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Aim of this Talk

Develop a unified theory for a wide range of (sparse) signal
recovery problems:

Signal separation

Super-resolution

Inpainting

De-clipping

Removal of impulse noise or narrowband interference

Establish fundamental performance limits

Propose an information-theoretic formulation
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Signal Separation

Decompose image into cartoon and textured part

observation

cartoon texture
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Image Restoration

observation

signal scratches
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Removing “Clicks” from a Vinyl/Record Player

recorded signal

original audio signal clicks
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Structural Specifics and Signal Model

z = Ax+Be

Transform A“sparsifies” images, e.g.,
wavelet transform

“Error” signal sparse in transform B:

texture: sparse in curvelet frame

scratches: sparse in ridgelet frame

clicks: sparse in identity basis
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Super-Resolution

Downsampled image

(by a factor of 9)
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Super-Resolution

Downsampled image Linear interpolation

(by a factor of 9)
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Super-Resolution

Downsampled image Sparsity-exploiting

(by a factor of 9) reconstruction
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Inpainting

W. Heisenberg D. Gábor H. Minkowski
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Signal Model for Super-Resolution and Inpainting

Only a subset of the entries in

y = Ax

is available

Taken into account by assuming that we observe

z = Ax+Be = Ax+ Ie

and choosing e so that the missing entries of y are set to, e.g., 0

“Error” signal e is sparse if few entries are missing
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Recovery of Clipped Signals

+
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Signal Model for Clipping

Instead of

y = Ax

we observe

z = Ax+ [clip(Ax)−Ax]︸ ︷︷ ︸
sparse in B=I 1 32 64 96 128 160 192 224 256
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“Error” signal is sparse if clipping is not too aggressive

Support set of e is known
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Some Existing Approaches

Literature is rich, e.g.

Signal separation:

Morphological component analysis [Starck et al., 2004; Elad et
al., 2005 ]

Split-Bregman methods [Cai et al., 2009 ]

Microlocal analysis [Donoho & Kutyniok, 2010 ]

Convex demixing [McCoy & Tropp, 2013 ]

Super-resolution:

Navier-Stokes [Bertalmio et al., 2001 ]

Sparsity enhancing [Yang et al., 2008 ]

Total variation minimization [Candès & Fernandez-Granda, 2013 ]
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Some Existing Approaches Cont’d

Inpainting:

Local transforms and separation [Dong et al., 2011 ]

Total variation minimization [Chambolle, 2004 ]

Morphological component analysis [Elad et al., 2005 ]

Image colorization [Sapiro, 2005 ]

Clustered sparsity [King et al., 2014 ]

De-clipping:

Constrained matching pursuit [Adler et al., 2011 ]
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General Problem Statement

Signal model:

z = Ax+Be

x, e sparse, may depend on each other

A, B dictionaries (bases, incomplete sets, or frames)

Redundancy can lead to sparser representation

Examples:

Overcomplete DFT

Gabor frames

Curvelet or wavelet frames

Ridgelets or shearlets

Want to recover x and/or e from z!
Knowledge on x and/or e may be available
(support set, sparsity level, full knowledge).
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Formalizing the Problem

z = Ax+Be = [A B]︸ ︷︷ ︸
D

[
x

e

]

Requires solving an underdetermined linear system of
equations

What are the fundamental limits on extracting x and e from
z?

Could use 1
2(1 + 1/µ)-threshold [Donoho & Elad, 2003;

Gribonval & Nielsen, 2003 ] for general D
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Uniqueness

Assume there exist two pairs (x, e) and (x′, e′) such that

Ax+Be = Ax′ +Be′

and hence

A(x− x′) = B(e′ − e)

The vectors (x− x′) and (e′ − e) represent the same signal s

A(x− x′) = B(e′ − e) , s

in two different dictionaries A and B
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Enter Uncertainty Principle

Assume that

x, x′ are nx-sparse ⇒ x− x′ is (2nx)-sparse

e, e′ are ne-sparse ⇒ e′ − e is (2ne)-sparse

If

nx and ne are “small enough”

A and B are “sufficiently different”

it may not be possible to satisfy

s = A(x− x′) = B(e′ − e)
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Uncertainty Relations for ONBs

[Donoho & Stark, 1989 ]: A = Im, B = Fm, Ap = Bq, then

‖p‖0 ‖q‖0 > m

m-point DFT

[Elad & Bruckstein, 2002 ]: A and B general ONBs with
µ , maxi 6=j |〈ai,bj〉|, then

