Signal Recovery, Uncertainty Relations, and Minkowski Dimension

Helmut Bőlcskei

ETH Zurich
December 2013

Joint work with C. Aubel, P. Kuppinger, G. Pope, E. Riegler, D. Stotz, and C. Studer

Aim of this Talk

- Develop a unified theory for a wide range of (sparse) signal recovery problems:

Aim of this Talk

- Develop a unified theory for a wide range of (sparse) signal recovery problems:
- Signal separation

Aim of this Talk

- Develop a unified theory for a wide range of (sparse) signal recovery problems:
- Signal separation
- Super-resolution

Aim of this Talk

- Develop a unified theory for a wide range of (sparse) signal recovery problems:
- Signal separation
- Super-resolution
- Inpainting

Aim of this Talk

- Develop a unified theory for a wide range of (sparse) signal recovery problems:
- Signal separation
- Super-resolution
- Inpainting
- De-clipping

Aim of this Talk

- Develop a unified theory for a wide range of (sparse) signal recovery problems:
- Signal separation
- Super-resolution
- Inpainting
- De-clipping
- Removal of impulse noise or narrowband interference

Aim of this Talk

- Develop a unified theory for a wide range of (sparse) signal recovery problems:
- Signal separation
- Super-resolution
- Inpainting
- De-clipping
- Removal of impulse noise or narrowband interference
- Establish fundamental performance limits

Aim of this Talk

- Develop a unified theory for a wide range of (sparse) signal recovery problems:
- Signal separation
- Super-resolution
- Inpainting
- De-clipping
- Removal of impulse noise or narrowband interference
- Establish fundamental performance limits
- Propose an information-theoretic formulation

Signal Separation

Decompose image into cartoon and textured part

observation

Signal Separation

Decompose image into cartoon and textured part

Image Restoration

Image Restoration

Removing "Clicks" from a Vinyl/Record Player

recorded signal

Removing "Clicks" from a Vinyl/Record Player

Structural Specifics and Signal Model

$$
\mathbf{z}=\mathbf{A x}+\mathbf{B e}
$$

- Transform A "sparsifies" images, e.g., wavelet transform

Structural Specifics and Signal Model

$$
\mathbf{z}=\mathbf{A x}+\mathbf{B e}
$$

- Transform A "sparsifies" images, e.g., wavelet transform

■ "Error" signal sparse in transform B:

Structural Specifics and Signal Model

$$
\mathbf{z}=\mathbf{A x}+\mathbf{B e}
$$

■ Transform A"sparsifies" images, e.g., wavelet transform

■ "Error" signal sparse in transform B:

- texture: sparse in curvelet frame

Structural Specifics and Signal Model

$$
\mathbf{z}=\mathbf{A x}+\mathbf{B e}
$$

- Transform A"sparsifies" images, e.g., wavelet transform

■ "Error" signal sparse in transform B:

- texture: sparse in curvelet frame
- scratches: sparse in ridgelet frame

Structural Specifics and Signal Model

$$
\mathbf{z}=\mathbf{A x}+\mathbf{B e}
$$

- Transform A "sparsifies" images, e.g., wavelet transform

■ "Error" signal sparse in transform B:

- texture: sparse in curvelet frame
- scratches: sparse in ridgelet frame
- clicks: sparse in identity basis

Super-Resolution

Downsampled image
(by a factor of 9)

Super-Resolution

Downsampled image
(by a factor of 9)

Linear interpolation

Super-Resolution

Downsampled image
(by a factor of 9)

Sparsity-exploiting reconstruction

Inpainting

Inpainting

Inpainting

W. Heisenberg

Inpainting

W. Heisenberg

Inpainting

W. Heisenberg D. Gábor

Inpainting

W. Heisenberg D. Gábor

Inpainting

W. Heisenberg
D. Gábor
H. Minkowski

Signal Model for Super-Resolution and Inpainting

- Only a subset of the entries in

$$
\mathbf{y}=\mathbf{A} \mathbf{x}
$$

is available

Signal Model for Super-Resolution and Inpainting

■ Only a subset of the entries in

$$
\mathbf{y}=\mathbf{A} \mathbf{x}
$$

is available

- Taken into account by assuming that we observe

$$
\mathbf{z}=\mathbf{A} \mathbf{x}+\mathbf{B e}=\mathbf{A} \mathbf{x}+\mathbf{I} \mathbf{e}
$$

and choosing e so that the missing entries of \mathbf{y} are set to, e.g., 0

Signal Model for Super-Resolution and Inpainting

■ Only a subset of the entries in

$$
\mathbf{y}=\mathbf{A} \mathbf{x}
$$

is available

- Taken into account by assuming that we observe

$$
\mathbf{z}=\mathbf{A} \mathbf{x}+\mathbf{B e}=\mathbf{A} \mathbf{x}+\mathbf{I} \mathbf{e}
$$

and choosing e so that the missing entries of \mathbf{y} are set to, e.g., 0

- "Error" signal e is sparse if few entries are missing

Recovery of Clipped Signals

Recovery of Clipped Signals

Signal Model for Clipping

- Instead of

$$
\mathbf{y}=\mathbf{A x}
$$

we observe

$$
\mathbf{z}=\mathbf{A} \mathbf{x}+\underbrace{[\operatorname{clip}(\mathbf{A} \mathbf{x})-\mathbf{A} \mathbf{x}]}_{\text {sparse in } \mathbf{B}=\mathbf{I}}
$$

Signal Model for Clipping

■ Instead of

$$
\mathbf{y}=\mathbf{A x}
$$

we observe

$$
\mathbf{z}=\mathbf{A} \mathbf{x}+\underbrace{[\operatorname{clip}(\mathbf{A x})-\mathbf{A} \mathbf{x}]}_{\text {sparse in } \mathbf{B}=\mathbf{I}}
$$

■ "Error" signal is sparse if clipping is not too aggressive

- Support set of \mathbf{e} is known

Some Existing Approaches

Literature is rich, e.g.

