Signal Recovery, Uncertainty Relations, and Minkowski Dimension

Helmut Bőlcskei ETH Zurich

December 2013

Joint work with C. Aubel, P. Kuppinger, G. Pope, E. Riegler, D. Stotz, and C. Studer

■ Develop a unified theory for a wide range of (sparse) signal recovery problems:

- Develop a unified theory for a wide range of (sparse) signal recovery problems:
 - Signal separation

- Develop a unified theory for a wide range of (sparse) signal recovery problems:
 - Signal separation
 - Super-resolution

- Develop a unified theory for a wide range of (sparse) signal recovery problems:
 - Signal separation
 - Super-resolution
 - Inpainting

- Develop a unified theory for a wide range of (sparse) signal recovery problems:
 - Signal separation
 - Super-resolution
 - Inpainting
 - De-clipping

- Develop a unified theory for a wide range of (sparse) signal recovery problems:
 - Signal separation
 - Super-resolution
 - Inpainting
 - De-clipping
 - Removal of impulse noise or narrowband interference

- Develop a unified theory for a wide range of (sparse) signal recovery problems:
 - Signal separation
 - Super-resolution
 - Inpainting
 - De-clipping
 - Removal of impulse noise or narrowband interference
- Establish fundamental performance limits

- Develop a unified theory for a wide range of (sparse) signal recovery problems:
 - Signal separation
 - Super-resolution
 - Inpainting
 - De-clipping
 - Removal of impulse noise or narrowband interference
- Establish fundamental performance limits
- Propose an information-theoretic formulation

Signal Separation

Decompose image into cartoon and textured part

observation

Signal Separation

Decompose image into cartoon and textured part

Image Restoration

observation

Image Restoration

Removing "Clicks" from a Vinyl/Record Player

recorded signal

Removing "Clicks" from a Vinyl/Record Player

$$z = Ax + Be$$

■ Transform **A** "sparsifies" images, e.g., wavelet transform

$$z = Ax + Be$$

- Transform A "sparsifies" images, e.g., wavelet transform
- "Error" signal sparse in transform **B**:

$$z = Ax + Be$$

- Transform A "sparsifies" images, e.g., wavelet transform
- "Error" signal sparse in transform B:
 - texture: sparse in curvelet frame

$$z = Ax + Be$$

- Transform **A** "sparsifies" images, e.g., wavelet transform
- "Error" signal sparse in transform **B**:
 - texture: sparse in curvelet frame
 - scratches: sparse in ridgelet frame

$$z = Ax + Be$$

- Transform **A** "sparsifies" images, e.g., wavelet transform
- "Error" signal sparse in transform B:
 - texture: sparse in curvelet frame
 - scratches: sparse in ridgelet frame
 - clicks: sparse in identity basis

Super-Resolution

Downsampled image (by a factor of 9)

Super-Resolution

Downsampled image (by a factor of 9)

Linear interpolation

Super-Resolution

Downsampled image (by a factor of 9)

Sparsity-exploiting reconstruction

W. Heisenberg

W. Heisenberg

W. Heisenberg

D. Gábor

W. Heisenberg

D. Gábor

W. Heisenberg

D. Gábor

H. Minkowski

Signal Model for Super-Resolution and Inpainting

Only a subset of the entries in

$$y = Ax$$

is available

Signal Model for Super-Resolution and Inpainting

Only a subset of the entries in

$$y = Ax$$

is available

■ Taken into account by assuming that we observe

$$z = Ax + Be = Ax + Ie$$

and choosing ${\bf e}$ so that the missing entries of ${\bf y}$ are set to, e.g., 0

Signal Model for Super-Resolution and Inpainting

Only a subset of the entries in

$$y = Ax$$

is available

■ Taken into account by assuming that we observe

$$z = Ax + Be = Ax + Ie$$

and choosing ${\bf e}$ so that the missing entries of ${\bf y}$ are set to, e.g., 0

■ "Error" signal e is sparse if few entries are missing

Recovery of Clipped Signals

Recovery of Clipped Signals

Signal Model for Clipping

■ Instead of

$$y = Ax$$

we observe

$$\mathbf{z} = \mathbf{A}\mathbf{x} + \underbrace{\left[\operatorname{clip}(\mathbf{A}\mathbf{x}) - \mathbf{A}\mathbf{x}\right]}_{\text{sparse in }\mathbf{B} = \mathbf{I}}$$

Signal Model for Clipping

■ Instead of

$$y = Ax$$

we observe

$$\mathbf{z} = \mathbf{A}\mathbf{x} + \underbrace{\left[\operatorname{clip}(\mathbf{A}\mathbf{x}) - \mathbf{A}\mathbf{x}\right]}_{\text{sparse in }\mathbf{B} = \mathbf{I}}$$

- "Error" signal is sparse if clipping is not too aggressive
- Support set of e is known

Some Existing Approaches

Literature is rich, e.g.

