Model Reduction by Moment Matching for Linear and Nonlinear Time-Delay Systems

Giordano Scarciotti

This is a joint work with Alessandro Astolfi

Workshop on Model Order Reduction of Transport-dominated Phenomena, Berlin, Germany

May 19-20, 2015

G. Scarciotti is with CAP EEE, Imperial College London.
Contents

▶ Introduction to moment matching
▶ The time domain approach to moment matching
▶ Model reduction for linear time-delay systems
▶ Model reduction for nonlinear time-delay systems
▶ Interpolation at infinitely many points
▶ Model reduction from input/output data
▶ A toolbox for the model reduction by moment matching
▶ Remarks and further research
Contents

- Introduction to moment matching
- The time domain approach to moment matching
- Model reduction for linear time-delay systems
- Model reduction for nonlinear time-delay systems
- Interpolation at infinitely many points
- Model reduction from input/output data
- A toolbox for the model reduction by moment matching
- Remarks and further research
Moments - Interpolation approach

\[\|e\| \leq \beta(\nu) \|u\| \quad \text{with} \quad \lim_{\nu \to n} \beta(\nu) = 0 \]
\[W(s^*) = W_r(s^*) \quad \ldots \quad \left. \frac{d^k W(s)}{ds^k} \right|_{s=s^*} = \left. \frac{d^k W_r(s)}{ds^k} \right|_{s=s^*} \]
Moments - Interpolation approach

Let

$$V = [(s^* I - A)^{-1} B, (s^* I - A)^{-2} B, \ldots, (s^* I - A)^{-k} B],$$

be the generalized reachability matrix and W any matrix such that

$$W^* V = I$$

Then a reduced order model which matched the moments of the system at s^* is described by the equations

$$\dot{\xi} = W^* A V \xi + W^* B u$$

$$y = C V \xi + D u$$
Contents

- Introduction to moment matching
- The time domain approach to moment matching
- Model reduction for linear time-delay systems
- Model reduction for nonlinear time-delay systems
- Interpolation at infinitely many points
- Model reduction from input/output data
- A toolbox for the model reduction by moment matching
- Remarks and further research
Contents

- Introduction to moment matching
- The time domain approach to moment matching
- Model reduction for linear time-delay systems
- Model reduction for nonlinear time-delay systems
- Interpolation at infinitely many points
- Model reduction from input/output data
- A toolbox for the model reduction by moment matching
- Remarks and further research
Consider a linear, single-input, single-output, continuous-time, system described by the equations

\[\dot{x}(t) = Ax(t) + Bu(t), \quad y(t) = Cx(t) \]

(1)

and let

\[W(s) = C(sI - A)^{-1}B \]

be the associated transfer function.

Definition

The 0-moment of system (1) at \(s_i \in \mathbb{C} \) is the complex number \(\eta_0(s_i) = C(s_iI - A)^{-1}B \). The \(k \)-moment of system (1) at \(s_i \in \mathbb{C} \) is the complex number

\[\eta_k(s_i) = \frac{(-1)^k}{k!} \left[\frac{d^k}{ds^k} (C(sI - A)^{-1}B) \right]_{s=s_i} \]

with \(k \geq 1 \) and integer.
Moments - Time domain approach

Consider a linear, single-input, single-output, continuous-time, system described by the equations

\[\dot{x}(t) = Ax(t) + Bu(t), \quad y(t) = Cx(t) \]

(1)

and let

\[W(s) = C(sI - A)^{-1}B \]

be the associated transfer function.

Definition

The 0-moment of system (1) at \(s_i \in \mathbb{C} \) is the complex number

\[\eta_0(s_i) = C(s_iI - A)^{-1}B. \]

The \(k \)-moment of system (1) at \(s_i \in \mathbb{C} \) is the complex number

\[\eta_k(s_i) = \frac{(-1)^k}{k!} \left[\frac{d^k}{ds^k}(C(sI - A)^{-1}B) \right]_{s=s_i} \]

with \(k \geq 1 \) and integer.
Consider a linear, single-input, single-output, continuous-time, system described by the equations

\[\dot{x}(t) = Ax(t) + Bu(t), \quad y(t) = Cx(t) \]

(1)

and let

\[W(s) = C(sI - A)^{-1}B \]

be the associated transfer function.

Definition

The 0-moment of system (1) at \(s_i \in \mathbb{C} \) is the complex number \(\eta_0(s_i) = C(s_i I - A)^{-1}B \). The k-moment of system (1) at \(s_i \in \mathbb{C} \) is the complex number

\[\eta_k(s_i) = \frac{(-1)^k}{k!} \left[\frac{d^k}{ds^k} (C(sI - A)^{-1}B) \right]_{s=s_i} \]

with \(k \geq 1 \) and integer.
Lemma

Suppose \(s_i \notin \sigma(A) \). Then there exists a one-to-one relation between the moments \(\eta_0(s_1), \ldots, \eta_{k_1}(s_1), \ldots, \eta_0(s_\eta), \ldots, \eta_{k_\eta}(s_\eta) \) and the matrix \(C\Pi \), where \(\Pi \) is the unique solution of the Sylvester equation

\[
A\Pi + BL = \Pi S,
\]

with \(S \in \mathbb{R}^{\nu \times \nu} \) any non-derogatory matrix with characteristic polynomial

\[
p(s) = \prod_{i=1}^{\eta} (s - s_i)^{k_i}, \text{ where } \nu = \sum_{i=1}^{\eta} k_i,
\]

and \(L \) such that the pair \((L, S)\) is observable.

Lemma

Suppose $s_i \notin \sigma(A)$. Then there exists a one-to-one relation between the moments $\eta_0(s_1), \ldots, \eta_{k_1}(s_1), \ldots, \eta_0(s_\eta), \ldots, \eta_{k_\eta}(s_\eta)$ and the matrix $C\Pi$, where Π is the unique solution of the Sylvester equation

$$A\Pi + BL = \Pi S,$$

with $S \in \mathbb{R}^{\nu \times \nu}$ any non-derogatory matrix with characteristic polynomial $p(s) = \prod_{i=1}^{\eta} (s - s_i)^{k_i}$, where $\nu = \sum_{i=1}^{\eta} k_i$, and L such that the pair (L, S) is observable.

Lemma

Suppose $s_i \notin \sigma(A)$. Then there exists a one-to-one relation between the moments $\eta_0(s_1), \ldots, \eta_{k_1}(s_1), \ldots, \eta_0(s_\eta), \ldots, \eta_{k_\eta}(s_\eta)$ and the matrix $C\Pi$, where Π is the unique solution of the Sylvester equation

$$A\Pi + BL = \Pi S,$$

with $S \in \mathbb{R}^{\nu \times \nu}$ any non-derogatory matrix with characteristic polynomial $p(s) = \prod_{i=1}^{\eta} (s - s_i)^{k_i}$, where $\nu = \sum_{i=1}^{\eta} k_i$, and L such that the pair (L, S) is observable.

The interconnected system has a globally invariant manifold given by

\[\mathcal{M} = \{ (x, \omega) \in \mathbb{R}^{n+\nu} : x = \Pi \omega \} \]

with \(\Pi \) the unique solution of the Sylvester \(A\Pi + BL = \Pi S \).
The interconnected system has a globally invariant manifold given by

\[\mathcal{M} = \{(x, \omega) \in \mathbb{R}^{n+\nu} : x = \Pi \omega\} \]

with \(\Pi \) the unique solution of the Sylvester equation

\[A\Pi + BL = \Pi S. \]
The interconnected system has a globally invariant manifold given by

\[M = \{(x, \omega) \in \mathbb{R}^{n+\nu} : x = \Pi \omega\} \]

with \(\Pi \) the unique solution of the Sylvester \(A\Pi + BL = \Pi S \). As a result

\[y(t) = C\Pi\omega(t) + Ce^{At}(x(0) - \Pi\omega(0)) \]

where the first term on the right-hand side describes the steady-state response of the system, and the second term on the right-hand side the transient response.
Moments - Time domain approach

The interconnected system has a globally invariant manifold given by

\[M = \{ (x, \omega) \in \mathbb{R}^{n+\nu} : x = \Pi \omega \} \]

with \(\Pi \) the unique solution of the Sylvester equation \(A\Pi + BL = \Pi S \). As a result

\[y(t) = C\Pi \omega(t) + Ce^{At}(x(0) - \Pi \omega(0)) \]

where the first term on the right-hand side describes the steady-state response of the system, and the second term on the right-hand side the transient response.
The interconnected system has a local invariant manifold

\[\mathcal{M} = \{(x, \omega) \in \mathbb{R}^{n+\nu} : x = \pi(\omega)\} \]

if \(\pi(\omega) \) solves \(f(\pi(\omega), l(\omega)) = \frac{\partial \pi}{\partial \omega} s(\omega). \)
The interconnected system has a local *invariant manifold*

\[\mathcal{M} = \{(x, \omega) \in \mathbb{R}^{n+\nu} : x = \pi(\omega)\} \]

if \(\pi(\omega) \) solves \(f(\pi(\omega), l(\omega)) = \frac{\partial \pi}{\partial \omega} s(\omega) \).
The interconnected system has a local invariant manifold

\[M = \{(x, \omega) \in \mathbb{R}^{n+\nu} : x = \pi(\omega)\} \]

if \(\pi(\omega) \) solves \(f(\pi(\omega), l(\omega)) = \frac{\partial \pi}{\partial \omega} s(\omega) \). Then

\[y(t) = h(\pi(\omega)) + \varepsilon(t, x(0) - \pi(\omega(0))) \]

and the steady-state response is by definition the moment of the nonlinear system at \(s(\omega) \).
The interconnected system has a local invariant manifold

$$\mathcal{M} = \{(x, \omega) \in \mathbb{R}^{n+\nu} : x = \pi(\omega)\}$$

if $\pi(\omega)$ solves $f(\pi(\omega), l(\omega)) = \frac{\partial \pi}{\partial \omega} s(\omega)$. Then

$$y(t) = h(\pi(\omega)) + \epsilon(t, x(0) - \pi(\omega(0)))$$

and the steady-state response is by definition the moment of the nonlinear system at $s(\omega)$.
In this talk I will try to convey the message that the one-to-one relation between moments and steady-state response is a flexible and powerful tool to extend the moment matching approach to general class of systems.