- Signal separation:
- Morphological component analysis [Starck et al., 2004; Elad et al., 2005]
- Split-Bregman methods [Cai et al., 2009]
- Microlocal analysis [Donoho \& Kutyniok, 2010]
- Convex demixing [McCoy \& Tropp, 2013]

Some Existing Approaches

Literature is rich, e.g.

- Signal separation:
- Morphological component analysis [Starck et al., 2004; Elad et al., 2005]
- Split-Bregman methods [Cai et al., 2009]
- Microlocal analysis [Donoho \& Kutyniok, 2010]
- Convex demixing [McCoy \& Tropp, 2013]
- Super-resolution:
- Navier-Stokes [Bertalmio et al., 2001]
- Sparsity enhancing [Yang et al., 2008]
- Total variation minimization [Candès \& Fernandez-Granda, 2013]

Some Existing Approaches Cont'd

- Inpainting:
- Local transforms and separation [Dong et al., 2011]
- Total variation minimization [Chambolle, 2004]
- Morphological component analysis [Elad et al., 2005]
- Image colorization [Sapiro, 2005]
- Clustered sparsity [King et al., 2014]
- De-clipping:
- Constrained matching pursuit [Adler et al., 2011]

General Problem Statement

- Signal model:

$$
\mathbf{z}=\mathbf{A x}+\mathbf{B e}
$$

General Problem Statement

- Signal model:

$$
\mathbf{z}=\mathbf{A x}+\mathbf{B e}
$$

- \mathbf{x}, e sparse, may depend on each other

General Problem Statement

- Signal model:

$$
\mathbf{z}=\mathbf{A x}+\mathbf{B e}
$$

- x, e sparse, may depend on each other
- A, B dictionaries (bases, incomplete sets, or frames)

General Problem Statement

■ Signal model:

$$
\mathbf{z}=\mathbf{A x}+\mathbf{B e}
$$

- x, e sparse, may depend on each other
- A, B dictionaries (bases, incomplete sets, or frames)
- Redundancy can lead to sparser representation

General Problem Statement

■ Signal model:

$$
\mathbf{z}=\mathbf{A x}+\mathbf{B e}
$$

- x, e sparse, may depend on each other
- A, B dictionaries (bases, incomplete sets, or frames)
- Redundancy can lead to sparser representation

Examples:

■ Overcomplete DFT

- Gabor frames

■ Curvelet or wavelet frames

- Ridgelets or shearlets

General Problem Statement

- Signal model:

$$
\mathbf{z}=\mathbf{A x}+\mathbf{B e}
$$

- x, e sparse, may depend on each other
- A, B dictionaries (bases, incomplete sets, or frames)
- Redundancy can lead to sparser representation

Examples:

- Overcomplete DFT
- Gabor frames

■ Curvelet or wavelet frames

- Ridgelets or shearlets

Want to recover \mathbf{x} and/or \mathbf{e} from \mathbf{z} !
Knowledge on \mathbf{x} and/or e may be available (support set, sparsity level, full knowledge).

Formalizing the Problem

$$
\mathbf{z}=\mathbf{A} \mathbf{x}+\mathbf{B e}=\underbrace{\left[\begin{array}{ll}
\mathbf{A} & \mathbf{B}
\end{array}\right]}_{\mathbf{D}}\left[\begin{array}{l}
\mathbf{x} \\
\mathbf{e}
\end{array}\right]
$$

Formalizing the Problem

$$
\mathbf{z}=\mathbf{A x}+\mathbf{B e}=\underbrace{\left[\begin{array}{ll}
\mathbf{A} & \mathbf{B}
\end{array}\right]}_{\mathbf{D}}\left[\begin{array}{l}
\mathbf{x} \\
\mathbf{e}
\end{array}\right]
$$

- Requires solving an underdetermined linear system of equations

Formalizing the Problem

$$
\mathbf{z}=\mathbf{A} \mathbf{x}+\mathbf{B e}=\underbrace{\left[\begin{array}{ll}
\mathbf{A} & \mathbf{B}
\end{array}\right]}_{\mathbf{D}}\left[\begin{array}{l}
\mathbf{x} \\
\mathbf{e}
\end{array}\right]
$$

■ Requires solving an underdetermined linear system of equations

- What are the fundamental limits on extracting \mathbf{x} and \mathbf{e} from z ?

Formalizing the Problem

$$
\mathbf{z}=\mathbf{A} \mathbf{x}+\mathbf{B e}=\underbrace{\left[\begin{array}{ll}
\mathbf{A} & \mathbf{B}
\end{array}\right]}_{\mathbf{D}}\left[\begin{array}{l}
\mathbf{x} \\
\mathbf{e}
\end{array}\right]
$$

■ Requires solving an underdetermined linear system of equations

- What are the fundamental limits on extracting \mathbf{x} and \mathbf{e} from z ?
- Could use $\frac{1}{2}(1+1 / \mu)$-threshold [Donoho \& Elad, 2003; Gribonval \& Nielsen, 2003] for general D