- Signal separation:
 - Morphological component analysis [Starck et al., 2004; Elad et al., 2005]
 - Split-Bregman methods [Cai et al., 2009]
 - Microlocal analysis [Donoho & Kutyniok, 2010]
 - Convex demixing [McCoy & Tropp, 2013]

Some Existing Approaches

Literature is rich, e.g.

- Signal separation:
 - Morphological component analysis [Starck et al., 2004; Elad et al., 2005]
 - Split-Bregman methods [Cai et al., 2009]
 - Microlocal analysis [Donoho & Kutyniok, 2010]
 - Convex demixing [McCoy & Tropp, 2013]
- Super-resolution:
 - Navier-Stokes [Bertalmio et al., 2001]
 - Sparsity enhancing [Yang et al., 2008]
 - Total variation minimization [Candès & Fernandez-Granda, 2013]

Some Existing Approaches Cont'd

- Inpainting:
 - Local transforms and separation [Dong et al., 2011]
 - Total variation minimization [Chambolle, 2004]
 - Morphological component analysis [*Elad et al., 2005*]
 - Image colorization [Sapiro, 2005]
 - Clustered sparsity [King et al., 2014]
- De-clipping:
 - Constrained matching pursuit [Adler et al., 2011]

■ Signal model:

$$z = Ax + Be$$

■ Signal model:

$$z = Ax + Be$$

lacktriangledown \mathbf{x} , \mathbf{e} sparse, may depend on each other

■ Signal model:

$$z = Ax + Be$$

- x, e sparse, may depend on each other
- A, B dictionaries (bases, incomplete sets, or frames)

■ Signal model:

$$z = Ax + Be$$

- x, e sparse, may depend on each other
- A, B dictionaries (bases, incomplete sets, or frames)
- Redundancy can lead to sparser representation

■ Signal model:

$$z = Ax + Be$$

- x, e sparse, may depend on each other
- A, B dictionaries (bases, incomplete sets, or frames)
- Redundancy can lead to sparser representation

Examples:

- Overcomplete DFT
- Gabor frames

- Curvelet or wavelet frames
- Ridgelets or shearlets

■ Signal model:

$$z = Ax + Be$$

- **x**, e sparse, may depend on each other
- A, B dictionaries (bases, incomplete sets, or frames)
- Redundancy can lead to sparser representation

Examples:

- Overcomplete DFT
- Gabor frames

- Curvelet or wavelet frames
- Ridgelets or shearlets

Want to recover x and/or e from z! Knowledge on x and/or e may be available (support set, sparsity level, full knowledge).

$$z = Ax + Be = \underbrace{[A \ B]}_{D} \begin{bmatrix} x \\ e \end{bmatrix}$$

$$\mathbf{z} = \mathbf{A}\mathbf{x} + \mathbf{B}\mathbf{e} = \underbrace{[\mathbf{A} \quad \mathbf{B}]}_{\mathbf{D}} \begin{bmatrix} \mathbf{x} \\ \mathbf{e} \end{bmatrix}$$

Requires solving an underdetermined linear system of equations

$$z = Ax + Be = \underbrace{[A \quad B]}_{D} \begin{bmatrix} x \\ e \end{bmatrix}$$

- Requires solving an underdetermined linear system of equations
- What are the **fundamental limits** on extracting **x** and **e** from **z**?

$$z = Ax + Be = \underbrace{[A \quad B]}_{D} \begin{bmatrix} x \\ e \end{bmatrix}$$

- Requires solving an underdetermined linear system of equations
- What are the **fundamental limits** on extracting x and e from z?
- Could use $\frac{1}{2}(1+1/\mu)$ -threshold [Donoho & Elad, 2003; Gribonval & Nielsen, 2003] for general **D**