Our toolbox is constituted by the steady-state equations

\[x(t) = \Pi \omega(t) \]

\[x(t) = \pi(\omega(t)) \]

\[x(t) = \Pi(t)\omega(t) \]
Contents

- Introduction to moment matching
- The time domain approach to moment matching
- Model reduction for linear time-delay systems
- Model reduction for nonlinear time-delay systems
- Interpolation at infinitely many points
- Model reduction from input/output data
- A toolbox for the model reduction by moment matching
- Remarks and further research
Contents

- Introduction to moment matching
- The time domain approach to moment matching
- Model reduction for linear time-delay systems
- Model reduction for nonlinear time-delay systems
- Interpolation at infinitely many points
- Model reduction from input/output data
- A toolbox for the model reduction by moment matching
- Remarks and further research
- Time-delay systems are ubiquitous
Motivations

- Time-delay systems are ubiquitous
- Delays generate unexpected behavior
Motivations

- Time-delay systems are ubiquitous
- Delays generate unexpected behavior
- Model reduction for linear and nonlinear systems
Motivations

- Time-delay systems are ubiquitous
- Delays generate unexpected behavior
- Model reduction for linear and nonlinear systems
- What is the role of the delay in the reduced order model?
Definition of moment for LTD systems

Consider a linear, single-input, single-output, continuous-time, time-delay system described by the equations

\[\dot{x} = \sum_{j=0}^{\varsigma} A_j x_{\tau_j} + \sum_{j=\varsigma+1}^{\mu} B_j u_{\tau_j}, \quad y = \sum_{j=0}^{\varsigma} C_j x_{\tau_j}, \]

(2)

and let \(W(s) = \sum_{j=0}^{\varsigma} C_j e^{-s \tau_j} \left(s l - \sum_{j=0}^{\varsigma} A_j e^{-s \tau_j} \right)^{-1} \sum_{j=\varsigma+1}^{\mu} B_j e^{-s \tau_j} \).

Definition

The \(k \)-moment of system (2) at \(s_i \in \mathbb{C} \) is the complex number

\[\eta_k(s_i) = \frac{(-1)^k}{k!} \left[\frac{d^k}{ds^k} \left(\sum_{j=0}^{\varsigma} C_j e^{-s \tau_j} \left(s l - \sum_{j=0}^{\varsigma} A_j e^{-s \tau_j} \right)^{-1} \sum_{j=\varsigma+1}^{\mu} B_j e^{-s \tau_j} \right) \right]_{s=s_i} \]

with \(k \geq 0 \) integer.
Consider a linear, single-input, single-output, continuous-time, time-delay system described by the equations

\[
\dot{x} = \sum_{j=0}^{\varsigma} A_j x_{\tau_j} + \sum_{j=\varsigma+1}^{\mu} B_j u_{\tau_j}, \quad y = \sum_{j=0}^{\varsigma} C_j x_{\tau_j},
\]

(2)

and let \(W(s) = \sum_{j=0}^{\varsigma} C_j e^{-s\tau_j} \left(s I - \sum_{j=0}^{\varsigma} A_j e^{-s\tau_j} \right)^{-1} \sum_{j=\varsigma+1}^{\mu} B_j e^{-s\tau_j} \).

Definition

The \(k \)-moment of system (2) at \(s_i \in \mathbb{C} \) is the complex number

\[
\eta_k(s_i) = \frac{(-1)^k}{k!} \left[\frac{d^k}{ds^k} \left(\sum_{j=0}^{\varsigma} C_j e^{-s\tau_j} \left(s I - \sum_{j=0}^{\varsigma} A_j e^{-s\tau_j} \right)^{-1} \sum_{j=\varsigma+1}^{\mu} B_j e^{-s\tau_j} \right) \right]_{s=s_i}
\]

with \(k \geq 0 \) integer.
 Lemma

Let \(\tilde{A}(s) = \sum_{j=0}^{\varsigma} A_j e^{-s\tau_j} \) and suppose \(s_i \notin \sigma(\tilde{A}(s_i)) \) for all \(i = 1, \ldots, \eta \). Then there exists a one-to-one relation between the moments \(\eta_0(s_1), \ldots, \eta_{k_1}(s_1), \ldots, \eta_0(s_\eta), \ldots, \eta_{k_\eta}(s_\eta) \) and the matrix \(\sum_{j=0}^{\varsigma} C_j \Pi e^{-S\tau_j} \), where \(\Pi \) is the unique solution of the Sylvester-like equation

\[
\sum_{j=0}^{\varsigma} A_j \Pi e^{-S\tau_j} - \Pi S = - \sum_{j=\varsigma+1}^{\mu} B_j L e^{-S\tau_j}
\]

with \(S \in \mathbb{R}^{\nu \times \nu} \) any non-derogatory matrix with characteristic polynomial \(p(s) = \prod_{i=1}^{\eta} (s - s_i)^{k_i} \), where \(\nu = \sum_{i=1}^{\eta} k_i \) and \(L \) such that the pair \((L, S)\) is observable.
Definition of moment for LTD systems

Lemma

Let \(\bar{A}(s) = \sum_{j=0}^{s} A_j e^{-s \tau_j} \) and suppose \(s_i \notin \sigma(\bar{A}(s_i)) \) for all \(i = 1, \ldots, \eta \). Then there exists a one-to-one relation between the moments \(\eta_0(s_1), \ldots, \eta_k(s_1), \ldots, \eta_0(s_\eta), \ldots, \eta_{k_\eta}(s_\eta) \) and the matrix \(\sum_{j=0}^{s} C_j \Pi e^{-S \tau_j} \), where \(\Pi \) is the unique solution of the Sylvester-like equation

\[
\sum_{j=0}^{s} A_j \Pi e^{-S \tau_j} - \Pi S = - \sum_{j=s+1}^{\mu} B_j L e^{-S \tau_j}
\]

with \(S \in \mathbb{R}^{\nu \times \nu} \) any non-derogatory matrix with characteristic polynomial \(p(s) = \prod_{i=1}^{\eta} (s - s_i)^{k_i} \), where \(\nu = \sum_{i=1}^{\eta} k_i \) and \(L \) such that the pair \((L, S)\) is observable.
Lemma

Let \(\tilde{A}(s) = \sum_{j=0}^{S} A_j e^{-s \tau_j} \) and suppose \(s_i \notin \sigma(\tilde{A}(s_i)) \) for all \(i = 1, \ldots, \eta \). Then there exists a one-to-one relation between the moments \(\eta_0(s_1), \ldots, \eta_k(s_1), \ldots, \eta_0(s_\eta), \ldots, \eta_k(s_\eta) \) and the matrix \(\sum_{j=0}^{S} C_j \Pi e^{-S \tau_j} \), where \(\Pi \) is the unique solution of the Sylvester-like equation

\[
\sum_{j=0}^{S} A_j \Pi e^{-S \tau_j} - \Pi S = - \sum_{j=S+1}^{\mu} B_j Le^{-S \tau_j}
\]

with \(S \in \mathbb{R}^{\nu \times \nu} \) any non-derogatory matrix with characteristic polynomial

\[
p(s) = \prod_{i=1}^{\eta} (s - s_i)^{k_i}, \text{ where } \nu = \sum_{i=1}^{\eta} k_i \text{ and } L \text{ such that the pair } (L, S) \text{ is observable.}
\]
The interconnected system has a globally invariant manifold given by

$$\mathcal{M} = \{(x, \omega) \in \mathbb{R}^{n+\nu} : x = \Pi \omega\}$$

with Π the unique solution of the Sylvester-like equation.
The interconnected system has a globally **invariant manifold** given by

$$
\mathcal{M} = \{(x, \omega) \in \mathbb{R}^{n+\nu} : x = \Pi \omega\}
$$

with \(\Pi\) the unique solution of the Sylvester-like equation.
The interconnected system has a globally invariant manifold given by

\[\mathcal{M} = \{ (x, \omega) \in \mathbb{R}^{n+\nu} : x = \Pi \omega \} \]

with \(\Pi \) the unique solution of the Sylvester-like equation. As a result

\[
y(t) = \sum_{j=0}^{\varsigma} C_j \Pi e^{-S_j \omega} + \sum_{j=0}^{\varsigma} C_j \mathcal{L}^{-1} \{(sI - \tilde{A}(s))^{-1}(x(0) - \Pi \omega(0))\}
\]

where the first term on the right-hand side describes the steady-state response of the system, and the second term the transient response.
The interconnected system has a globally invariant manifold given by

\[\mathcal{M} = \left\{ (x, \omega) \in \mathbb{R}^{n+\nu} : x = \Pi \omega \right\} \]

with \(\Pi \) the unique solution of the Sylvester-like equation. As a result

\[
y(t) = \sum_{j=0}^{\varsigma} C_j \Pi e^{-S\tau_j} \omega + \sum_{j=0}^{\varsigma} C_j \mathcal{L}^{-1}\left\{ (sl - \tilde{A}(s))^{-1}(x(0) - \Pi \omega(0)) \right\}
\]

where the first term on the right-hand side describes the steady-state response of the system, and the second term the transient response.
\[
\dot{x} = \sum_{j=1}^{q} D_j \dot{x}_c_j + \sum_{j=0}^{s} A_j x_{\tau_j} + \sum_{j=\varsigma+1}^{\mu} B_j u_{\tau_j} + \sum_{j=1}^{r} \int_{t-h_j}^{t} (G_j x(\theta) + H_j u(\theta)) d\theta
\]
\[\dot{x} = \sum_{j=1}^{q} D_j \dot{x}_c_j + \sum_{j=0}^{s} A_j x_{\tau_j} + \sum_{j=s+1}^{\mu} B_j u_{\tau_j} + \sum_{j=1}^{r} \int_{t-h_j}^{t} (G_j x(\theta) + H_j u(\theta)) d\theta \]
Neutral type - Distributed delays

\[\dot{x} = \sum_{j=1}^{q} D_j \dot{x}_{c_j} + \sum_{j=0}^{s} A_j x_{\tau_j} + \sum_{j=\varsigma+1}^{\mu} B_j u_{\tau_j} + \sum_{j=1}^{r} \int_{t-h_j}^{t} (G_j x(\theta) + H_j u(\theta)) d\theta \]

The relation between moments and steady-state response is a powerful tool!

\[x(t) = \Pi \omega(t) \quad \omega_\tau = e^{S\tau} \omega(t) \quad \int_{t-h}^{t} \omega(\theta) d\theta = S^{-1}(I - e^{-Sh})\omega(t) \]
\[
\dot{x} = \sum_{j=1}^{q} D_j \dot{x}_c_j + \sum_{j=0}^{s} A_j x_{\tau_j} + \sum_{j=s+1}^{\mu} B_j u_{\tau_j} + \sum_{j=1}^{r} \int_{t-h_j}^{t} (G_j x(\theta) + H_j u(\theta)) d\theta
\]

The relation between moments and steady-state response is a powerful tool!

\[
x(t) = \Pi \omega(t) \quad \omega_{\tau} = e^{S\tau} \omega(t) \quad \int_{t-h}^{t} \omega(\theta) d\theta = S^{-1}(I - e^{-Sh})\omega(t)
\]