Uniqueness

- Assume there exist two pairs (\mathbf{x}, \mathbf{e}) and ($\mathbf{x}^{\prime}, \mathbf{e}^{\prime}$) such that

$$
\mathbf{A x}+\mathbf{B e}=\mathbf{A x} \mathbf{x}^{\prime}+\mathbf{B e}^{\prime}
$$

and hence

$$
\mathbf{A}\left(\mathbf{x}-\mathbf{x}^{\prime}\right)=\mathbf{B}\left(\mathbf{e}^{\prime}-\mathbf{e}\right)
$$

Uniqueness

- Assume there exist two pairs (\mathbf{x}, \mathbf{e}) and ($\left.\mathbf{x}^{\prime}, \mathbf{e}^{\prime}\right)$ such that

$$
\mathbf{A x}+\mathbf{B e}=\mathbf{A} \mathbf{x}^{\prime}+\mathbf{B e}^{\prime}
$$

and hence

$$
\mathbf{A}\left(\mathbf{x}-\mathrm{x}^{\prime}\right)=\mathbf{B}\left(\mathbf{e}^{\prime}-\mathbf{e}\right)
$$

- The vectors $\left(\mathbf{x}-\mathbf{x}^{\prime}\right)$ and $\left(\mathbf{e}^{\prime}-\mathbf{e}\right)$ represent the same signal \mathbf{s}

$$
\mathbf{A}\left(\mathbf{x}-\mathbf{x}^{\prime}\right)=\mathbf{B}\left(\mathbf{e}^{\prime}-\mathbf{e}\right) \triangleq \mathbf{s}
$$

in two different dictionaries \mathbf{A} and \mathbf{B}

Enter Uncertainty Principle

- Assume that
- $\mathbf{x}, \mathbf{x}^{\prime}$ are n_{x}-sparse $\Rightarrow \mathbf{x}-\mathbf{x}^{\prime}$ is $\left(2 n_{x}\right)$-sparse
- $\mathbf{e}, \mathbf{e}^{\prime}$ are n_{e}-sparse $\Rightarrow \quad \mathbf{e}^{\prime}-\mathbf{e}$ is $\left(2 n_{e}\right)$-sparse

Enter Uncertainty Principle

- Assume that
$\square \mathbf{x}, \mathbf{x}^{\prime}$ are n_{x}-sparse $\Rightarrow \mathbf{x}-\mathbf{x}^{\prime}$ is $\left(2 n_{x}\right)$-sparse
- $\mathbf{e}, \mathbf{e}^{\prime}$ are n_{e}-sparse $\Rightarrow \quad \mathbf{e}^{\prime}-\mathbf{e}$ is $\left(2 n_{e}\right)$-sparse

■ If

- n_{x} and n_{e} are "small enough"
- A and B are "sufficiently different"
it may not be possible to satisfy

$$
\mathbf{s}=\mathbf{A}\left(\mathbf{x}-\mathbf{x}^{\prime}\right)=\mathbf{B}\left(\mathbf{e}^{\prime}-\mathbf{e}\right)
$$

Uncertainty Relations for ONBs

■ [Donoho \& Stark, 1989]: $\mathbf{A}=\mathbf{I}_{m}, \mathbf{B}=\mathbf{F}_{m}, \mathbf{A p}=\mathbf{B q}$, then

$$
\|\mathbf{p}\|_{0}\|\mathbf{q}\|_{0} \geqslant m
$$

$$
m \text {-point DFT }
$$

- [Elad \& Bruckstein, 2002]: A and B general ONBs with $\mu \triangleq \max _{i \neq j}\left|\left\langle\mathbf{a}_{i}, \mathbf{b}_{j}\right\rangle\right|$, then

$$
\|\mathbf{p}\|_{0}\|\mathbf{q}\|_{0} \geqslant \frac{1}{\mu^{2}}
$$

Uncertainty Relation for General A, B

Theorem (Studer et al., 2011)

Let

- $\mathbf{A} \in \mathbb{C}^{m \times n_{a}}$ be a dictionary with coherence μ_{a}
- $\mathbf{B} \in \mathbb{C}^{m \times n_{b}}$ be a dictionary with coherence μ_{b}
- $\mathbf{D}=\left[\begin{array}{ll}\mathbf{A} & \mathbf{B}\end{array}\right]$ have coherence μ
- $\mathbf{A p}=\mathbf{B q}$

Then, we have

$$
\|\mathbf{p}\|_{0}\|\mathbf{q}\|_{0} \geqslant \frac{\left[1-\mu_{a}\left(\|\mathbf{p}\|_{0}-1\right)\right]^{+}\left[1-\mu_{b}\left(\|\mathbf{q}\|_{0}-1\right)\right]^{+}}{\mu^{2}}
$$

Recovery with BP if $\operatorname{supp}(\mathbf{e})$ is Known (e.g., Declipping)

Theorem (Studer et al., 2011)

Let $\mathbf{z}=\mathbf{A x}+\mathbf{B e}$ where $\mathcal{E}=\operatorname{supp}(\mathbf{e})$ is known. Consider the convex program

$$
(B P, \mathcal{E}) \quad \begin{cases}\text { minimize } & \|\tilde{\mathbf{x}}\|_{1} \\ \text { subject to } & \mathbf{A} \tilde{\mathbf{x}} \in\left(\{\mathbf{z}\}+\mathcal{R}\left(\mathbf{B}_{\mathcal{E}}\right)\right)\end{cases}
$$

If

$$
2\|\mathbf{x}\|_{0}\|\mathbf{e}\|_{0}<\frac{\left[1-\mu_{a}\left(2\|\mathbf{x}\|_{0}-1\right)\right]^{+}\left[1-\mu_{b}\left(\|\mathbf{e}\|_{0}-1\right)\right]^{+}}{\mu^{2}}
$$

then the unique solution of $(B P, \mathcal{E})$ is given by \mathbf{x}.
Extended to compressible signals and noisy measurements [Studer \& Baraniuk, 2011]