Uniqueness

 \blacksquare Assume there exist two pairs (\mathbf{x},\mathbf{e}) and $(\mathbf{x}',\mathbf{e}')$ such that

$$Ax + Be = Ax' + Be'$$

and hence

$$\mathbf{A}(\mathbf{x} - \mathbf{x}') = \mathbf{B}(\mathbf{e}' - \mathbf{e})$$

Uniqueness

lacktriangle Assume there exist two pairs (\mathbf{x}, \mathbf{e}) and $(\mathbf{x}', \mathbf{e}')$ such that

$$Ax + Be = Ax' + Be'$$

and hence

$$\mathbf{A}(\mathbf{x} - \mathbf{x}') = \mathbf{B}(\mathbf{e}' - \mathbf{e})$$

 \blacksquare The vectors $(\mathbf{x}-\mathbf{x}')$ and $(\mathbf{e}'-\mathbf{e})$ represent the same signal \mathbf{s}

$$\mathbf{A}(\mathbf{x} - \mathbf{x}') = \mathbf{B}(\mathbf{e}' - \mathbf{e}) \triangleq \mathbf{s}$$

in two different dictionaries ${\bf A}$ and ${\bf B}$

Enter Uncertainty Principle

- Assume that
 - \mathbf{x} , \mathbf{x}' are n_x -sparse \Rightarrow $\mathbf{x} \mathbf{x}'$ is $(2n_x)$ -sparse
 - $lackbox{\bf e}$ e, ${f e}'$ are n_e -sparse \Rightarrow ${f e}'$ ${f e}$ is $(2n_e)$ -sparse

Enter Uncertainty Principle

- Assume that
 - \mathbf{x} , \mathbf{x}' are n_x -sparse \Rightarrow $\mathbf{x} \mathbf{x}'$ is $(2n_x)$ -sparse
 - ${f e}$ ${f e}$, ${f e}'$ are n_e -sparse \Rightarrow ${f e}'-{f e}$ is $(2n_e)$ -sparse
- If
- lacksquare n_x and n_e are "small enough"
- A and B are "sufficiently different"

it may not be possible to satisfy

$$\mathbf{s} = \mathbf{A}(\mathbf{x} - \mathbf{x}') = \mathbf{B}(\mathbf{e}' - \mathbf{e})$$

Uncertainty Relations for ONBs

lacksquare [Donoho & Stark, 1989]: $\mathbf{A}=\mathbf{I}_m$, $\mathbf{B}=\mathbf{F}_m$, $\mathbf{Ap}=\mathbf{Bq}$, then $\|\mathbf{p}\|_0\,\|\mathbf{q}\|_0\geqslant m$

■ [*Elad & Bruckstein, 2002*]: **A** and **B** general ONBs with $\mu \triangleq \max_{i \neq j} |\langle \mathbf{a}_i, \mathbf{b}_j \rangle|$, then

$$\|\mathbf{p}\|_0 \|\mathbf{q}\|_0 \geqslant \frac{1}{\mu^2}$$

Uncertainty Relation for General A, B

Theorem (Studer et al., 2011)

Let

- lacksquare $\mathbf{A} \in \mathbb{C}^{m imes n_a}$ be a dictionary with coherence μ_a
- $lackbox{f B} \in \mathbb{C}^{m imes n_b}$ be a dictionary with coherence μ_b
- $lackbox{f D} = [{f A} \ {f B}]$ have coherence μ
- \blacksquare Ap = Bq

Then, we have

$$\|\mathbf{p}\|_{0} \|\mathbf{q}\|_{0} \geqslant \frac{[1 - \mu_{a}(\|\mathbf{p}\|_{0} - 1)]^{+} [1 - \mu_{b}(\|\mathbf{q}\|_{0} - 1)]^{+}}{\mu^{2}}.$$

Recovery with BP if supp(e) is Known (e.g., Declipping)

Theorem (Studer et al., 2011)

Let $\mathbf{z} = \mathbf{A}\mathbf{x} + \mathbf{B}\mathbf{e}$ where $\mathcal{E} = supp(\mathbf{e})$ is known. Consider the convex program

$$(BP, \mathcal{E}) \quad \begin{cases} minimize & \|\tilde{\mathbf{x}}\|_1 \\ subject \ to & \mathbf{A}\tilde{\mathbf{x}} \in (\{\mathbf{z}\} + \mathcal{R}(\mathbf{B}_{\mathcal{E}})). \end{cases}$$

If

$$2\|\mathbf{x}\|_{0} \|\mathbf{e}\|_{0} < \frac{[1 - \mu_{a}(2\|\mathbf{x}\|_{0} - 1)]^{+}[1 - \mu_{b}(\|\mathbf{e}\|_{0} - 1)]^{+}}{\mu^{2}}$$

then the unique solution of (BP, \mathcal{E}) is given by \mathbf{x} .