Hence, the associated Sylvester-like equation is

\[
\sum_{j=0}^{s} A_j \Pi e^{-S\tau_j} + \sum_{j=1}^{r} G_j \Pi S^{-1}(I - e^{-Sh_j}) + \sum_{j=1}^{q} D_j \Pi Se^{-Sc_j} - \Pi S =
\]

\[
= - \sum_{j=s+1}^{\mu} B_j L e^{-S\tau_j} - \sum_{j=1}^{r} H_j LS^{-1}(I - e^{-Sh_j}).
\]

\[\Pi \text{ unique if } s_i \notin \sigma \left(\sum_{j=1}^{q} D_j s e^{-sc_j} + \sum_{j=0}^{s} A_j e^{-s\tau_j} + \sum_{j=1}^{r} G_j \frac{1 - e^{-sh_j}}{s} \right) \text{ and } s_i \neq 0.\]
Neutral type - Distributed delays

\[
\dot{x} = \sum_{j=1}^{q} D_j \dot{x}_{c_j} + \sum_{j=0}^{s} A_j x_{\tau_j} + \sum_{j=\varsigma+1}^{\mu} B_j u_{\tau_j} + \sum_{j=1}^{r} \int_{t-h_j}^{t} (G_j x(\theta) + H_j u(\theta)) d\theta
\]

The relation between moments and steady-state response is a powerful tool!

\[
x(t) = \Pi \omega(t) \quad \omega_{\tau} = e^{S\tau} \omega(t) \quad \int_{t-h}^{t} \omega(\theta) d\theta = S^{-1}(I - e^{-Sh})\omega(t)
\]

Hence, the associated Sylvester-like equation is

\[
\sum_{j=0}^{s} A_j \Pi e^{-S\tau_j} + \sum_{j=1}^{r} G_j \Pi S^{-1}(I - e^{-Sh_j}) + \sum_{j=1}^{q} D_j \Pi Se^{-Sc_j} - \Pi S = 0
\]

\[
= - \sum_{j=\varsigma+1}^{\mu} B_j L e^{-S\tau_j} - \sum_{j=1}^{r} H_j L S^{-1}(I - e^{-Sh_j}).
\]

\(\Pi\) unique if \(s_i \notin \sigma\left(\sum_{j=1}^{q} D_j se^{-sc_j} + \sum_{j=0}^{s} A_j e^{-s\tau_j} + \sum_{j=1}^{r} G_j \frac{1 - e^{-sh_j}}{s}\right)\) and \(s_i \neq 0\).
Reduced model with free parameters

The system

\[\dot{\xi} = \sum_{j=0}^{\rho} F_j \xi_{\chi_j} + \sum_{j=\rho+1}^{\rho} G_j u_{\chi_j}, \quad \psi = \sum_{j=0}^{d} H_j \xi_{\chi_j}, \]

is a model of the original system at \(S \), if \(s_l \notin \sigma \left(\sum_{j=0}^{\rho} F_j e^{-s_l \chi_j} \right) \) for all \(l = 1, \ldots, \eta \), and there exists a unique solution \(P \) of the equation

\[\sum_{j=0}^{\rho} F_j Pe^{-S\chi_j} - PS = - \sum_{j=\rho+1}^{\rho} G_j Le^{-S\chi_j}, \]

such that

\[\sum_{j=0}^{\delta} C_j \Pi e^{-S\tau_j} = \sum_{j=0}^{d} H_j Pe^{-S\chi_j} \]
The system

\[
\dot{\xi} = \sum_{j=0}^{\varrho} F_j \xi_j + \sum_{j=\varrho+1}^{\rho} G_j u \chi_j, \quad \psi = \sum_{j=0}^{d} H_j \xi_j,
\]

is a model of the original system at \(S \), if \(s_l \notin \sigma \left(\sum_{j=0}^{\varrho} F_j e^{-s_l \chi_j} \right) \) for all \(l = 1, \ldots, \eta \), and there exists a unique solution \(P \) of the equation

\[
\sum_{j=0}^{\varrho} F_j P e^{-S \chi_j} - PS = -\sum_{j=\varrho+1}^{\rho} G_j L e^{-S \chi_j},
\]

such that

\[
\sum_{j=0}^{\varsigma} C_j \Pi e^{-S \tau_j} = \sum_{j=0}^{d} H_j P e^{-S \chi_j}.
\]
The system

\[\dot{\xi} = \sum_{j=0}^{\varrho} F_j \xi_{\chi_j} + \sum_{j=\varrho+1}^{\rho} G_j u_{\chi_j}, \quad \psi = \sum_{j=0}^{d} H_j \xi_{\chi_j}, \]

is a model of the original system at \(S \), if \(s_l \notin \sigma \left(\sum_{j=0}^{\varrho} F_j e^{-s_l \chi_j} \right) \) for all \(l = 1, \ldots, \eta \), and there exists a unique solution \(P \) of the equation

\[\sum_{j=0}^{\varrho} F_j Pe^{-S \chi_j} - PS = - \sum_{j=\varrho+1}^{\rho} G_j Le^{-S \chi_j}, \]

such that

\[\sum_{j=0}^{\varsigma} C_j \Pi e^{-S \tau_j} = \sum_{j=0}^{d} H_j Pe^{-S \chi_j}. \]
To construct a family of models that achieves moment matching at ν points select $P = I$. This yields the family of reduced order models

\[
\dot{\xi} = \left(S - \sum_{j=\rho+1}^{\rho} G_j L e^{-S\chi_j} - \sum_{j=1}^{\rho} F_j e^{-S\chi_j} \right) \xi + \sum_{j=1}^{\rho} F_j \xi \chi_j + \sum_{j=\rho+1}^{\rho} G_j u \chi_j,
\]

\[
\psi = \left(\sum_{j=0}^{\gamma} C_j \Pi e^{-S\tau_j} - \sum_{j=1}^{d} H_j e^{-S\chi_j} \right) \xi + \sum_{j=1}^{d} H_j \xi \chi_j,
\]

with G_j, F_j and H_j any matrices.
To construct a family of models that achieves moment matching at \(\nu \) points select \(P = I \). This yields the family of reduced order models

\[
\begin{align*}
\dot{\xi} &= \left(S - \sum_{j=\rho+1}^{\rho} G_j L e^{-S \chi_j} - \sum_{j=1}^{\rho} F_j e^{-S \chi_j} \right) \xi + \sum_{j=1}^{\rho} F_j \xi_{\chi_j} + \sum_{j=\rho+1}^{\rho} G_j u_{\chi_j}, \\
\psi &= \left(\sum_{j=0}^{S} C_j \Pi e^{-S \tau_j} - \sum_{j=1}^{d} H_j e^{-S \chi_j} \right) \xi + \sum_{j=1}^{d} H_j \xi_{\chi_j},
\end{align*}
\]

with \(G_j, F_j \) and \(H_j \) any matrices.
To construct a family of models that achieves moment matching at ν points select $P = I$. This yields the family of reduced order models

$$
\dot{\xi} = \left(\sum_{j=\rho+1}^{\rho} G_j L e^{-S \chi_j} - \sum_{j=1}^{\rho} F_j e^{-S \chi_j} \right) \xi + \sum_{j=1}^{\rho} F_j \dot{\xi} \chi_j + \sum_{j=\rho+1}^{\rho} G_j u \chi_j,
$$

$$
\psi = \left(\sum_{j=0}^{\varsigma} C_j \Pi e^{-S \tau_j} - \sum_{j=1}^{d} H_j e^{-S \chi_j} \right) \xi + \sum_{j=1}^{d} H_j \xi \chi_j,
$$

with G_j, F_j and H_j any matrices.

The delay-free model is in this family

$$
\dot{\xi} = (S - G_1 L) \xi + Gu,
$$

$$
\psi = \sum_{j=0}^{\varsigma} C_j \Pi e^{-S \tau_j} \xi
$$
Consider the model of a LC transmission line described by the equations

\[\dot{x}_1 = -\frac{1}{C_1} \left(\frac{1}{R_1} + \sqrt{\frac{C_0}{L}} \right) x_1 - \frac{2}{C_1} \sqrt{\frac{C_0}{L}} \frac{1 - R_0 \sqrt{\frac{C_0}{L}}}{1 + R_0 \sqrt{\frac{C_0}{L}}} x_{2\tau} + b_1 u, \]

\[\dot{x}_2 = x_1 + \frac{1 - R_0 \sqrt{\frac{C_0}{L}}}{1 + R_0 \sqrt{\frac{C_0}{L}}} x_{2\tau} + b_1 u, \]

\[y = c_1 x_1 + c_2 x_2, \]
Consider the model of a LC transmission line described by the equations

\[\dot{x}_1 = -\frac{1}{C_1} \left(\frac{1}{R_1} + \sqrt{\frac{C_0}{L}} \right) x_1 - \frac{2}{C_1} \sqrt{\frac{C_0}{L}} \frac{1 - R_0 \sqrt{\frac{C_0}{L}}}{1 + R_0 \sqrt{\frac{C_0}{L}}} x_{2\tau} + b_1 u, \]

\[\dot{x}_2 = x_1 + \frac{1 - R_0 \sqrt{\frac{C_0}{L}}}{1 + R_0 \sqrt{\frac{C_0}{L}}} x_{2\tau} + b_1 u, \]

\[y = c_1 x_1 + c_2 x_2, \]
Consider the model of a LC transmission line described by the equations

\[
\dot{x}_1 = -\frac{1}{C_1} \left(\frac{1}{R_1} + \sqrt{\frac{C_0}{L}} \right) x_1 - \frac{2}{C_1} \sqrt{\frac{C_0}{L}} \frac{1 - R_0 \sqrt{\frac{C_0}{L}}}{1 + R_0 \sqrt{\frac{C_0}{L}}} x_{2\tau} + b_1 u,
\]

\[
\dot{x}_2 = x_1 + \frac{1 - R_0 \sqrt{\frac{C_0}{L}}}{1 + R_0 \sqrt{\frac{C_0}{L}}} x_{2\tau} + b_1 u,
\]

\[y = c_1 x_1 + c_2 x_2,
\]

A family of reduced order models at \((S = 1, L = 1)\), parameterized in \(G\), is described by the equations

\[
\dot{\xi} = \left(1 - e^{-\tau} \frac{1 - R_0 \sqrt{\frac{C_0}{L}}}{1 + R_0 \sqrt{\frac{C_0}{L}}} - G \right) \xi + \frac{1 - R_0 \sqrt{\frac{C_0}{L}}}{1 + R_0 \sqrt{\frac{C_0}{L}}} \xi_\tau + Gu,
\]

\[
\psi = \begin{bmatrix} c_1 & c_2 \end{bmatrix} \Pi \xi.
\]
Consider the model of a LC transmission line described by the equations

\[
\begin{align*}
\dot{x}_1 &= -\frac{1}{C_1} \left(\frac{1}{R_1} + \sqrt{\frac{C_0}{L}} \right) x_1 - \frac{2}{C_1} \sqrt{\frac{C_0}{L}} \frac{1 - R_0 \sqrt{\frac{C_0}{L}}}{1 + R_0 \sqrt{\frac{C_0}{L}}} x_2 \tau + b_1 u, \\
\dot{x}_2 &= x_1 + \frac{1 - R_0 \sqrt{\frac{C_0}{L}}}{1 + R_0 \sqrt{\frac{C_0}{L}}} x_2 \tau + b_1 u, \\
y &= c_1 x_1 + c_2 x_2,
\end{align*}
\]

A family of reduced order models at \((S = 1, L = 1)\), parameterized in \(G\), is described by the equations

\[
\begin{align*}
\dot{\xi} &= \left(1 - e^{-\tau} \frac{1 - R_0 \sqrt{\frac{C_0}{L}}}{1 + R_0 \sqrt{\frac{C_0}{L}}} - G \right) \xi + \frac{1 - R_0 \sqrt{\frac{C_0}{L}}}{1 + R_0 \sqrt{\frac{C_0}{L}}} \xi \tau + Gu, \\
\psi &= \begin{bmatrix} c_1 \\ c_2 \end{bmatrix} \Pi \xi.
\end{align*}
\]
Interpolating $(\rho + 1)\nu$ points

Can we exploit the additional free parameters to interpolate more points?
Can we exploit the additional free parameters to interpolate more points?