Rethinking Transform Coding

Example: Separate text from picture

- Text is sparse in identity basis
- Use wavelets or DCT to sparsify image

Observation

Rethinking Transform Coding

Example: Separate text from picture

- Text is sparse in identity basis
- Use wavelets or DCT to sparsify image

Observation

$\mathbf{A}=$ wavelet basis

$$
\mu=0.25
$$

$\mathbf{A}=\mathrm{DCT}$
$\mu \approx 0.0039$

■ Wavelet basis is more coherent with identity \Rightarrow yields worse separation performance

Analytical vs. Numerical Results

50\% success-rate contour

- $\mathbf{A}, \mathbf{B} \in \mathbb{R}^{64 \times 80}$
- $\mu_{a} \approx 0.126, \mu_{b} \approx 0.131$, and $\mu \approx 0.132$

The Thresholds are Tight

$$
\mathbf{A}=\mathbf{I}_{m}, \quad \mathbf{B}=\mathbf{F}_{m}, \quad \mathbf{A p}=\mathbf{B q}
$$

The Thresholds are Tight

$$
\mathbf{A}=\mathbf{I}_{m}, \quad \mathbf{B}=\mathbf{F}_{m}, \quad \mathbf{A p}=\mathbf{B q}
$$

- Recovery is unique if

$$
\|\mathbf{p}\|_{0}+\|\mathbf{q}\|_{0}<\sqrt{m}
$$

The Thresholds are Tight

$$
\mathbf{A}=\mathbf{I}_{m}, \quad \mathbf{B}=\mathbf{F}_{m}, \quad \mathbf{A p}=\mathbf{B q}
$$

- Recovery is unique if

$$
\|\mathbf{p}\|_{0}+\|\mathbf{q}\|_{0}<\sqrt{m}
$$

The Thresholds are Tight

$$
\mathbf{A}=\mathbf{I}_{m}, \quad \mathbf{B}=\mathbf{F}_{m}, \quad \mathbf{A p}=\mathbf{B q}
$$

- Recovery is unique if

$$
\|\mathbf{p}\|_{0}+\|\mathbf{q}\|_{0}<\sqrt{m}
$$

$$
\left[\begin{array}{ll}
\mathbf{I} & \mathbf{F}
\end{array}\right]\left[\begin{array}{l}
\delta \\
0
\end{array}\right]=\left[\begin{array}{ll}
\mathbf{I} & \mathbf{F}
\end{array}\right]\left[\begin{array}{l}
\mathbf{0} \\
\delta
\end{array}\right]
$$

The Thresholds are Tight

$$
\mathbf{A}=\mathbf{I}_{m}, \quad \mathbf{B}=\mathbf{F}_{m}, \quad \mathbf{A p}=\mathbf{B q}
$$

- Recovery is unique if

$$
\|\mathbf{p}\|_{0}+\|\mathbf{q}\|_{0}<\sqrt{m}
$$

$$
\left[\begin{array}{ll}
\mathbf{I} & \mathbf{F}
\end{array}\right]\left[\begin{array}{l}
\delta \\
0
\end{array}\right]=\left[\begin{array}{ll}
\mathbf{I} & \mathbf{F}
\end{array}\right]\left[\begin{array}{l}
\mathbf{0} \\
\delta
\end{array}\right]
$$

This behavior is fundamental and is known as the square-root bottleneck

Probabilistic Recovery Guarantees for BP

■ Neither support set known [Kuppinger et al., 2011]
■ One or both support sets known [Pope et al., 2011]

Recovery possible with high probability even if

$$
\|\mathbf{p}\|_{0}+\|\mathbf{q}\|_{0} \sim \frac{m}{\log n}
$$

Compare to

$$
\|\mathbf{p}\|_{0}+\|\mathbf{q}\|_{0} \sim \sqrt{m}
$$

This "breaks" the square-root bottleneck!

An Information-Theoretic Formulation

Sparsity for random signals:

components of signal are drawn i.i.d. $\sim(1-\rho) \delta_{0}+\rho P_{\text {cont }}$ where $0 \leqslant \rho \leqslant 1$ represents the mixture parameter

An Information-Theoretic Formulation

Sparsity for random signals:

components of signal are drawn i.i.d. $\sim(1-\rho) \delta_{0}+\rho P_{\text {cont }}$ where $0 \leqslant \rho \leqslant 1$ represents the mixture parameter
\longrightarrow For large dimensions, the fraction of nonzero components in the signal is given by ρ (LLN)

An Information-Theoretic Formulation

Sparsity for random signals:
components of signal are drawn i.i.d. $\sim(1-\rho) \delta_{0}+\rho P_{\text {cont }}$
where $0 \leqslant \rho \leqslant 1$ represents the mixture parameter
\longrightarrow For large dimensions, the fraction of nonzero components in the signal is given by ρ (LLN)

General distributions - Lebesgue decomposition:

$$
P=\alpha P_{\text {disc }}+\beta P_{\text {cont }}+\gamma P_{\text {sing }}, \quad \alpha+\beta+\gamma=1
$$

Almost Lossless Signal Separation

Framework inspired by [Wu \& Verdú, 2010]:

$$
\mathbf{z}=\mathbf{A} \mathbf{x}+\mathbf{B e}
$$

Existence of a measurable "separator" g such that for general random sources \mathbf{x}, \mathbf{e}, for sufficiently large blocklengths

$$
\mathbb{P}\left[g\left(\left[\begin{array}{ll}
\mathbf{A} & \mathbf{B}
\end{array}\right]\left[\begin{array}{l}
\mathbf{x} \\
\mathbf{e}
\end{array}\right]\right) \neq\left[\begin{array}{l}
\mathbf{x} \\
\mathbf{e}
\end{array}\right]\right]<\varepsilon
$$