Extended to compressible signals and noisy measurements [Studer & Baraniuk, 2011]

Rethinking Transform Coding

Example: Separate text from picture

- Text is sparse in identity basis
- Use wavelets or DCT to sparsify image

Observation

Rethinking Transform Coding

Example: Separate text from picture

- Text is sparse in identity basis
- Use wavelets or DCT to sparsify image

Observation

 ${f A}=$ wavelet basis $\mu=0.25$

 $\mathbf{A} = \mathsf{DCT}$ $\mu \approx 0.0039$

■ Wavelet basis is more coherent with identity ⇒ yields worse separation performance

Analytical vs. Numerical Results

- $\mathbf{A}, \mathbf{B} \in \mathbb{R}^{64 \times 80}$
- \blacksquare $\mu_a \approx 0.126$, $\mu_b \approx 0.131$, and $\mu \approx 0.132$

$$A = I_m, \quad B = F_m, \quad Ap = Bq$$

$$A = I_m, \quad B = F_m, \quad Ap = Bq$$

Recovery is unique if

$$\|\mathbf{p}\|_0 + \|\mathbf{q}\|_0 < \sqrt{m}$$

$$A = I_m, \quad B = F_m, \quad Ap = Bq$$

Recovery is unique if

$$\|\mathbf{p}\|_{0} + \|\mathbf{q}\|_{0} < \sqrt{m}$$

$$A = I_m, \quad B = F_m, \quad Ap = Bq$$

■ Recovery is unique if

$$\|\mathbf{p}\|_0 + \|\mathbf{q}\|_0 < \sqrt{m}$$

$$A = I_m, \quad B = F_m, \quad Ap = Bq$$

■ Recovery is unique if

$$\|\mathbf{p}\|_{0} + \|\mathbf{q}\|_{0} < \sqrt{m}$$

$$\begin{bmatrix} \mathbf{0} & \boldsymbol{\delta} \end{bmatrix} \\ \begin{bmatrix} \mathbf{I} & \mathbf{F} \end{bmatrix} \begin{bmatrix} \boldsymbol{\delta} \\ \mathbf{0} \end{bmatrix} = \begin{bmatrix} \mathbf{I} & \mathbf{F} \end{bmatrix} \begin{bmatrix} \mathbf{0} \\ \boldsymbol{\delta} \end{bmatrix}$$

This behavior is fundamental and is known as the **square-root bottleneck**

Probabilistic Recovery Guarantees for BP

- Neither support set known [Kuppinger et al., 2011]
- One or both support sets known [Pope et al., 2011]

Recovery possible with high probability even if

$$\|\mathbf{p}\|_0 + \|\mathbf{q}\|_0 \sim \frac{m}{\log n}$$

Compare to

$$\|\mathbf{p}\|_0 + \|\mathbf{q}\|_0 \sim \sqrt{m}$$

This "breaks" the square-root bottleneck!

An Information-Theoretic Formulation

Sparsity for **random signals**:

components of signal are drawn i.i.d. $\sim (1-\rho)\delta_0 + \rho P_{\rm cont}$

where $0\leqslant\rho\leqslant1$ represents the mixture parameter

An Information-Theoretic Formulation

Sparsity for **random signals**:

components of signal are drawn i.i.d. $\sim (1-\rho)\delta_0 + \rho P_{\rm cont}$

where $0 \leqslant \rho \leqslant 1$ represents the mixture parameter

 \longrightarrow For large dimensions, the fraction of nonzero components in the signal is given by ρ (LLN)

An Information-Theoretic Formulation

Sparsity for random signals:

components of signal are drawn i.i.d. $\sim (1-\rho)\delta_0 + \rho P_{\mathsf{cont}}$

where $0 \leqslant \rho \leqslant 1$ represents the mixture parameter

— For large dimensions, the fraction of nonzero components in the signal is given by ρ (LLN)

General distributions — Lebesgue decomposition:

$$P = \alpha P_{\text{disc}} + \beta P_{\text{cont}} + \gamma P_{\text{sing}}, \quad \alpha + \beta + \gamma = 1$$

Almost Lossless Signal Separation

Framework inspired by [Wu & Verdú, 2010]:

$$z = Ax + Be$$

Existence of a measurable "separator" g such that for general random sources \mathbf{x} , \mathbf{e} , for sufficiently large blocklengths

$$\mathbb{P}\bigg[g\bigg([\mathbf{A}\ \mathbf{B}]\begin{bmatrix}\mathbf{x}\\\mathbf{e}\end{bmatrix}\bigg)\neq \begin{bmatrix}\mathbf{x}\\\mathbf{e}\end{bmatrix}\bigg]<\varepsilon$$

