{\text{train}}, \mu_0, \varepsilon_{\text{RB}}(< 1)$.

Output: Reduced Basis (RB): $V = [v_1, \ldots, v_N]$.

1. **Initialization:** $N = 0$, $V = [], \mu_\star = \mu_0$, $\psi(\mu_\star) = 1$.
2. **while** $\psi(\mu_\star) > \varepsilon_{\text{RB}}$ **do**
3. **Compute the trajectory** $X := [x^1(\mu_\star), \ldots, x^{T_n}(\mu_\star)]$.
4. **POD process:**
 - If $N \neq 0$, compute $x^k(\mu_\star) := x^k(\mu_\star) - \text{Proj}_{\mathcal{W}}[x^k(\mu_\star)]$, $k = 1, \ldots, T_n$.
 - Do SVD for X: $X = Q\Sigma F^T$, $v_{N+1} := Q(:, 1)$.
 - Enrich V: $V = [V, v_{N+1}]$, $\mathcal{W} := \text{colspan}\{V\}$.
5. $N = N + 1$.
6. **Find** $\mu_\star := \arg \max_{\mu \in \mathcal{P}_{\text{train}}} \psi(\mu)$.
7. **end while**
ASS-POD-Greedy Algorithm

<table>
<thead>
<tr>
<th>Algorithm</th>
<th>ASS-POD-Greedy</th>
<th>[Zhang/Feng/Li/Benner '14]</th>
</tr>
</thead>
</table>

Input: \(P_{\text{train}}, \varepsilon_{RB} (< 1) \)

Output: Reduced Basis (RB): \(V = [v_1, \ldots, v_N] \)

1. Initialization: \(N = 0, V = [], \mu_* = \mu_0, \psi(\mu_*) = 1. \)
2. **while** \(\psi(\mu_*) > \varepsilon_{RB} \) **do**
3. Compute the trajectory \(X := [x^1(\mu_*), \ldots, x^{T_n}(\mu_*)], \)
 apply ASS to get: \(X_{\text{ASS}} := [x^{k_1}(\mu_*), \ldots, x^{k_\ell}(\mu_*)] \) \((\ell \ll T_n). \)
4. **POD process:**
 If \(N \neq 0 \), compute \(x^{k_j}(\mu_*) := x^{k_j}(\mu_*) - \text{Proj}_{W}[x^{k_j}(\mu_*)], j = 1, \ldots, \ell. \)
 Do SVD for \(X_{\text{ASS}}: X_{\text{ASS}} = Q\Sigma F^T, v_{N+1} := Q(:, 1). \)
 Enrich \(V: V = [V, v_{N+1}], W := \text{colspan}\{V\}. \)
5. \(N = N + 1 \)
6. Find \(\mu_* := \arg \max_{\mu \in P_{\text{train}}} \psi(\mu). \)
7. **end while**
Numerical Examples:

1. Linear convection-diffusion equation
2. Burgers’ equation
3. Batch chromatography
4. Continuous SMB chromatography
Example 1: Linear Convection-diffusion Equation

Primal-dual Error Bound/Estimation: Proposed vs. Existing

\[u_t = q_1 u_{xx} + q_2 u_x - q_2, \quad x \in (0, 1), \quad t \in (0, 1], \]
\[y = \frac{1}{|\Omega_0|} \int_{\Omega_0} u(t, x) \, dx, \]
\[\mu := (q_1, q_2), \quad \mathcal{P} = [0.1, 1] \times [0.5, 5], \]
\[n = 800, \quad T_n = 100. \]

Error bound decay during RB extension.

ErrorBound-1: [Grepl/Patera’05], ErrorBound-2: proposed.
Example 1: Linear Convection-diffusion Equation

Behavior of ρ_*

Behavior of the average ratio $\rho_* = \frac{1}{T_n} \sum_{k=1}^{T_n} \rho_k^{\mu_*}$ during the RB construction process for the linear convection-diffusion equation.
Example 1: Linear Convection-diffusion Equation

Behavior of the Ratio $\frac{\|\tilde{r}^{n+1}\|}{\|\tilde{r}^n\|}$

Behavior of the ratio $\frac{\|\tilde{r}^{n+1}\|}{\|\tilde{r}^n\|}$ in the time trajectory corresponding to different RB dimensions for the linear convection-diffusion equation.
Example 2: Burgers’ Equation

Error Bound/Estimation: Primal Only vs. Primal-dual

\[
 u_t + \left(\frac{u^2}{2} \right)_x = \nu u_{xx} + 1, \quad x \in (0, 1), \quad t \in (0, 2],
\]

\[
 y = u(t, 1; \nu),
\]

\[
 \nu \in \mathcal{P} = [0.05, 1], \quad n = 500, \quad T_n = 1000.
\]

Error bound decay during RB extension.