Almost Lossless Signal Separation

Framework inspired by [Wu \& Verdú, 2010]:

$$
\mathbf{z}=\mathbf{A x}+\mathbf{B e}
$$

Existence of a measurable "separator" g such that for general random sources \mathbf{x}, \mathbf{e}, for sufficiently large blocklengths

$$
\mathbb{P}\left[g\left(\left[\begin{array}{ll}
\mathbf{A} & \mathbf{B}
\end{array}\right]\left[\begin{array}{l}
\mathbf{x} \\
\mathbf{e}
\end{array}\right]\right) \neq\left[\begin{array}{l}
\mathbf{x} \\
\mathbf{e}
\end{array}\right]\right]<\varepsilon
$$

\longrightarrow "Almost lossless signal separation"
We are interested in the structure of pairs \mathbf{A}, \mathbf{B} for which separation is possible. Concretely: fix \mathbf{B}, look for suitable \mathbf{A}

Setting

Source: $\quad[\underbrace{\mathrm{X}_{1} \cdots \mathrm{X}_{n-\ell}}_{\text {fraction: } 1-\lambda} \underbrace{\mathrm{E}_{1} \cdots \mathrm{E}_{\ell}}_{\text {fraction: } \lambda}]^{T} \in \mathbb{R}^{n}$
stoch. processes: $\left(X_{i}\right)_{i \in \mathbb{N}}$ and $\left(\mathrm{E}_{i}\right)_{i \in \mathbb{N}}$, fraction parameter: $\lambda \in[0,1]$

Setting

Source:

$$
[\underbrace{\mathrm{X}_{1} \cdots \mathrm{X}_{n-\ell}}_{\text {fraction: } 1-\lambda} \underbrace{\mathrm{E}_{1} \cdots \mathrm{E}_{\ell}}_{\text {fraction: } \lambda}]^{T} \in \mathbb{R}^{n}
$$

stoch. processes: $\left(\mathrm{X}_{i}\right)_{i \in \mathbb{N}}$ and $\left(\mathrm{E}_{i}\right)_{i \in \mathbb{N}}$, fraction parameter: $\lambda \in[0,1]$
Code of rate $R=m / n$:
($m=$ no. of measurements, $n=$ no. of unknowns)
■ measurement matrices: $\mathbf{A} \in \mathbb{R}^{m \times(n-\ell)}, \mathbf{B} \in \mathbb{R}^{m \times \ell}$
■ measurable separator $g: \mathbb{R}^{m} \rightarrow \mathbb{R}^{m \times(n-\ell)} \times \mathbb{R}^{m \times \ell}$

Setting

Source:

$$
[\underbrace{\mathrm{X}_{1} \cdots \mathrm{X}_{n-\ell}}_{\text {fraction: } 1-\lambda} \underbrace{\mathrm{E}_{1} \cdots \mathrm{E}_{\ell}}_{\text {fraction: } \lambda}]^{T} \in \mathbb{R}^{n}
$$

stoch. processes: $\left(\mathrm{X}_{i}\right)_{i \in \mathbb{N}}$ and $\left(\mathrm{E}_{i}\right)_{i \in \mathbb{N}}$, fraction parameter: $\lambda \in[0,1]$
Code of rate $R=m / n$:
($m=$ no. of measurements, $n=$ no. of unknowns)
■ measurement matrices: $\mathbf{A} \in \mathbb{R}^{m \times(n-\ell)}, \mathbf{B} \in \mathbb{R}^{m \times \ell}$

- measurable separator $g: \mathbb{R}^{m} \rightarrow \mathbb{R}^{m \times(n-\ell)} \times \mathbb{R}^{m \times \ell}$
R is ε-achievable if for sufficiently large n (asymptotic analysis)

$$
\mathbb{P}\left[g\left(\left[\begin{array}{ll}
\mathbf{A} & \mathbf{B}
\end{array}\right]\left[\begin{array}{l}
\mathbf{x} \\
\mathbf{e}
\end{array}\right]\right) \neq\left[\begin{array}{l}
\mathbf{x} \\
\mathbf{e}
\end{array}\right]\right]<\varepsilon
$$

Minkowski Dimension

A suitable measure for complexity:

Covering number:

$$
N_{\mathcal{S}}(\varepsilon):=\min \left\{k \in \mathbb{N} \mid \mathcal{S} \subseteq \bigcup_{i \in\{1, \ldots, k\}} B^{n}\left(\boldsymbol{u}_{i}, \varepsilon\right), \boldsymbol{u}_{i} \in \mathbb{R}^{n}\right\}
$$

Minkowski Dimension

A suitable measure for complexity:

Covering number:

$$
N_{\mathcal{S}}(\varepsilon):=\min \left\{k \in \mathbb{N} \mid \mathcal{S} \subseteq \bigcup_{i \in\{1, \ldots, k\}} B^{n}\left(\boldsymbol{u}_{i}, \varepsilon\right), \boldsymbol{u}_{i} \in \mathbb{R}^{n}\right\}
$$

Minkowski Dimension

A suitable measure for complexity:

Covering number:

$$
N_{\mathcal{S}}(\varepsilon):=\min \left\{k \in \mathbb{N} \mid \mathcal{S} \subseteq \bigcup_{i \in\{1, \ldots, k\}} B^{n}\left(\boldsymbol{u}_{i}, \varepsilon\right), \boldsymbol{u}_{i} \in \mathbb{R}^{n}\right\}
$$