Let \(S_a \in \mathbb{R}^{\nu \times \nu} \) and \(S_b \in \mathbb{R}^{\nu \times \nu} \) be two matrices such that \(\sigma(S_a) \cap \sigma(S_b) = \emptyset \).

Consider \(F_0 \) and \(H_0 \) given before with \(\chi_2 = 0, S = S_a, d = 1 \) and \(L = L_a = L_b \). Then the selection

\[
F_1 = (S_b - S_a - G_3(e^{-S_b \chi_3} - e^{-S_a \chi_3}))(e^{-S_b \chi_1} - e^{-S_a \chi_1})^{-1},
\]

\[
F_0 = S_a - G_2 L - G_3 L e^{-S_a \chi_3} - F_1 e^{-S_a \chi_1},
\]

\[
H_1 = (C \Pi_b - C \Pi_a)(e^{-S_b \chi_1} - e^{-S_a \chi_1})^{-1},
\]

\[
H_0 = C \Pi_a - H_1 e^{-S_a \chi_1},
\]

belongs to the family of reduced order models achieving moment matching at \(S_a \) and \(S_b \), for any \(G_2 \) and \(G_3 \), with \(P_a = P_b = I \).
Interpolating \((\rho + 1)\nu\) points

Can we exploit the additional free parameters to interpolate more points?

Let \(S_a \in \mathbb{R}^{\nu \times \nu}\) and \(S_b \in \mathbb{R}^{\nu \times \nu}\) be two matrices such that \(\sigma(S_a) \cap \sigma(S_b) = \emptyset\). Consider \(F_0\) and \(H_0\) given before with \(\chi_2 = 0\), \(S = S_a\), \(d = 1\) and \(L = L_a = L_b\). Then the selection

\[
F_1 = (S_b - S_a - G_3(e^{-S_b \chi_3} - e^{-S_a \chi_3}))(e^{-S_b \chi_1} - e^{-S_a \chi_1})^{-1},
\]

\[
F_0 = S_a - G_2 L - G_3 L e^{-S_a \chi_3} - F_1 e^{-S_a \chi_1},
\]

\[
H_1 = (C \Pi_b - C \Pi_a)(e^{-S_b \chi_1} - e^{-S_a \chi_1})^{-1},
\]

\[
H_0 = C \Pi_a - H_1 e^{-S_a \chi_1},
\]

belongs to the family of reduced order models achieving moment matching at \(S_a\) and \(S_b\), for any \(G_2\) and \(G_3\), with \(P_a = P_b = I\).
Can we exploit the additional free parameters to interpolate more points?

Let $S_a \in \mathbb{R}^{\nu \times \nu}$ and $S_b \in \mathbb{R}^{\nu \times \nu}$ be two matrices such that $\sigma(S_a) \cap \sigma(S_b) = \emptyset$. Consider F_0 and H_0 given before with $\chi_2 = 0$, $S = S_a$, $d = 1$ and $L = L_a = L_b$. Then the selection

$$F_1 = (S_b - S_a - G_3(e^{-S_b \chi_3} - e^{-S_a \chi_3}))(e^{-S_b \chi_1} - e^{-S_a \chi_1})^{-1},$$

$$F_0 = S_a - G_2 L - G_3 L e^{-S_a \chi_3} - F_1 e^{-S_a \chi_1},$$

$$H_1 = (C \Pi_b - C \Pi_a)(e^{-S_b \chi_1} - e^{-S_a \chi_1})^{-1},$$

$$H_0 = C \Pi_a - H_1 e^{-S_a \chi_1},$$

belongs to the family of reduced order models achieving moment matching at S_a and S_b, for any G_2 and G_3, with $P_a = P_b = I$.
Interpolating \((\rho + 1)\nu\) points

Can we exploit the additional free parameters to interpolate more points?

Let \(S_a \in \mathbb{R}^{\nu \times \nu}\) and \(S_b \in \mathbb{R}^{\nu \times \nu}\) be two matrices such that \(\sigma(S_a) \cap \sigma(S_b) = \emptyset\). Consider \(F_0\) and \(H_0\) given before with \(\chi_2 = 0\), \(S = S_a\), \(d = 1\) and \(L = L_a = L_b\). Then the selection

\[
F_1 = (S_b - S_a - G_3(e^{-S_b \chi_3} - e^{-S_a \chi_3}))(e^{-S_b \chi_1} - e^{-S_a \chi_1})^{-1},
\]

\[
F_0 = S_a - G_2 L - G_3 L e^{-S_a \chi_3} - F_1 e^{-S_a \chi_1},
\]

\[
H_1 = (C \Pi_b - C \Pi_a)(e^{-S_b \chi_1} - e^{-S_a \chi_1})^{-1},
\]

\[
H_0 = C \Pi_a - H_1 e^{-S_a \chi_1},
\]

belongs to the family of reduced order models achieving moment matching at \(S_a\) and \(S_b\), for any \(G_2\) and \(G_3\), with \(P_a = P_b = I\).
Bode plot of a $n = 1006$ delay-free system (blue/solid line), of a $\nu = 8$ delay-free reduced order model (black/dash-dotted line) and a $\nu = 8$ time-delay reduced order model (red/dotted line). The squares indicate the first set of interpolation points, whereas the circles indicate the second set.
Contents

- Introduction to moment matching
- The time domain approach to moment matching
- Model reduction for linear time-delay systems
- Model reduction for nonlinear time-delay systems
- Interpolation at infinitely many points
- Model reduction from input/output data
- A toolbox for the model reduction by moment matching
- Remarks and further research
Contents

- Introduction to moment matching
- The time domain approach to moment matching
- Model reduction for linear time-delay systems
- Model reduction for nonlinear time-delay systems
- Interpolation at infinitely many points
- Model reduction from input/output data
- A toolbox for the model reduction by moment matching
- Remarks and further research
Moment for NLTD systems

Consider a nonlinear, single-input, single-output, continuous-time, time-delay system described by the equations

\[\dot{x} = f(x_{\tau_0}, \ldots, x_{\tau_\zeta}, u_{\tau_\mu}), \quad y = h(x) \]

Consider a signal generator described by the equations

\[\dot{\omega} = s(\omega), \quad \theta = l(\omega), \]

and the interconnected system

\[\dot{\omega} = s(\omega), \quad \dot{x} = f(x_{\tau_0}, \ldots, x_{\tau_\zeta}, l(\omega_{\tau_\mu})), \quad y = h(x). \]

Assumption

There exists a unique mapping \(\pi(\omega) \), locally defined in a neighborhood of \(\omega = 0 \), which solves the partial differential equation

\[\frac{\partial \pi}{\partial \omega} s(\omega) = f(\pi(\bar{\omega}_{\tau_0}), \ldots, \pi(\bar{\omega}_{\tau_\zeta}), l(\bar{\omega}_{\tau_\mu})) \] (3)

where \(\bar{\omega}_{\tau_i} = \Phi_{\tau_i}^s(\omega) \) is the flow of the vector field \(s \) at \(\tau_i \).
Consider a nonlinear, single-input, single-output, continuous-time, time-delay system described by the equations
\[\dot{x} = f(x_{\tau_0}, \ldots, x_{\tau_\varsigma}, u_{\tau_\mu}), \quad y = h(x) \]

Consider a signal generator described by the equations
\[\dot{\omega} = s(\omega), \quad \theta = l(\omega), \]

and the interconnected system
\[\dot{x} = f(x_{\tau_0}, \ldots, x_{\tau_\varsigma}, l(\omega_{\tau_\mu})), \quad y = h(x). \]

Assumption

There exists a unique mapping \(\pi(\omega) \), locally defined in a neighborhood of \(\omega = 0 \), which solves the partial differential equation
\[\frac{\partial \pi}{\partial \omega} s(\omega) = f(\pi(\bar{\omega}_{\tau_0}), \ldots, \pi(\bar{\omega}_{\tau_\varsigma}), l(\bar{\omega}_{\tau_\mu})) \] (3)

where \(\bar{\omega}_{\tau_i} = \Phi_{\tau_i}^s(\omega) \) is the flow of the vector field \(s \) at \(\tau_i \).
Assumption

The signal generator is observable.

Definition

The function $h(\pi(\omega))$, with π solution of equation (3), is the *moment of the system at* $(s(\omega), l(\omega))$.

Theorem

Assume the zero equilibrium of the system $\dot{x} = f(x_{\tau_0}, \ldots, x_{\tau_\varsigma}, 0)$ is locally exponentially stable and $s(\omega)$ is Poisson stable. Then there exists a unique $\pi(\omega)$ and the moment of the system at $(s(\omega), l(\omega))$ coincides with the steady-state response of the output of the interconnected system.
Assumption

The signal generator is observable.

Definition

The function \(h(\pi(\omega)) \), with \(\pi \) solution of equation (3), is the moment of the system at \((s(\omega), l(\omega))\).

Theorem

Assume the zero equilibrium of the system \(\dot{x} = f(x_{\tau_0}, \ldots, x_{\tau_\varsigma}, 0) \) is locally exponentially stable and \(s(\omega) \) is Poisson stable. Then there exists a unique \(\pi(\omega) \) and the moment of the system at \((s(\omega), l(\omega))\) coincides with the steady-state response of the output of the interconnected system.
Assumption

The signal generator is observable.