ErrorBound-1: primal only, ErrorBound-2: primal-dual.
Example 2: Burgers’ Equation

Behavior of ρ_*

Behavior of the average ratio $\rho_* = \frac{1}{T_n} \sum_{k=1}^{T_n} \rho^k(\mu_*)$ during the RB construction process for the Burgers’ equation.
Example 2: Burgers’ Equation

Behavior of the Ratio \(\| \tilde{r}^{n+1} \| / \| \tilde{r}^n \| \)

Behavior of the ratio \(\| \tilde{r}^{n+1} \| / \| \tilde{r}^n \| \) in the time trajectory corresponding to different RB dimensions for the Burgers’ equation.
Example 3: Batch Chromatography

Principle of batch chromatography for binary separation.
Example 3: Batch Chromatography

Principle of batch chromatography for binary separation.

\[
\begin{align*}
A_{c}^{k+1} &= B_{c}^{k} + d_{z}^{k} - \tau h_{z}^{k} \\
q_{z}^{k+1} &= q_{z}^{k} + \Delta t h_{z}^{k} \\
c_{z}^{k}, q_{z}^{k} &\in \mathbb{R}^{n}, \tau = \frac{1 - \epsilon}{\epsilon} \Delta t
\end{align*}
\]

\[
\begin{align*}
\hat{A}_{c} a_{c}^{k+1} &= \hat{B}_{c} a_{c}^{k} + d_{0}^{k} \hat{d}_{c} - \tau \hat{H}_{c} \beta_{z}^{k} \\
a_{q}^{k+1} &= a_{q}^{k} + \Delta t \hat{H}_{q} \beta_{z}^{k} \\
a_{c}^{k}, a_{q}^{k} &\in \mathbb{R}^{N}, \beta_{z}^{k} \in \mathbb{R}^{M}
\end{align*}
\]

The parameter \(\mu = (Q, t_{in}) \).
Example 3: Batch Chromatography

Performance of the ASS for Basis Generation

Illustration of the generation of CRBs (W_a, W_b) at the same error tolerance ($\varepsilon_{CRB} = 1.0 \times 10^{-7}$) with different thresholds for ASS.

<table>
<thead>
<tr>
<th>ε_{ASS}</th>
<th>Dim. CRB ($W_a W_b$)</th>
<th>Runtime [h]</th>
</tr>
</thead>
<tbody>
<tr>
<td>no ASS –</td>
<td>146 152</td>
<td>62.5 (-)</td>
</tr>
<tr>
<td>ASS 1.0×10^{-4}</td>
<td>147 152</td>
<td>6.05 ($-90.3%$)</td>
</tr>
<tr>
<td>ASS 1.0×10^{-3}</td>
<td>147 152</td>
<td>3.62 ($-94.2%$)</td>
</tr>
<tr>
<td>ASS 1.0×10^{-2}</td>
<td>144 150</td>
<td>2.70 ($-95.7%$)</td>
</tr>
</tbody>
</table>
Example 3: Batch Chromatography

Performance of the ASS for Basis Generation

Comparison of the runtime for RB generation using the POD-Greedy algorithm with and without ASS.

<table>
<thead>
<tr>
<th>Algorithms</th>
<th>Runtime [h]</th>
</tr>
</thead>
<tbody>
<tr>
<td>POD-Greedy</td>
<td>17.9</td>
</tr>
<tr>
<td>ASS-POD-Greedy</td>
<td>7.6 (−57.5%)</td>
</tr>
</tbody>
</table>
Example 3: Batch Chromatography

Error Bound/Estimation: Primal Only vs. Primal-dual

Error bound decay during RB extension.

Runtime for the RB construction.