Minkowski Dimension

A suitable measure for complexity:

Covering number:

$$
N_{\mathcal{S}}(\varepsilon):=\min \left\{k \in \mathbb{N} \mid \mathcal{S} \subseteq \bigcup_{i \in\{1, \ldots, k\}} B^{n}\left(\boldsymbol{u}_{i}, \varepsilon\right), \boldsymbol{u}_{i} \in \mathbb{R}^{n}\right\}
$$

(Lower) Minkowski dimension/Box-counting dimension:

$$
\underline{\operatorname{dim}}_{\mathrm{B}}(\mathcal{S}):=\liminf _{\varepsilon \rightarrow 0} \frac{\log N_{\mathcal{S}}(\varepsilon)}{\log \frac{1}{\varepsilon}}
$$

\longrightarrow for small $\varepsilon: \quad N_{\mathcal{S}}(\varepsilon) \approx \varepsilon^{-\operatorname{dim}_{B}(\mathcal{S})}$

Minkowski Dimension Compression Rate

Minkowski dimension compression rate:

$$
\begin{aligned}
& R_{\mathrm{B}}(\varepsilon):=\limsup _{n \rightarrow \infty} a_{n}(\varepsilon) \text { where } \\
& a_{n}(\varepsilon):=\inf \left\{\left.\frac{\operatorname{dim}_{\mathrm{B}}(\mathcal{S})}{n} \right\rvert\, \mathcal{S} \subseteq \mathbb{R}^{n}, \mathbb{P}\left[\left[\begin{array}{l}
\mathbf{x} \\
\mathbf{e}
\end{array}\right] \in \mathcal{S}\right] \geqslant 1-\varepsilon\right\}
\end{aligned}
$$

Minkowski Dimension Compression Rate

Minkowski dimension compression rate:

$$
\begin{aligned}
& R_{\mathrm{B}}(\varepsilon):=\limsup _{n \rightarrow \infty} a_{n}(\varepsilon) \text { where } \\
& \left.a_{n}(\varepsilon):=\inf \left\{\left.\frac{\operatorname{dim}_{\mathrm{B}}(\mathcal{S})}{n} \right\rvert\, \mathcal{S} \subseteq \mathbb{R}^{n}, \mathbb{P}\left[\begin{array}{l}
\mathbf{x} \\
\mathbf{e}
\end{array}\right] \in \mathcal{S}\right] \geqslant 1-\varepsilon\right\}
\end{aligned}
$$

Among all approximate support sets:

Minkowski Dimension Compression Rate

Minkowski dimension compression rate:

$$
\begin{aligned}
& R_{\mathrm{B}}(\varepsilon):=\limsup _{n \rightarrow \infty} a_{n}(\varepsilon) \text { where } \\
& a_{n}(\varepsilon):=\inf \left\{\left.\frac{\operatorname{dim}_{\mathrm{B}}(\mathcal{S})}{n} \right\rvert\, \mathcal{S} \subseteq \mathbb{R}^{n}, \mathbb{P}\left[\left[\begin{array}{l}
\mathbf{x} \\
\mathbf{e}
\end{array}\right] \in \mathcal{S}\right] \geqslant 1-\varepsilon\right\}
\end{aligned}
$$

Among all approximate support sets:
the smallest possible Minkowski dimension (per blocklength)

Main Result

Theorem

Let $R>R_{\mathrm{B}}(\varepsilon)$. Then, for every fixed full-rank matrix $\mathbf{B} \in \mathbb{R}^{m \times \ell}$ with $m \geqslant \ell$ and for Lebesgue a.a. matrices $\mathbf{A} \in \mathbb{R}^{m \times(n-\ell)}$, where $m=\lfloor R n\rfloor$, there exists a measurable separator g such that for sufficiently large n

$$
\mathbb{P}\left[g\left(\left[\begin{array}{ll}
\mathbf{A} & \mathbf{B}
\end{array}\right]\left[\begin{array}{l}
\mathbf{x} \\
\mathbf{e}
\end{array}\right]\right) \neq\left[\begin{array}{l}
\mathbf{x} \\
\mathbf{e}
\end{array}\right]\right]<\varepsilon
$$

Main Result

Theorem

Let $R>R_{\mathrm{B}}(\varepsilon)$. Then, for every fixed full-rank matrix $\mathbf{B} \in \mathbb{R}^{m \times \ell}$ with $m \geqslant \ell$ and for Lebesgue a.a. matrices $\mathbf{A} \in \mathbb{R}^{m \times(n-\ell)}$, where $m=\lfloor R n\rfloor$, there exists a measurable separator g such that for sufficiently large n

$$
\mathbb{P}\left[g\left(\left[\begin{array}{ll}
\mathbf{A} & \mathbf{B}
\end{array}\right]\left[\begin{array}{l}
\mathbf{x} \\
\mathbf{e}
\end{array}\right]\right) \neq\left[\begin{array}{l}
\mathbf{x} \\
\mathbf{e}
\end{array}\right]\right]<\varepsilon
$$

■ simple and intuitive proof inspired by [Sauer et al., 1991]
■ almost all matrices A are "incoherent" to a given matrix B