Definition

The function $h(\pi(\omega))$, with π solution of equation (3), is the moment of the system at $(s(\omega), l(\omega))$.

Theorem

Assume the zero equilibrium of the system $\dot{x} = f(x_{\tau_0}, \ldots, x_{\tau_s}, 0)$ is locally exponentially stable and $s(\omega)$ is Poisson stable. Then there exists a unique $\pi(\omega)$ and the moment of the system at $(s(\omega), l(\omega))$ coincides with the steady-state response of the output of the interconnected system.
A family of models that achieves moment matching at \((s(\omega), l(\omega))\) is described by the equations

\[
\dot{\xi} = s(\xi) - \delta(\xi)l(\bar{\xi}_\chi u) - \gamma(\bar{\xi}_\chi_1, \ldots, \bar{\xi}_\chi e) + \gamma(\xi_\chi_1, \ldots, \xi_\chi e) + \delta(\xi)u_\chi u
\]

\[
\psi = h(\pi(\xi))
\]

where \(\bar{\omega}_\chi_i = \Phi^s_{\chi i}(\omega)\) and \(\delta\) and \(\gamma\) are arbitrary mappings such that

\[
\frac{\partial p}{\partial \omega} s(\omega) = s(p(\omega)) - \delta(p(\omega))l(p(\bar{\omega}_\chi u)) + \delta(p(\omega))l(\omega_\chi u) - \\
- \gamma(p(\bar{\omega}_\chi_1), \ldots, p(\bar{\omega}_\chi e)) + \gamma(p(\omega_\chi_1), \ldots, p(\omega_\chi e))
\]

has the unique solution \(p(\omega) = \omega\).
A family of models that achieves moment matching at \((s(\omega), l(\omega))\) is described by the equations

\[
\dot{\xi} = s(\xi) - \delta(\xi)l(\bar{\xi}_u) - \gamma(\bar{\xi}_{\chi_1}, \ldots, \bar{\xi}_{\chi_e}) + \gamma(\xi_{\chi_1}, \ldots, \xi_{\chi_e}) + \delta(\xi)u_{\chi_u}
\]

\[
\psi = h(\pi(\xi))
\]

where \(\bar{\omega}_i = \Phi^s_{\chi_i}(\omega)\) and \(\delta\) and \(\gamma\) are arbitrary mappings such that

\[
\frac{\partial p}{\partial \omega} s(\omega) = s(p(\omega)) - \delta(p(\omega))l(p(\bar{\omega}_u)) + \delta(p(\omega))l(\omega_{\chi_u}) - \\
- \gamma(p(\bar{\omega}_{\chi_1}), \ldots, p(\bar{\omega}_{\chi_e})) + \gamma(p(\omega_{\chi_1}), \ldots, p(\omega_{\chi_e}))
\]

has the unique solution \(p(\omega) = \omega\).
\[
\frac{\partial^2 \theta}{\partial z^2}(z, t) = \frac{l}{GJ \partial t^2}(z, t), \quad z \in (0, L), \; t > 0
\]

coupled to the mixed boundary conditions

\[
GJ \frac{\partial \theta}{\partial z}(0, t) = c_a \left(\frac{\partial \theta}{\partial z}(0, t) - \Omega(t) \right), \quad GJ \frac{\partial \theta}{\partial z}(L, t) + l_B \frac{\partial^2 \theta}{\partial t^2}(L, t) = -T \left(\frac{\partial \theta}{\partial t}(L, t) \right)
\]
Reduced order model

\[\dot{\xi} = -\delta(\xi) [\xi - r\tau_2] \]

\[\psi = \pi(\xi) \]

Open-loop reduced order model

\[\dot{\xi} = -\delta(\xi) [\xi - \mu]\tau_2] \]

\[\mu = -k_1\pi(\dot{\xi}\tau_2) - k_2\pi(\xi\tau_2) + r \]

\[\psi = \pi(\xi) \]
Contents

- Introduction to moment matching
- The time domain approach to moment matching
- Model reduction for linear time-delay systems
- Model reduction for nonlinear time-delay systems
- Interpolation at infinitely many points
- Model reduction from input/output data
- A toolbox for the model reduction by moment matching
- Remarks and further research
Contents

- Introduction to moment matching
- The time domain approach to moment matching
- Model reduction for linear time-delay systems
- Model reduction for nonlinear time-delay systems
- Interpolation at infinitely many points
- Model reduction from input/output data
- A toolbox for the model reduction by moment matching
- Remarks and further research
The problem of model reduction by moment matching has been changed from a problem of interpolation of points to a problem of interpolation of signals. The output of the reduced order model has to behave as the output of the original system for a class of input signals, a concept which can be translated to nonlinear systems, time-delay systems and...
Recap and further directions

The problem of model reduction by moment matching has been changed from a problem of interpolation of points to a problem of interpolation of signals. The output of the reduced order model has to behave as the output of the original system for a class of input signals, a concept which can be translated to nonlinear systems, time-delay systems and...
Recap and further directions

The problem of model reduction by moment matching has been changed from a problem of interpolation of points to a problem of interpolation of signals. The output of the reduced order model has to behave as the output of the original system for a class of input signals, a concept which can be translated to nonlinear systems, time-delay systems and...

The results described are based on the availability of a differential representation of the signal generator, namely $\dot{\omega} = S\omega$. However, there are notable applications in which this may not be the case. For instance, the input of a dynamical system describing a power electronic device can often be a PWM wave (e.g. a square or sawtooth wave) which cannot be represented as the output of a system described by smooth differential equations.
Recap and further directions

The problem of model reduction by moment matching has been changed from a problem of interpolation of points to a problem of interpolation of signals. The output of the reduced order model has to behave as the output of the original system for a class of input signals, a concept which can be translated to nonlinear systems, time-delay systems and...

The results described are based on the availability of a differential representation of the signal generator, namely $\dot{\omega} = S\omega$. However, there are notable applications in which this may not be the case. For instance, the input of a dynamical system describing a power electronic device can often be a PWM wave (e.g. a square or sawtooth wave) which cannot be represented as the output of a system described by smooth differential equations.
The problem of model reduction by moment matching has been changed from a problem of interpolation of points to a problem of interpolation of signals. The output of the reduced order model has to behave as the output of the original system for a class of input signals, a concept which can be translated to nonlinear systems, time-delay systems and...

The results described are based on the availability of a differential representation of the signal generator, namely $\dot{\omega} = S\omega$. However, there are notable applications in which this may not be the case. For instance, the input of a dynamical system describing a power electronic device can often be a PWM wave (e.g. a square or sawtooth wave) which cannot be represented as the output of a system described by smooth differential equations.
Consider a square wave $\nabla(t)$ defined as

$$\nabla(t) = \text{sign}(\sin(t)) = \begin{cases}
1, & (k-1)\pi < t < k\pi, \\
0, & t = k\pi \text{ or } t = (k+1)\pi, \\
-1, & k\pi < t < (k+1)\pi,
\end{cases}$$

i.e. with $\text{sign}(0) = 0$, and $k = 1, 3, 5, \ldots, +\infty$.
Consider a square wave \(\square(t) \) defined as

\[
\square(t) = \text{sign}(\sin(t)) = \begin{cases}
1, & (k - 1)\pi < t < k\pi, \\
0, & t = k\pi \text{ or } t = (k + 1)\pi, \\
-1, & k\pi < t < (k + 1)\pi,
\end{cases}
\]

i.e. with \(\text{sign}(0) = 0 \), and \(k = 1, 3, 5, \ldots, +\infty \).

The Laplace transform of this function is

\[
\mathcal{L}(\square(t)) = \frac{1 - e^{-s\pi}}{s(1 + e^{-s\pi})},
\]

and this has the poles

\[
s_1 = 0, \quad s_i = (2j + 1)i,
\]

with \(j = -\infty, \ldots, -1, 0, 1, \ldots, +\infty \).
Consider a square wave \(\square(t) \) defined as

\[
\square(t) = \text{sign}(\sin(t)) = \begin{cases}
1, & (k-1)\pi < t < k\pi, \\
0, & t = k\pi \text{ or } t = (k+1)\pi, \\
-1, & k\pi < t < (k+1)\pi,
\end{cases}
\]

i.e. with \(\text{sign}(0) = 0 \), and \(k = 1, 3, 5, \ldots, +\infty \).

The Laplace transform of this function is

\[
\mathcal{L}(\square(t)) = \frac{1 - e^{-s\pi}}{s(1 + e^{-s\pi})},
\]

and this has the poles

\[
s_1 = 0, \quad s_i = (2j + 1)i,
\]

with \(j = -\infty, \ldots, -1, 0, 1, \ldots, +\infty \).
Since the function $\Box(t)$ is periodic, it admits a Fourier series, namely

$$\Box(t) = \frac{4}{\pi} \sum_{i=1,3,5,\ldots,+\infty} \frac{1}{i} \sin(it).$$
Analysis of a square wave

Since the function $\square(t)$ is periodic, it admits a Fourier series, namely

$$\square(t) = \frac{4}{\pi} \sum_{i=1,3,5,...,+\infty} \frac{1}{i} \sin(it).$$

The Laplace and Fourier transform of the square wave suggest that we could describe $\square(t)$ by means of the infinite dimensional system

$$\dot{\omega} = \begin{bmatrix}
... & ... & ... & ... \\
... & 0 & +i & 0 \\
0 & 0 & 0 & 0 \\
0 & -i & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & -2i & 0 & 0 \\
... & ... & ... & ...
\end{bmatrix} \omega$$

with output $\square = P\omega$ for some “matrix” P.
Analysis of a square wave

Since the function $\Box(t)$ is periodic, it admits a Fourier series, namely

$$\Box(t) = \frac{4}{\pi} \sum_{i=1,3,5,\ldots,\infty} \frac{1}{i} \sin(it).$$

The Laplace and Fourier transform of the square wave suggest that we could describe $\Box(t)$ by means of the infinite dimensional system

$$\dot{\omega} = \begin{bmatrix} \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ \vdots & +2i & 0 & \vdots & \vdots & \vdots \\ \vdots & 0 & +i & 0 & \vdots & \vdots \\ \vdots & 0 & 0 & 0 & \vdots & \vdots \\ \vdots & 0 & \vdots & \vdots & \vdots & \vdots \\ 0 & -2i & \vdots & \vdots & \vdots & \vdots \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \end{bmatrix} \omega$$

with output $\Box = P\omega$ for some “matrix” P.
To overcome these issues we consider signal generators in explicit form. Thus, consider

\[\omega(t) = \Lambda(t, t_0)\omega_0, \quad u = L\omega, \]

Note that for linear systems in implicit form

\[\Lambda(t, t_0) = e^{S(t-t_0)}. \]
To overcome these issues we consider signal generators in explicit form. Thus, consider

\[\omega(t) = \Lambda(t, t_0)\omega_0, \quad u = L\omega, \]

Note that for linear systems in implicit form

\[\Lambda(t, t_0) = e^{S(t-t_0)}. \]

But it describes a very large class of signals: noncontinuous periodic signals, time-varying systems, a subclass of hybrid systems, a subclass of nonlinear systems,...
To overcome these issues we consider signal generators in explicit form. Thus, consider
\[\omega(t) = \Lambda(t, t_0)\omega_0, \quad u = L\omega, \]
Note that for linear systems in implicit form
\[\Lambda(t, t_0) = e^{S(t-t_0)}. \]
But it describes a very large class of signals: noncontinuous periodic signals, time-varying systems, a subclass of hybrid systems, a subclass of nonlinear systems,...