‖p‖0 ‖q‖0 >
1

µ2
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Uncertainty Relation for General A, B

Theorem (Studer et al., 2011)

Let

A ∈ Cm×na be a dictionary with coherence µa

B ∈ Cm×nb be a dictionary with coherence µb

D = [A B] have coherence µ

Ap = Bq

Then, we have

‖p‖0 ‖q‖0 >
[1− µa(‖p‖0 − 1)]+ [1− µb(‖q‖0 − 1)]+

µ2
.
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Recovery with BP if supp(e) is Known (e.g., Declipping)

Theorem (Studer et al., 2011)

Let z = Ax+Be where E = supp(e) is known. Consider the convex
program

(BP, E)

{
minimize ‖x̃‖1
subject to Ax̃ ∈ ({z}+R(BE)).

If

2‖x‖0 ‖e‖0 <
[1− µa(2‖x‖0 − 1)]+[1− µb(‖e‖0 − 1)]+

µ2

then the unique solution of (BP, E) is given by x.

Extended to compressible signals and noisy measurements [Studer &
Baraniuk, 2011 ]
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Rethinking Transform Coding

Example: Separate text from picture

Text is sparse in identity basis

Use wavelets or DCT to sparsify image

Observation

A = wavelet basis A = DCT

µ = 0.25 µ ≈ 0.0039

Wavelet basis is more coherent with identity ⇒ yields worse
separation performance
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Analytical vs. Numerical Results

only known
only known

and unknown

and known

only known

only known
only known
and unknown

and knownanalytical thresholds

50% success-rate contour

signal sparsity level

er
ro
r
sp
ar
si
ty

le
ve
l

A,B ∈ R64×80

µa ≈ 0.126, µb ≈ 0.131, and µ ≈ 0.132
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The Thresholds are Tight

A = Im, B = Fm, Ap = Bq

Recovery is unique if

‖p‖0 + ‖q‖0 <
√
m

0

[
δ 0

]

0

[
0 δ

]

[
I F

] [δ
0

]
=
[
I F

] [0
δ

]

This behavior is fundamental and is known as the square-root
bottleneck
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Probabilistic Recovery Guarantees for BP

Neither support set known [Kuppinger et al., 2011 ]

One or both support sets known [Pope et al., 2011 ]

Recovery possible with high probability even if

‖p‖0 + ‖q‖0 ∼
m

log n

Compare to

‖p‖0 + ‖q‖0 ∼
√
m

This “breaks” the square-root bottleneck!
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An Information-Theoretic Formulation

Sparsity for random signals:

components of signal are drawn i.i.d. ∼ (1− ρ)δ0 + ρPcont

where 0 6 ρ 6 1 represents the mixture parameter

−→ For large dimensions, the fraction of nonzero components in the
signal is given by ρ (LLN)

General distributions — Lebesgue decomposition:

P = αPdisc + βPcont + γPsing, α+ β + γ = 1
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Almost Lossless Signal Separation

Framework inspired by [Wu & Verdú, 2010 ]:

z = Ax+Be

Existence of a measurable “separator” g such that for general random
sources x, e, for sufficiently large blocklengths

P

[
g

(
[A B]

[
x

e

])
6=

[
x

e

]]
< ε

−→ “Almost lossless signal separation”

We are interested in the structure of pairs A, B for which separation
is possible. Concretely: fix B, look for suitable A
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Setting

Source:
[

X1 · · · Xn−`︸ ︷︷ ︸
fraction: 1− λ

E1 · · · E`︸ ︷︷ ︸
fraction: λ

]T ∈ Rn

stoch. processes: (Xi)i∈N and (Ei)i∈N, fraction parameter: λ ∈ [0, 1]

Code of rate R = m/n:
(m = no. of measurements, n = no. of unknowns)

measurement matrices: A ∈ Rm×(n−`), B ∈ Rm×`

measurable separator g : Rm → Rm×(n−`) × Rm×`

R is ε-achievable if for sufficiently large n (asymptotic analysis)

P

[
g

(
[A B]

[
x

e

])
6=

[
x

e

]]
< ε
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Minkowski Dimension

A suitable measure for complexity:

Covering number:

NS(ε) := min
{
k ∈ N

∣∣∣ S ⊆
⋃

i∈{1,...,k}

Bn(ui, ε), ui ∈ Rn
}

(Lower) Minkowski dimension/Box-counting dimension:

dimB(S) := lim inf
ε→0

logNS(ε)

log 1
ε

−→ for small ε: NS(ε) ≈ ε−dimB(S)

28 / 35



Minkowski Dimension

A suitable measure for complexity:

Covering number:

NS(ε) := min
{
k ∈ N

∣∣∣ S ⊆
⋃

i∈{1,...,k}

Bn(ui, ε), ui ∈ Rn
}

(Lower) Minkowski dimension/Box-counting dimension:

dimB(S) := lim inf
ε→0

logNS(ε)

log 1
ε

−→ for small ε: NS(ε) ≈ ε−dimB(S)

28 / 35



Minkowski Dimension

A suitable measure for complexity:

Covering number:

NS(ε) := min
{
k ∈ N

∣∣∣ S ⊆
⋃

i∈{1,...,k}

Bn(ui, ε), ui ∈ Rn
}

(Lower) Minkowski dimension/Box-counting dimension:

dimB(S) := lim inf
ε→0

logNS(ε)

log 1
ε

−→ for small ε: NS(ε) ≈ ε−dimB(S)

28 / 35



Minkowski Dimension

A suitable measure for complexity:

Covering number:

NS(ε) := min
{
k ∈ N

∣∣∣ S ⊆
⋃

i∈{1,...,k}

Bn(ui, ε), ui ∈ Rn
}

(Lower) Minkowski dimension/Box-counting dimension:

dimB(S) := lim inf
ε→0

logNS(ε)

log 1
ε

−→ for small ε: NS(ε) ≈ ε−dimB(S)

28 / 35



Minkowski Dimension Compression Rate

Minkowski dimension compression rate:

RB(ε) := lim sup
n→∞

an(ε) where

an(ε) := inf

{
dimB(S)

n

∣∣∣ S ⊆ Rn, P

[[
x

e

]
∈ S

]
> 1− ε

}

Among all approximate support sets:

the smallest possible Minkowski dimension (per blocklength)
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Main Result

Theorem

Let R >RB(ε). Then, for every fixed full-rank matrix B ∈ Rm×`
with m > ` and for Lebesgue a.a. matrices A ∈ Rm×(n−`), where
m=bRnc, there exists a measurable separator g such that for
sufficiently large n

P

[
g

(
[A B]

[
x

e

])
6=

[
x

e

]]
< ε

simple and intuitive proof inspired by [Sauer et al., 1991 ]

almost all matrices A are “incoherent” to a given matrix B
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A Probabilistic Null-Space Property

Proposition

Let S ⊆ Rn be such that dimB(S) < m and let B ∈ Rm×` be a
full-rank matrix with m > `. Then

{
u ∈ S\{0}

∣∣ [A B]u = 0
}
= ∅

for Lebesgue a.a. A ∈ Rm×(n−`)

A and B ONBs, then there is no (p,q) 6= 0 such that

Ap = Bq and ‖p‖0 ‖q‖0 <
1

µ2

dimB(S) < m, then for a.a. A there is no (p,q) 6= 0 such that

Ap = Bq and u = (p,−q) ∈ S
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ker[A B]
S

dimker[A B] = n−m
dimB(S) < m

dimker[A B] + dimB(S) < n

ker[A B]

S
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Back to Discrete-Continuous Mixtures

Xi i.i.d. ∼ (1− ρ1)Pd1 + ρ1Pc1

Ei i.i.d. ∼ (1− ρ2)Pd2 + ρ2Pc2

where 0 6 ρi 6 1; for Pd1 = Pd2 = δ0 → sparse signal model
Fraction of Xi’s = 1− λ; fraction of Ei’s = λ

An exact expression for RB(ε) and a converse:

Theorem

For discrete-continuous mixtures the optimal compression rate is

RB(ε) = (1− λ)ρ1 + λρ2

Optimal no. of measurements= no. of nonzero components
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What it is and What it is not

The information-theoretic approach

applies to general source distributions

works for given B for a.a. A

yields explicit expression for optimal compression rate (i.e.,
optimal no. of measurements) for sparse signals

−→ achieves linear scaling (got rid of log n factor)

is of asymptotic nature

deals with the noiseless case

provides existence results only for decoders
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Thank you



“If you ask me anything I don’t know,

I’m not going to answer.”

— Y. Berra