A Probabilistic Null-Space Property

Proposition

Let $\mathcal{S} \subseteq \mathbb{R}^{n}$ be such that $\operatorname{dim}_{\mathrm{B}}(\mathcal{S})<m$ and let $\mathbf{B} \in \mathbb{R}^{m \times \ell}$ be a full-rank matrix with $m \geqslant \ell$. Then

$$
\left\{\boldsymbol{u} \in \mathcal{S} \backslash\{\mathbf{0}\} \left\lvert\,\left[\begin{array}{ll}
\mathbf{A} & \mathbf{B}] \boldsymbol{u}=\mathbf{0}\}=\emptyset
\end{array}\right.\right.\right.
$$

for Lebesgue a.a. $\mathbf{A} \in \mathbb{R}^{m \times(n-\ell)}$

A Probabilistic Null-Space Property

Proposition

Let $\mathcal{S} \subseteq \mathbb{R}^{n}$ be such that $\operatorname{dim}_{\mathrm{B}}(\mathcal{S})<m$ and let $\mathbf{B} \in \mathbb{R}^{m \times \ell}$ be a full-rank matrix with $m \geqslant \ell$. Then

$$
\left\{\boldsymbol{u} \in \mathcal{S} \backslash\{\mathbf{0}\} \left\lvert\,\left[\begin{array}{ll}
\mathbf{A} & \mathbf{B}] \boldsymbol{u}=\mathbf{0}\}=\emptyset \\
\emptyset
\end{array}\right.\right.\right.
$$

for Lebesgue a.a. $\mathbf{A} \in \mathbb{R}^{m \times(n-\ell)}$

- A and \mathbf{B} ONBs, then there is no $(\mathbf{p}, \mathbf{q}) \neq 0$ such that

$$
\mathbf{A p}=\mathbf{B} \mathbf{q} \quad \text { and } \quad\|\mathbf{p}\|_{0}\|\mathbf{q}\|_{0}<\frac{1}{\mu^{2}}
$$

$\square \underline{\operatorname{dim}}_{\mathrm{B}}(\mathcal{S})<m$, then for a.a. A there is no $(\mathbf{p}, \mathbf{q}) \neq 0$ such that

$$
\mathbf{A p}=\mathbf{B q} \quad \text { and } \quad \boldsymbol{u}=(\mathbf{p},-\mathbf{q}) \in \mathcal{S}
$$

A Probabilistic Null-Space Property

Proposition

Let $\mathcal{S} \subseteq \mathbb{R}^{n}$ be such that $\operatorname{dim}_{\mathrm{B}}(\mathcal{S})<m$ and let $\mathbf{B} \in \mathbb{R}^{m \times \ell}$ be a full-rank matrix with $m \geqslant \ell$. Then

$$
\{\boldsymbol{u} \in \mathcal{S} \backslash\{\mathbf{0}\} \mid[\mathbf{A} \mathbf{B}] \boldsymbol{u}=\mathbf{0}\}=\emptyset
$$

for Lebesgue a.a. $\mathbf{A} \in \mathbb{R}^{m \times(n-\ell)}$

A Probabilistic Null-Space Property

Proposition

Let $\mathcal{S} \subseteq \mathbb{R}^{n}$ be such that $\operatorname{dim}_{\mathrm{B}}(\mathcal{S})<m$ and let $\mathbf{B} \in \mathbb{R}^{m \times \ell}$ be a full-rank matrix with $m \geqslant \ell$. Then

$$
\{\boldsymbol{u} \in \mathcal{S} \backslash\{\mathbf{0}\} \mid[\mathbf{A} \mathbf{B}] \boldsymbol{u}=\mathbf{0}\}=\emptyset
$$

for Lebesgue a.a. $\mathbf{A} \in \mathbb{R}^{m \times(n-\ell)}$

A Probabilistic Null-Space Property

Proposition

Let $\mathcal{S} \subseteq \mathbb{R}^{n}$ be such that $\operatorname{dim}_{\mathrm{B}}(\mathcal{S})<m$ and let $\mathbf{B} \in \mathbb{R}^{m \times \ell}$ be a full-rank matrix with $m \geqslant \ell$. Then

$$
\{\boldsymbol{u} \in \mathcal{S} \backslash\{\mathbf{0}\} \mid[\mathbf{A} \quad \mathbf{B}] \boldsymbol{u}=\mathbf{0}\}=\emptyset
$$

for Lebesgue a.a. $\mathbf{A} \in \mathbb{R}^{m \times(n-\ell)}$

A Probabilistic Null-Space Property

Proposition

Let $\mathcal{S} \subseteq \mathbb{R}^{n}$ be such that $\operatorname{dim}_{\mathrm{B}}(\mathcal{S})<m$ and let $\mathbf{B} \in \mathbb{R}^{m \times \ell}$ be a full-rank matrix with $m \geqslant \ell$. Then

$$
\{\boldsymbol{u} \in \mathcal{S} \backslash\{\mathbf{0}\} \mid[\mathbf{A} \quad \mathbf{B}] \boldsymbol{u}=\mathbf{0}\}=\emptyset
$$

for Lebesgue a.a. $\mathbf{A} \in \mathbb{R}^{m \times(n-\ell)}$

$\operatorname{dim} \operatorname{ker}\left[\begin{array}{ll}\mathbf{A} & \mathbf{B}]=n-m\end{array}\right.$

$$
\underline{\operatorname{dim}}_{\mathrm{B}}(\mathcal{S})<m
$$

$\operatorname{dim} \operatorname{ker}[\mathbf{A} \mathbf{B}]+\underline{\operatorname{dim}}_{\mathrm{B}}(\mathcal{S})<n$