We want to characterize the “moments” of the following interconnection
\[\omega(t) = \Lambda(t, t_0)\omega_0 \]
\[\dot{x} = Ax + BL\omega \]
\[y = Cx \]
Characterization of the moments

Theorem

Let \(\Pi(t) = \left(e^{A(t-t_0)} \Pi(t_0) + \int_{t_0}^{t} e^{A(t-\tau)} B L \Lambda(\tau, t_0) d\tau \right) \Lambda(t, t_0)^{-1} \)

be a family of matrix valued functions parametrized in \(\Pi(t_0) \in \mathbb{R}^{n \times \nu} \). Given "mild" assumptions there exists a unique \(\Pi_\infty(t_0) \) such that, for any \(\Pi(t_0) \),

\[
\lim_{t \to +\infty} \Pi(t) - \Pi_\infty(t) = 0.
\]

Moreover, if \(x(t_0) = \Pi_\infty(t_0) \omega(t_0) \) then \(x(t) - \Pi_\infty(t) \omega(t) = 0 \) for all \(t \geq t_0 \), and the set \(\{(x, \omega) | x(t) = \Pi_\infty(t) \omega(t)\} \) is attractive.
Theorem

Let \(\Pi(t) = \left(e^{A(t-t_0)} \Pi(t_0) + \int_{t_0}^{t} e^{A(t-\tau)} B L \Lambda(\tau, t_0) d\tau \right) \Lambda(t, t_0)^{-1} \)

be a family of matrix valued functions parametrized in \(\Pi(t_0) \in \mathbb{R}^{n \times \nu} \). Given “mild” assumptions there exists a unique \(\Pi_\infty(t_0) \) such that, for any \(\Pi(t_0) \),

\[
\lim_{t \to +\infty} \Pi(t) - \Pi_\infty(t) = 0.
\]

Moreover, if \(x(t_0) = \Pi_\infty(t_0) \omega(t_0) \) then

\[
x(t) - \Pi_\infty(t) \omega(t) = 0 \text{ for all } t \geq t_0, \text{ and the set } \{ (x, \omega) \mid x(t) = \Pi_\infty(t) \omega(t) \} \text{ is attractive.}\]
Characterization of the moments

Theorem

Let

\[\Pi(t) = \left(e^{A(t-t_0)} \Pi(t_0) + \int_{t_0}^{t} e^{A(t-\tau)} B L \Lambda(\tau, t_0) d\tau \right) \Lambda(t, t_0)^{-1} \]

be a family of matrix valued functions parametrized in \(\Pi(t_0) \in \mathbb{R}^{n \times \nu} \). Given "mild" assumptions there exists a unique \(\Pi_\infty(t_0) \) such that, for any \(\Pi(t_0) \),

\[\lim_{t \to +\infty} \Pi(t) - \Pi_\infty(t) = 0. \]

Moreover, if \(x(t_0) = \Pi_\infty(t_0) \omega(t_0) \) then

\[x(t) - \Pi_\infty(t) \omega(t) = 0 \text{ for all } t \geq t_0, \text{ and the set } \{ (x, \omega) | x(t) = \Pi_\infty(t) \omega(t) \} \text{ is attractive.} \]
Theorem

Let \(\Pi(t) = \left(e^{A(t-t_0)} \Pi(t_0) + \int_{t_0}^{t} e^{A(t-\tau)} B L \Lambda(\tau, t_0) d\tau \right) \Lambda(t, t_0)^{-1} \) be a family of matrix valued functions parametrized in \(\Pi(t_0) \in \mathbb{R}^{n \times \nu} \). Given “mild” assumptions there exists a unique \(\Pi_\infty(t_0) \) such that, for any \(\Pi(t_0) \), \(\lim_{t \to +\infty} \Pi(t) - \Pi_\infty(t) = 0 \). Moreover, if \(x(t_0) = \Pi_\infty(t_0) \omega(t_0) \) then \(x(t) - \Pi_\infty(t) \omega(t) = 0 \) for all \(t \geq t_0 \), and the set \(\{ (x, \omega) \mid x(t) = \Pi_\infty(t) \omega(t) \} \) is attractive.
Characterization of the moments

Theorem

Let $\Pi(t) = \left(e^{A(t-t_0)}\Pi(t_0) + \int_{t_0}^{t} e^{A(t-\tau)}BL\Lambda(\tau, t_0)d\tau\right)\Lambda(t, t_0)^{-1}$

be a family of matrix valued functions parametrized in $\Pi(t_0) \in \mathbb{R}^{n \times \nu}$. Given “mild” assumptions there exists a unique $\Pi_\infty(t_0)$ such that, for any $\Pi(t_0)$, $\lim_{t \to +\infty} \Pi(t) - \Pi_\infty(t) = 0$. Moreover, if $x(t_0) = \Pi_\infty(t_0)\omega(t_0)$ then $x(t) - \Pi_\infty(t)\omega(t) = 0$ for all $t \geq t_0$, and the set $\{(x, \omega) | x(t) = \Pi_\infty(t)\omega(t)\}$ is attractive.

Remark

$\Pi_\infty(t)$ is also the unique solution of

$$\dot{\Pi}(t) = A\Pi(t) + BL - \Pi(t)\dot{\Lambda}(t, t_0)\Lambda(t, t_0)^{-1}$$

with the initial condition $\Pi(t_0) = \Pi_\infty(t_0)$. From a practical point of view, it is necessary to know the initial condition $\Pi_\infty(t_0)$. However, since the motion $\Pi_\infty(t)$ is attractive, any solution of the two equations converges to $\Pi_\infty(t)$.

Giordano Scarciotti
Model Reduction by Moment Matching for Linear and Nonlinear Time-Delay Systems
33/56
Theorem

Let \(\Pi(t) = \left(e^{A(t-t_0)} \Pi(t_0) + \int_{t_0}^{t} e^{A(t-\tau)} B L \Lambda(\tau, t_0) d\tau \right) \Lambda(t, t_0)^{-1} \)

be a family of matrix valued functions parametrized in \(\Pi(t_0) \in \mathbb{R}^{n \times \nu} \). Given “mild” assumptions there exists a unique \(\Pi_{\infty}(t_0) \) such that, for any \(\Pi(t_0) \),

\[
\lim_{t \to +\infty} \Pi(t) - \Pi_{\infty}(t) = 0.
\]

Moreover, if \(x(t_0) = \Pi_{\infty}(t_0) \omega(t_0) \) then \(x(t) - \Pi_{\infty}(t) \omega(t) = 0 \) for all \(t \geq t_0 \), and the set \(\{ (x, \omega) \mid x(t) = \Pi_{\infty}(t) \omega(t) \} \) is attractive.

Remark

\(\Pi_{\infty}(t) \) is also the unique solution of

\[
\dot{\Pi}(t) = A \Pi(t) + B L - \Pi(t) \dot{\Lambda}(t, t_0) \Lambda(t, t_0)^{-1}
\]

with the initial condition \(\Pi(t_0) = \Pi_{\infty}(t_0) \). From a practical point of view, it is necessary to know the initial condition \(\Pi_{\infty}(t_0) \). However, since the motion \(\Pi_{\infty}(t) \) is attractive, any solution of the two equations converges to \(\Pi_{\infty}(t) \).
Consider the signal generator

$$\omega(t) = \omega(t - T),$$
$$\omega(t) = h(t, t_0)\omega_0, \quad t_0 - T \leq t < t_0,$$
$$u = L\omega,$$

then $\Pi_\infty(t)$ becomes

$$\Pi_\infty(t) = (I - e^{AT})^{-1} \left[\int_{t-T}^{t} e^{A(t-\tau)} B L \Lambda(\tau, t_0) d\tau \right] \Lambda(t, t_0)^{-1}$$
Consider the signal generator

\[\omega(t) = \omega(t - T), \]
\[\omega(t) = h(t, t_0)\omega_0, \quad t_0 - T \leq t < t_0, \]
\[u = L\omega, \]

then \(\Pi_\infty(t) \) becomes

\[\Pi_\infty(t) = (I - e^{AT})^{-1} \left[\int_{t-T}^{t} e^{A(t-\tau)}BL\Lambda(\tau, t_0)d\tau \right] \Lambda(t, t_0)^{-1} \]
A numerical example

Consider the matrix of square waves

\[
\Lambda_\cap(t, 0) = \begin{bmatrix}
\cap \left(\frac{2\pi}{T} t + \frac{\pi}{2} \right) & -\cap \left(\frac{2\pi}{T} t \right) \\
\cap \left(\frac{2\pi}{T} t \right) & \cap \left(\frac{2\pi}{T} t + \frac{\pi}{2} \right)
\end{bmatrix}.
\]

The previous equation computed for \(t = 0 \)

\[
\Pi_\infty(0) = -A^{-1}(I - e^{AT})^{-1} \left[(e^{\frac{3}{4}AT} - e^{AT} + e^{\frac{1}{2}AT} - e^{\frac{1}{4}AT}) BL + \right.
\]

\[
+ \left(e^{\frac{1}{2}AT} - e^{\frac{3}{4}AT} + e^{\frac{1}{4}AT} - I \right) BL\Lambda_\cap \left(\frac{T}{4}, 0 \right)
\]

\[
+ \left. \left(e^{\frac{1}{2}AT} - e^{\frac{3}{4}AT} + e^{\frac{1}{4}AT} - I \right) BL\Lambda_\cap \left(\frac{T}{4}, 0 \right) \right]
\]
Looking at new Π's

\[
\Lambda_{\sim}(t, 0) = \begin{bmatrix}
\cos\left(\frac{2\pi}{T} t\right) & -\sin\left(\frac{2\pi}{T} t\right) \\
\sin\left(\frac{2\pi}{T} t\right) & \cos\left(\frac{2\pi}{T} t\right)
\end{bmatrix}
\]

\[
\Lambda_{\land}(t, 0) = \begin{bmatrix}
\wedge\left(\frac{2\pi}{T} t + \frac{\pi}{2}\right) & -\wedge\left(\frac{2\pi}{T} t\right) \\
\wedge\left(\frac{2\pi}{T} t\right) & \wedge\left(\frac{2\pi}{T} t + \frac{\pi}{2}\right)
\end{bmatrix}
\]

Time history of the entries of the matrices Π_{\sim} (top), Π_{\land} (middle) and Π_{∇} (bottom).