6.8 h 7.6 h
Example 3: Batch Chromatography

Behavior of ρ_*

Behavior of the average ratio $\rho_* = \frac{1}{T_n} \sum_{k=1}^{T_n} \rho^k(\mu_*)$ during the RB construction process for the batch chromatographic model.
Example 3: Batch Chromatography
ROM-based Optimization

FOM-based Opt.:
\[\min_{\mu \in \mathcal{P}} \{-Pr(c_z(\mu), q_z(\mu); \mu)\}, \text{ s.t.} \]
\[Rec(c_z(\mu), q_z(\mu); \mu) \geq Rec_{\text{min}}, \]
\[c_z(\mu), q_z(\mu): \text{ solutions to FOM.} \]

ROM-based Opt.:
\[\min_{\mu \in \mathcal{P}} \{-Pr(\hat{c}_z(\mu), \hat{q}_z(\mu); \mu)\}, \text{ s.t.} \]
\[Rec(\hat{c}_z(\mu), \hat{q}_z(\mu); \mu) \geq Rec_{\text{min}}, \]
\[\hat{c}_z(\mu), \hat{q}_z(\mu): \text{ solutions to ROM.} \]

Optimization based on the ROM \((N = 45)\) and the FOM \((n = 1500)\).

<table>
<thead>
<tr>
<th>Model</th>
<th>Obj. ((Pr))</th>
<th>Opt. solution ((\mu))</th>
<th>#Iterations</th>
<th>Runtime [h]/SpF</th>
</tr>
</thead>
<tbody>
<tr>
<td>FOM-Opt.</td>
<td>0.020264</td>
<td>(0.0796, 1.0545)</td>
<td>202</td>
<td>33.88 / -</td>
</tr>
<tr>
<td>ROM-Opt.</td>
<td>0.020266</td>
<td>(0.0796, 1.0545)</td>
<td>202</td>
<td>0.58 / 58</td>
</tr>
</tbody>
</table>

⋆ The optimizer: NLOPT_GN_DIRECT_L in NLopt package.
Example 4: SMB Chromatography

SMB chromatographic process with 4 zones and 8 columns.
Example 4: SMB Chromatography

Model Descriptions

A more complex system:

- More parameters: $\mu := (m_1, \ldots, m_4, Q_F)$.
- A multi-switching system: $x_T^0 = P_s x_T^n$, T is the time period.
- Cyclic steady state (CSS) computation, the system is simulated many time periods till the CSS is reached.
- A parametric coupled system.

FOM:
\[
\begin{align*}
A_z(\mu)c_{zk}^{k+1} &= B_z(\mu)c_{zk}^k + r_z^k + t_s\kappa_z q_{zk}^k \\
q_{zk}^{k+1} &= (1 - t_s\kappa_z\Delta t)q_{zk}^k + t_s\kappa_z H_z\Delta t c_{zk}^k
\end{align*}
\]

ROM:
\[
\begin{align*}
\hat{A}_z(\mu)a_{cz}^{k+1} &= \hat{B}_z(\mu)a_{cz}^k + \hat{r}_z + t_s\kappa_z \hat{D}_z a_{qz}^k \\
\hat{a}_{qz}^{k+1} &= (1 - t_s\kappa_z\Delta t)\hat{a}_{qz}^k + t_s\kappa_z H_z\Delta t \hat{D}_z^T a_{cz}^k
\end{align*}
\]

$\hat{A}_z(\mu) = V_{cz}^T A_z(\mu) V_{cz}$, $\hat{B}_z(\mu) = V_{cz}^T B_z(\mu) V_{cz}$, $\hat{r}_z = V_{cz}^T r_z^k$, $\hat{D}_z = V_{cz}^T V_{qz}$.
Example 4: SMB Chromatography

Error Behavior during the RB Construction Process

Error bound decay during RB extension.
Example 4: SMB Chromatography

Behavior of ρ_*

![Graph showing the behavior of the average ratio ρ_*](image)

Behavior of the average ratio $\rho_* = \frac{1}{T_n} \sum_{k=1}^{T_n} \rho^k(\mu_*)$ during the RB construction process for the SMB model.
Example 4: SMB Chromatography

ROM Validation

Runtime comparison of the detailed and reduced simulations over a validation set \mathcal{P}_{val} with 200 random sample parameters. $\varepsilon_{\text{RB}} = 1 \times 10^{-3}$, $\varepsilon_{\text{ASS}} = 1 \times 10^{-5}$.