A Probabilistic Null-Space Property

Proposition

Let $\mathcal{S} \subseteq \mathbb{R}^{n}$ be such that $\operatorname{dim}_{\mathrm{B}}(\mathcal{S})<m$ and let $\mathbf{B} \in \mathbb{R}^{m \times \ell}$ be a full-rank matrix with $m \geqslant \ell$. Then

$$
\{\boldsymbol{u} \in \mathcal{S} \backslash\{\mathbf{0}\} \mid[\mathbf{A} \mathbf{B}] \boldsymbol{u}=\mathbf{0}\}=\emptyset
$$

for Lebesgue a.a. $\mathbf{A} \in \mathbb{R}^{m \times(n-\ell)}$

$\operatorname{dim} \operatorname{ker}\left[\begin{array}{ll}\mathbf{A} & \mathbf{B}\end{array}\right]=n-m$

$$
\underline{\operatorname{dim}}_{\mathrm{B}}(\mathcal{S})<m
$$

$$
\operatorname{dim} \operatorname{ker}[\mathbf{A} \quad \mathbf{B}]+\underline{\operatorname{dim}}_{\mathrm{B}}(\mathcal{S})<n
$$

Back to Discrete-Continuous Mixtures

$$
\begin{aligned}
& \mathrm{X}_{i} \text { i.i.d. } \sim\left(1-\rho_{1}\right) P_{\mathrm{d}_{1}}+\rho_{1} P_{\mathrm{c}_{1}} \\
& \mathrm{E}_{i} \text { i.i.d. } \sim\left(1-\rho_{2}\right) P_{\mathrm{d}_{2}}+\rho_{2} P_{\mathrm{c}_{2}}
\end{aligned}
$$

where $0 \leqslant \rho_{i} \leqslant 1$; for $P_{\mathrm{d}_{1}}=P_{\mathrm{d}_{2}}=\delta_{0} \rightarrow$ sparse signal model Fraction of X_{i} 's $=1-\lambda$; fraction of E_{i} 's $=\lambda$

Back to Discrete-Continuous Mixtures

$$
\begin{aligned}
\mathrm{X}_{i} \text { i.i.d. } & \sim\left(1-\rho_{1}\right) P_{\mathrm{d}_{1}}+\rho_{1} P_{\mathrm{c}_{1}} \\
\mathrm{E}_{i} \text { i.i.d. } & \sim\left(1-\rho_{2}\right) P_{\mathrm{d}_{2}}+\rho_{2} P_{\mathrm{c}_{2}}
\end{aligned}
$$

where $0 \leqslant \rho_{i} \leqslant 1$; for $P_{\mathrm{d}_{1}}=P_{\mathrm{d}_{2}}=\delta_{0} \rightarrow$ sparse signal model Fraction of X_{i} 's $=1-\lambda$; fraction of E_{i} 's $=\lambda$
An exact expression for $R_{\mathrm{B}}(\varepsilon)$ and a converse:

Theorem

For discrete-continuous mixtures the optimal compression rate is

$$
R_{\mathrm{B}}(\varepsilon)=(1-\lambda) \rho_{1}+\lambda \rho_{2}
$$

Back to Discrete-Continuous Mixtures

$$
\begin{aligned}
& \mathrm{X}_{i} \text { i.i.d. } \sim\left(1-\rho_{1}\right) P_{\mathrm{d}_{1}}+\rho_{1} P_{\mathrm{c}_{1}} \\
& \mathrm{E}_{i} \text { i.i.d. } \sim\left(1-\rho_{2}\right) P_{\mathrm{d}_{2}}+\rho_{2} P_{\mathrm{c}_{2}}
\end{aligned}
$$

where $0 \leqslant \rho_{i} \leqslant 1$; for $P_{\mathrm{d}_{1}}=P_{\mathrm{d}_{2}}=\delta_{0} \rightarrow$ sparse signal model Fraction of X_{i} 's $=1-\lambda$; fraction of E_{i} 's $=\lambda$
An exact expression for $R_{\mathrm{B}}(\varepsilon)$ and a converse:

Theorem

For discrete-continuous mixtures the optimal compression rate is

$$
R_{\mathrm{B}}(\varepsilon)=(1-\lambda) \rho_{1}+\lambda \rho_{2}
$$

Optimal no. of measurements $=$ no. of nonzero components

What it is and What it is not

The information-theoretic approach

- applies to general source distributions

What it is and What it is not

The information-theoretic approach

- applies to general source distributions

■ works for given B for a.a. A

What it is and What it is not

The information-theoretic approach

- applies to general source distributions

■ works for given B for a.a. A

- yields explicit expression for optimal compression rate (i.e., optimal no. of measurements) for sparse signals

What it is and What it is not

The information-theoretic approach

- applies to general source distributions

■ works for given B for a.a. A

- yields explicit expression for optimal compression rate (i.e., optimal no. of measurements) for sparse signals \longrightarrow achieves linear scaling (got rid of $\log n$ factor)

What it is and What it is not

The information-theoretic approach

- applies to general source distributions

■ works for given B for a.a. A

- yields explicit expression for optimal compression rate (i.e., optimal no. of measurements) for sparse signals \longrightarrow achieves linear scaling (got rid of $\log n$ factor)
- is of asymptotic nature

What it is and What it is not

The information-theoretic approach

- applies to general source distributions

■ works for given B for a.a. A

- yields explicit expression for optimal compression rate (i.e., optimal no. of measurements) for sparse signals \longrightarrow achieves linear scaling (got rid of $\log n$ factor)
- is of asymptotic nature
- deals with the noiseless case

What it is and What it is not

The information-theoretic approach

- applies to general source distributions

■ works for given B for a.a. A

- yields explicit expression for optimal compression rate (i.e., optimal no. of measurements) for sparse signals \longrightarrow achieves linear scaling (got rid of $\log n$ factor)
- is of asymptotic nature
- deals with the noiseless case
- provides existence results only for decoders

Thank you
"If you ask me anything I don't know, I'm not going to answer."

- Y. Berra