Time history of the output (solid lines) y_{\sim} (top), y_{\land} (middle) and y_{∇} (bottom). Time histories of the steady-state of the output (dotted lines) computed as $C\Pi_{\sim}\omega$, $C\Pi_{\land}\omega$ and $C\Pi_{\nabla}\omega$.

Giordano Scarciotti
Model Reduction by Moment Matching for Linear and Nonlinear Time-Delay Systems
36/56
A new family of reduced order models

Definition

The system described by the equations

\[\xi(t) = F(t, t_0)\xi_0 + \int_{t_0}^{t} G(t - \tau)u(\tau)d\tau, \]

\[\psi(t) = H(t)\xi(t), \]

is a *model of the system*, if there exists a unique solution \(P_\infty(t) \) of the equation

\[P(t) = \left(F(t, t_0)P(t_0) + \int_{t_0}^{t} G(t - \tau)L\Lambda(\tau, t_0)d\tau \right) \Lambda^{-1}(t, t_0) \]

with \(P(t_0) = P_\infty(t_0) \) such that for any \(P(t_0) \), \(\lim_{t \to +\infty} P(t) - P_\infty(t) = 0 \) and

\[C\Pi_\infty(t) = H(t)P_\infty(t) \]
A new family of reduced order models

Definition

The system described by the equations

\[\xi(t) = F(t, t_0)\xi_0 + \int_{t_0}^{t} G(t - \tau)u(\tau)\,d\tau, \]
\[\psi(t) = H(t)\xi(t), \]

is a model of the system, if there exists a unique solution \(P(\infty)(t) \) of the equation

\[P(t) = \left(F(t, t_0)P(t_0) + \int_{t_0}^{t} G(t - \tau)L\Lambda(\tau, t_0)\,d\tau \right)\Lambda^{-1}(t, t_0) \]

with \(P(t_0) = P(\infty)(t_0) \) such that for any \(P(t_0) \), \(\lim_{t \rightarrow +\infty} P(t) - P(\infty)(t) = 0 \) and

\[C\Pi(\infty)(t) = H(t)P(\infty)(t) \]
A new family of reduced order models

Definition

The system described by the equations

\[
\begin{align*}
\xi(t) &= F(t, t_0)\xi_0 + \int_{t_0}^{t} G(t - \tau)u(\tau)d\tau, \\
\psi(t) &= H(t)\xi(t),
\end{align*}
\]

is a *model of the system*, if there exists a unique solution \(P_\infty(t) \) of the equation

\[
P(t) = \left(F(t, t_0)P(t_0) + \int_{t_0}^{t} G(t - \tau)L\Lambda(\tau, t_0)d\tau \right)\Lambda^{-1}(t, t_0)
\]

with \(P(t_0) = P_\infty(t_0) \) such that for any \(P(t_0) \), \(\lim_{t \to +\infty} P(t) - P_\infty(t) = 0 \) and

\[
C\Pi_\infty(t) = H(t)P_\infty(t)
\]
The periodic family

Definition

The system

\[\dot{\xi} = \tilde{F}\xi + \tilde{G}u, \]

\[\psi(t) = C\Pi_\infty(t)P_\infty(t)^{-1}\xi(t), \]

is a model of the system, if \(\sigma(\tilde{F}) \in \mathbb{C}_{<0} \) and

\[P_\infty(t) = (I - e^{\tilde{F}T})^{-1} \left[\int_{t-T}^{t} e^{\tilde{F}(t-\tau)}\tilde{G}L\Lambda(\tau, t_0) d\tau \right] \Lambda(t, t_0)^{-1}, \]

is non-singular for all \(t \in \mathbb{R}_{\geq 0} \).
Contents

- Introduction to moment matching
- The time domain approach to moment matching
- Model reduction for linear time-delay systems
- Model reduction for nonlinear time-delay systems
- Interpolation at infinitely many points
- Model reduction from input/output data
- A toolbox for the model reduction by moment matching
- Remarks and further research
Contents

- Introduction to moment matching
- The time domain approach to moment matching
- Model reduction for linear time-delay systems
- Model reduction for nonlinear time-delay systems
- Interpolation at infinitely many points
- Model reduction from input/output data
- A toolbox for the model reduction by moment matching
- Remarks and further research
If we have the steady-state response $C\Pi\omega(t)$, how do we recover the moments Π?
If we have the steady-state response $C\Pi\omega(t)$, how do we recover the moments Π?

How do we obtain a reduced order model if we do not have the matrices A, B, C, but we have measurements of the input and output of the system?
Let’s manipulate the response

Recall that the output of a linear system can be written as

\[y(t) = C\Pi \omega(t) + C e^{At}(x(0) - \Pi \omega(0)) \]

This can be rewritten as

\[\text{vec}(C\Pi \omega(t)) - \text{vec}(Ce^{At}\Pi \omega(0)) = \text{vec}(y(t) - Ce^{At}x(0)), \]

and

\[(\omega(t)^T \otimes C - \omega(0)^T \otimes Ce^{At}) \text{vec}(\Pi) = \text{vec}(y(t) - Ce^{At}x(0)). \]

Finally

\[(\omega(0)^T \otimes C)(e^{S^T}t \otimes I - I \otimes e^{At}) \text{vec}(\Pi) = \text{vec}(y(t) - Ce^{At}x(0)) \]
Recall that the output of a linear system can be written as

$$y(t) = C\Pi \omega(t) + Ce^{At}(x(0) - \Pi \omega(0))$$

This can be rewritten as

$$\text{vec}(C\Pi \omega(t)) - \text{vec}(Ce^{At}\Pi \omega(0)) = \text{vec}(y(t) - Ce^{At}x(0)),$$

and

$$(\omega(t)^\top \otimes C - \omega(0)^\top \otimes Ce^{At}) \text{vec}(\Pi) = \text{vec}(y(t) - Ce^{At}x(0)).$$

Finally

$$(\omega(0)^\top \otimes C)(e^{S^T}t \otimes I - I \otimes e^{At}) \text{vec}(\Pi) = \text{vec}(y(t) - Ce^{At}x(0))$$
Let’s manipulate the response

Define the time-snapshots $R_k \in \mathbb{R}^{w \times n\nu}$ and $\Upsilon_k \in \mathbb{R}^w$ as

$$\begin{align*}
R_k &= \begin{bmatrix}
(\omega(0)^{\top} \otimes C)(e^{S^{\top}t_{k-w+1}} \otimes I - I \otimes e^{At_{k-w+1}}) \\
\vdots \\
(\omega(0)^{\top} \otimes C)(e^{S^{\top}t_{k-1}} \otimes I - I \otimes e^{At_{k-1}}) \\
(\omega(0)^{\top} \otimes C)(e^{S^{\top}t_k} \otimes I - I \otimes e^{At_k})
\end{bmatrix}, \\
\Upsilon_k &= \begin{bmatrix}
y(t_{k-w+1}) - Ce^{At_{k-w+1}}x(0) \\
\vdots \\
y(t_{k-1}) - Ce^{At_{k-1}}x(0) \\
y(t_k) - Ce^{At_k}x(0)
\end{bmatrix}.
\end{align*}$$

This yields the on-line estimate

$$\text{vec}(\Pi_k) = (R_k^{\top} R_k)^{-1} R_k^{\top} \Upsilon_k$$
Let's manipulate the response

Define the time-snapshots $R_k \in \mathbb{R}^{w \times n\nu}$ and $\Upsilon_k \in \mathbb{R}^w$ as

\[
R_k = \begin{bmatrix}
(\omega(0)^\top \otimes C) \left(e^{S^\top t_{k-w+1}} \otimes I - I \otimes e^{A t_{k-w+1}} \right) \\
\vdots \\
(\omega(0)^\top \otimes C) \left(e^{S^\top t_{k-1}} \otimes I - I \otimes e^{A t_{k-1}} \right) \\
(\omega(0)^\top \otimes C) \left(e^{S^\top t_{k}} \otimes I - I \otimes e^{A t_{k}} \right)
\end{bmatrix},
\]

\[
\Upsilon_k = \begin{bmatrix}
y(t_{k-w+1}) - C e^{A t_{k-w+1}} x(0) \\
\vdots \\
y(t_{k-1}) - C e^{A t_{k-1}} x(0) \\
y(t_{k}) - C e^{A t_{k}} x(0)
\end{bmatrix}.
\]

This yields the on-line estimate

\[
\text{vec}(\Pi_k) = (R_k^\top R_k)^{-1} R_k^\top \Upsilon_k
\]
Exploiting the steady-state

Note that the equation can be written as

\[y(t) = C \Pi \omega(t) + \varepsilon(t), \]

with \(\varepsilon(t) = Ce^{At}(x(0) - \Pi \omega(0)) \) an exponentially decaying signal.
Note that the equation can be written as

\[y(t) = C\Pi \omega(t) + \varepsilon(t), \]

with \(\varepsilon(t) = Ce^{At}(x(0) - \Pi \omega(0)) \) an exponentially decaying signal.
Note that the equation can be written as

\[y(t) = C\Pi \omega(t) + \varepsilon(t), \]

with \(\varepsilon(t) = Ce^{At}(x(0) - \Pi \omega(0)) \) an exponentially decaying signal.