<table>
<thead>
<tr>
<th>Simulations</th>
<th>Maximal error</th>
<th>Average runtime [s]/SpF</th>
</tr>
</thead>
<tbody>
<tr>
<td>FOM ($n = 800$)</td>
<td>$-$</td>
<td>338.71(-)</td>
</tr>
<tr>
<td>ROM ($N = 83$)</td>
<td>1.1×10^{-4}</td>
<td>46.7 / 7</td>
</tr>
</tbody>
</table>
Example 4: SMB Chromatography

ROM-based Optimization

FOM-based Opt.:

\[
\min_{\mu \in \mathcal{P}} \left\{ -Q(\mu) \right\}, \quad \text{s.t.,}
\]
\[
Pu_{a,E}(c_z(\mu), q_z(\mu); \mu) \geq Pu_{a,\text{min}},
\]
\[
Pu_{b,R}(c_z(\mu), q_z(\mu); \mu) \geq Pu_{b,\text{min}},
\]
\[
Q_1 \leq Q_{\text{max}},
\]
\[
c_z(\mu), q_z(\mu): \text{solutions to FOM}.
\]

ROM-based Opt.:

\[
\min_{\mu \in \mathcal{P}} \left\{ -Q(\mu) \right\}, \quad \text{s.t.,}
\]
\[
\hat{Pu}_{a,E}(\hat{c}_z(\mu), \hat{q}_z(\mu); \mu) \geq Pu_{a,\text{min}},
\]
\[
\hat{Pu}_{b,R}(\hat{c}_z(\mu), \hat{q}_z(\mu); \mu) \geq Pu_{b,\text{min}},
\]
\[
\hat{Q}_1 \leq Q_{\text{max}},
\]
\[
\hat{c}_z(\mu), \hat{q}_z(\mu): \text{solutions to ROM}.
\]

\[\mathcal{P} = [4.2, 4.7] \times [2.5, 3.0] \times [3.5, 4.0] \times [2.2, 2.7] \times [0.05, 0.1],\]

\[Pu_{a,E} := \frac{\int_0^1 c_{a,\text{CSS}}(t) \, dt}{\int_0^1 c_{a,\text{CSS}}(t) \, dt + \int_0^1 c_{b,\text{CSS}}(t) \, dt}, \quad Pu_{b,R} := \frac{\int_0^1 c_{b,\text{CSS}}(t) \, dt}{\int_0^1 c_{a,\text{CSS}}(t) \, dt + \int_0^1 c_{b,\text{CSS}}(t) \, dt}.
\]

Constraints: \(Pu_{a,\text{min}} = 99.0\%, \quad Pu_{b,\text{min}} = 99.0\%, \quad Q_{\text{max}} = 0.50.\]
Example 4: SMB Chromatography

ROM-based optimization

Comparison of the optimization based on the ROM ($N = 83$) and FOM ($n = 800$), $\varepsilon_{\text{opt}} = 1 \times 10^{-4}$.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Objective</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Q_F</td>
<td>0.07</td>
<td>0.0745</td>
<td>0.0745</td>
</tr>
<tr>
<td>m_1</td>
<td>4.50</td>
<td>4.3269</td>
<td>4.3271</td>
</tr>
<tr>
<td>m_2</td>
<td>2.90</td>
<td>2.8599</td>
<td>2.8603</td>
</tr>
<tr>
<td>Opt. solution</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>m_3</td>
<td>3.50</td>
<td>3.6036</td>
<td>3.6039</td>
</tr>
<tr>
<td>m_4</td>
<td>2.30</td>
<td>2.3468</td>
<td>2.3685</td>
</tr>
<tr>
<td>Q_F</td>
<td>0.07</td>
<td>0.0745</td>
<td>0.0745</td>
</tr>
<tr>
<td>Constraints</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$P_{u_a,E}$</td>
<td>98.89%</td>
<td>99.00%</td>
<td>99.00%</td>
</tr>
<tr>
<td>$P_{u_b,R}$</td>
<td>99.49%</td>
<td>99.00%</td>
<td>99.00%</td>
</tr>
<tr>
<td>Q_1</td>
<td>0.4161</td>
<td>0.4997</td>
<td>0.4998</td>
</tr>
<tr>
<td># Iterations</td>
<td></td>
<td>71</td>
<td>79</td>
</tr>
<tr>
<td>Runtime [h] / SpF</td>
<td></td>
<td>5.13 / -</td>
<td>0.82 / 6</td>
</tr>
</tbody>
</table>

★ The optimizer: NLOPT_LN_COBYLA in NLopt package.
Conclusions and Outlook

Conclusions:

- An efficient output error estimation for MOR of nonlinear parametrized evolution equations is proposed.
- Adaptive Snapshot Selection (ASS) is proposed, so that the offline time is largely reduced.
- Application to convection dominated problems, e.g. batch chromatography and linear SMB chromatography, is presented.

Outlook:

- More reliable and efficient estimation of $\rho^k(\mu)$.
- Reduced basis methods for SMB chromatography with uncertainty quantification (UQ).
References