Thus, let \(\widetilde{C\Pi} \) be such that

\[y(t) = \widetilde{C\Pi} \omega(t), \]

and define the time-snapshots \(\tilde{R}_k \in \mathbb{R}^{w \times \nu} \) and \(\tilde{\Upsilon}_k \in \mathbb{R}^w \) as

\[\tilde{R}_k = \begin{bmatrix} \omega(t_{k-w+1}) & \ldots & \omega(t_{k-1}) & \omega(t_k) \end{bmatrix}^T \]

and

\[\tilde{\Upsilon}_k = \begin{bmatrix} y(t_{k-w+1}) & \ldots & y(t_{k-1}) & y(t_k) \end{bmatrix}^T. \]

Then

\[\text{vec}(\widetilde{C\Pi}_k) = (\tilde{R}_k^T \tilde{R}_k)^{-1}\tilde{R}_k^T\tilde{\Upsilon}_k, \]

is an approximation of the on-line estimate \(C\Pi_k \).
A recursive implementation

It is easy to derive a recursive least-squares estimation of \(\tilde{C}\Pi_k \). To this end, let

\[
\Phi_k = \left(\tilde{R}_k^\top \tilde{R}_k \right)^{-1},
\]
\[
\Psi_k = \left(\tilde{R}_{k-1}^\top \tilde{R}_{k-1} + \omega(t_k)\omega(t_k)^\top \right)^{-1}.
\]

Then

\[
\tilde{C}\Pi_k = \tilde{C}\Pi_{k-1} + \Phi_k \omega(t_k)(y(t_k) - \omega(t_k)^\top \tilde{C}\Pi_{k-1})
\]
\[
-\Phi_k \omega(t_{k-w})(y(t_{k-w}) - \omega(t_{k-w})^\top \tilde{C}\Pi_{k-1}),
\]

with

\[
\Phi_k = \Psi_k - \Psi_k \omega(t_{k-w}) \times
\]
\[
(l + \omega(t_{k-w})^\top \Psi_k \omega(t_{k-w}))^{-1} \omega(t_{k-w})^\top \Psi_k
\]

and

\[
\Psi_k = \Phi_{k-1} - \Phi_{k-1} \omega(t_k) \times
\]
\[
(l + \omega(t_k)^\top \Phi_{k-1} \omega(t_k))^{-1} \omega(t_k)^\top \Phi_{k-1}.
\]

For SISO systems the two matrix inversions are two divisions. The computation complexity of updating the estimate is \(\mathcal{O}(1) \).
A family of reduced order models

Definition

The system described by the equations

\[\dot{\xi} = F_k \xi + G_k u, \quad \phi = H_k \xi, \]

is a model of the system at \((S,L)\) at time \(t_k\), if there exists a unique solution \(P_k\) of the equation

\[F_k P_k + G_k L = P_k S, \]

such that

\[\tilde{C} \tilde{\Pi}_k = H_k P_k, \]

Remark

Select \(P_k = I\), for all \(k \geq 0\). If \(\sigma(F_k) \cap \sigma(S) = \emptyset\) for all \(k \geq 0\), then the model

\[\dot{\xi} = (S - G_k L)\xi + G_k u, \]

\[\phi = \tilde{C} \tilde{\Pi}_k \xi, \]

is a model of the system at \((S,L)\) at time \(t_k\).
A family of reduced order models

Definition

The system described by the equations

\[
\dot{\xi} = F_k \xi + G_k u, \quad \phi = H_k \xi,
\]

is a *model of the system at* \((S,L)\) *at time* \(t_k\), if there exists a unique solution \(P_k\) of the equation

\[
F_k P_k + G_k L = P_k S,
\]

such that

\[
\tilde{C} \Pi_k = H_k P_k,
\]

Remark

Select \(P_k = I\), *for all* \(k \geq 0\). *If* \(\sigma(F_k) \cap \sigma(S) = \emptyset\) *for all* \(k \geq 0\), *then the model*

\[
\dot{\xi} = (S - G_k L) \xi + G_k u, \\
\phi = \tilde{C} \Pi_k \xi,
\]

is a model of the system at \((S,L)\) *at time* \(t_k\).*
Linear time-delay systems

These results can be easily extended to linear time-delay systems. In fact, we have already seen that for linear time-delay systems the following holds

\[y(t) = \sum_{j=0}^{\varsigma} C_j \Pi e^{-S\tau_j} \omega(t) + \varepsilon(t), \]

Then

\[
\text{vec} \left(\sum_{j=0}^{\varsigma} C_j \Pi e^{-S\tau_j} \right) = (\tilde{R}_k^\top \tilde{R}_k)^{-1} \tilde{R}_k^\top \tilde{\Upsilon}_k,
\]

is an approximation of the on-line estimate \(\sum_{j=0}^{\varsigma} C_j \Pi e^{-S\tau_j} \), and families of reduced order models at time \(t_k \) can be easily defined.
These results can be easily extended to linear time-delay systems. In fact, we have already seen that for linear time-delay systems the following holds:

$$y(t) = \sum_{j=0}^{\varsigma} C_j \Pi e^{-S\tau_j} \omega(t) + \varepsilon(t),$$

Then

$$\text{vec} \left(\sum_{j=0}^{\varsigma} C_j \Pi e_k^{-S\tau_j} \right) = (\tilde{R}_k^\top \tilde{R}_k)^{-1} \tilde{R}_k^\top \tilde{\Upsilon}_k,$$

is an approximation of the on-line estimate $\sum_{j=0}^{\varsigma} C_j \Pi e_k^{-S\tau_j}$, and families of reduced order models at time t_k can be easily defined.
Matching with prescribed eigenvalues

Determining at every k the matrix G_k such that

$$\sigma(F_k) = \{\lambda_{1,k}, \ldots, \lambda_{\nu,k}\}$$

for some prescribed values $\lambda_{i,k}$. The solution of this problem is well-known and consists in selecting G_k such that

$$\sigma(S - G_k L) = \sigma(F_k).$$

This is possible for every k and for all $\lambda_{i,k} \notin \sigma(S)$ and note that G_k is independent from the estimate $\tilde{C}\Pi_k$. Note also that by observability of (L, S), G_k is unique at every k.
These problems can be solved at each k if and only if

$$\text{rank} \left[\begin{array}{c} sI - S \\ \widetilde{C}\Pi_k \end{array} \right] = n,$$

for all $s \in \sigma(S)$ at k. Even though the asymptotic value of $\widetilde{C}\Pi_k$ satisfies this condition there is no guarantee that the condition holds for all k. However, if the condition holds for the asymptotic value, there exists $\bar{k} \gg 0$ such that for all $k \geq \bar{k}$ the equation has a solution.
Figure: Bode plot of the system (solid line), of the reduced order model at $t_k = 90s$ (dotted line), of the reduced order model at $t_k = 110s$ (dash-dotted line) and of the reduced order model at $t_k = 140s$ (dashed line). The circles indicate the interpolation points.
A nonlinear example

The averaged model of the DC-to-DC Ćuk converter is given by the equations

\[
\begin{align*}
L_1 \frac{d}{dt} i_1 &= -(1 - u)v_2 + E, \\
L_3 \frac{d}{dt} i_3 &= -uv_2 - v_4, \\
C_2 \frac{d}{dt} v_2 &= (1 - u)i_1 + ui_3, \\
C_4 \frac{d}{dt} v_4 &= i_3 - Gv_4, \\
y &= v_4,
\end{align*}
\]

\[
\text{Figure: } h(\pi(\omega)) = E \frac{\omega}{\omega - 1}
\]
A nonlinear example
Contents

- Introduction to moment matching
- The time domain approach to moment matching
- Model reduction for linear time-delay systems
- Model reduction for nonlinear time-delay systems
- Interpolation at infinitely many points
- Model reduction from input/output data
- A toolbox for the model reduction by moment matching
- Remarks and further research
Contents

» Introduction to moment matching
» The time domain approach to moment matching
» Model reduction for linear time-delay systems
» Model reduction for nonlinear time-delay systems
» Interpolation at infinitely many points
» Model reduction from input/output data
» A toolbox for the model reduction by moment matching
» Remarks and further research
A matlab toolbox for moment matching
A matlab toolbox for moment matching
Contents

- Introduction to moment matching
- The time domain approach to moment matching
- Model reduction for linear time-delay systems
- Model reduction for nonlinear time-delay systems
- Interpolation at infinitely many points
- Model reduction from input/output data
- A toolbox for the model reduction by moment matching
- Remarks and further research
Contents

- Introduction to moment matching
- The time domain approach to moment matching
- Model reduction for linear time-delay systems
- Model reduction for nonlinear time-delay systems
- Interpolation at infinitely many points
- Model reduction from input/output data
- A toolbox for the model reduction by moment matching
- Remarks and further research
Remarks and further research

The topics presented today have been extracted from the following papers
Remarks and further research

The topics presented today have been extracted from the following papers

- Model reduction by moment matching for linear time-delay systems (IFAC ’14)
Remarks and further research

The topics presented today have been extracted from the following papers:

- Model reduction by moment matching for linear time-delay systems (IFAC '14)
- Model reduction by moment matching for nonlinear time-delay systems (CDC '14)
The topics presented today have been extracted from the following papers

- Model reduction by moment matching for linear time-delay systems (IFAC '14)
- Model reduction by moment matching for nonlinear time-delay systems (CDC '14)
- Model reduction of neutral linear and nonlinear time-invariant time-delay systems with discrete and distributed delays (TAC, conditionally accepted)
Remarks and further research

The topics presented today have been extracted from the following papers:

- Model reduction by moment matching for linear time-delay systems (IFAC ’14)
- Model reduction by moment matching for nonlinear time-delay systems (CDC ’14)
- Model reduction of neutral linear and nonlinear time-invariant time-delay systems with discrete and distributed delays (TAC, conditionally accepted)
- Characterization of the moments of a linear system driven by explicit signal generators (ACC ’15, to appear)
The topics presented today have been extracted from the following papers:

- Model reduction by moment matching for linear time-delay systems (IFAC '14)
- Model reduction by moment matching for nonlinear time-delay systems (CDC '14)
- Model reduction of neutral linear and nonlinear time-invariant time-delay systems with discrete and distributed delays (TAC, conditionally accepted)
- Characterization of the moments of a linear system driven by explicit signal generators (ACC '15, to appear)
- Model reduction by matching the steady-state response of explicit signal generators (TAC, submitted)
Remarks and further research

The topics presented today have been extracted from the following papers:

- Model reduction by moment matching for linear time-delay systems (IFAC ’14)
- Model reduction by moment matching for nonlinear time-delay systems (CDC ’14)
- Model reduction of neutral linear and nonlinear time-invariant time-delay systems with discrete and distributed delays (TAC, conditionally accepted)
- Characterization of the moments of a linear system driven by explicit signal generators (ACC ’15, to appear)
- Model reduction by matching the steady-state response of explicit signal generators (TAC, submitted)
- Model Reduction for linear systems and linear time-delay systems from input/output data (ECC ’15, to appear)
The topics presented today have been extracted from the following papers:

- Model reduction by moment matching for linear time-delay systems (IFAC '14)
- Model reduction by moment matching for nonlinear time-delay systems (CDC '14)
- Model reduction of neutral linear and nonlinear time-invariant time-delay systems with discrete and distributed delays (TAC, conditionally accepted)
- Characterization of the moments of a linear system driven by explicit signal generators (ACC '15, to appear)
- Model reduction by matching the steady-state response of explicit signal generators (TAC, submitted)
- Model Reduction for linear systems and linear time-delay systems from input/output data (ECC '15, to appear)
- Model reduction for nonlinear systems and nonlinear time-delay systems from input/output data (CDC '15 submitted)
Thank you for your attention!