Almost Lossless Signal Separation

Framework inspired by [Wu & Verdú, 2010]:

$$z = Ax + Be$$

Existence of a measurable "separator" g such that for general random sources \mathbf{x} , \mathbf{e} , for sufficiently large blocklengths

$$\mathbb{P}\bigg[g\bigg([\mathbf{A}\ \mathbf{B}]\begin{bmatrix}\mathbf{x}\\\mathbf{e}\end{bmatrix}\bigg)\neq \begin{bmatrix}\mathbf{x}\\\mathbf{e}\end{bmatrix}\bigg]<\varepsilon$$

→ "Almost lossless signal separation"

We are interested in the structure of pairs A, B for which separation is possible. Concretely: fix B, look for suitable A

Setting

Source:
$$\left[\underbrace{\mathsf{X}_1 \, \cdots \, \mathsf{X}_{n-\ell}}_{\mathsf{fraction:} \, 1-\lambda} \, \underbrace{\mathsf{E}_1 \, \cdots \, \mathsf{E}_\ell}_{\mathsf{fraction:} \, \lambda}\right]^T \, \in \mathbb{R}^n$$

stoch. processes: $(X_i)_{i\in\mathbb{N}}$ and $(E_i)_{i\in\mathbb{N}}$, fraction parameter: $\lambda\in[0,1]$

Setting

Source:
$$\left[\underbrace{\mathsf{X}_1 \ \cdots \ \mathsf{X}_{n-\ell}}_{\mathsf{fraction:} \ 1-\lambda} \underbrace{\mathsf{E}_1 \ \cdots \ \mathsf{E}_\ell}_{\mathsf{fraction:} \ \lambda}\right]^T \in \mathbb{R}^n$$

stoch. processes: $(X_i)_{i\in\mathbb{N}}$ and $(E_i)_{i\in\mathbb{N}}$, fraction parameter: $\lambda\in[0,1]$

Code of rate R=m/n: $(m=\text{no. of measurements},\ n=\text{no. of unknowns})$

- lacktriangle measurement matrices: $\mathbf{A} \in \mathbb{R}^{m \times (n-\ell)}$, $\mathbf{B} \in \mathbb{R}^{m \times \ell}$
- \blacksquare measurable separator $g: \mathbb{R}^m \to \mathbb{R}^{m \times (n-\ell)} \times \mathbb{R}^{m \times \ell}$

Setting

Source:
$$\left[\underbrace{\mathsf{X}_1 \, \cdots \, \mathsf{X}_{n-\ell}}_{\mathsf{fraction:} \, 1-\lambda} \, \underbrace{\mathsf{E}_1 \, \cdots \, \mathsf{E}_\ell}_{\mathsf{fraction:} \, \lambda} \right]^T \, \in \mathbb{R}^n$$

stoch. processes: $(X_i)_{i\in\mathbb{N}}$ and $(E_i)_{i\in\mathbb{N}}$, fraction parameter: $\lambda\in[0,1]$

Code of rate R = m/n:

(m = no. of measurements, n = no. of unknowns)

- lacktriangle measurement matrices: $\mathbf{A} \in \mathbb{R}^{m \times (n-\ell)}$, $\mathbf{B} \in \mathbb{R}^{m \times \ell}$
- lacksquare measurable separator $g\colon \mathbb{R}^m o \mathbb{R}^{m imes(n-\ell)} imes \mathbb{R}^{m imes\ell}$

R is ε -achievable if for sufficiently large n (asymptotic analysis)

$$\mathbb{P}\bigg[g\bigg([\mathbf{A}\ \mathbf{B}]\begin{bmatrix}\mathbf{x}\\\mathbf{e}\end{bmatrix}\bigg)\neq \begin{bmatrix}\mathbf{x}\\\mathbf{e}\end{bmatrix}\bigg]<\varepsilon$$

A suitable measure for complexity:

Covering number:

$$N_{\mathcal{S}}(\varepsilon) := \min \left\{ k \in \mathbb{N} \mid \mathcal{S} \subseteq \bigcup_{i \in \{1, \dots, k\}} B^n(\boldsymbol{u}_i, \varepsilon), \ \boldsymbol{u}_i \in \mathbb{R}^n \right\}$$

A suitable measure for complexity:

Covering number:

$$N_{\mathcal{S}}(\varepsilon) := \min \left\{ k \in \mathbb{N} \mid \mathcal{S} \subseteq \bigcup_{i \in \{1, \dots, k\}} B^n(\boldsymbol{u}_i, \varepsilon), \ \boldsymbol{u}_i \in \mathbb{R}^n \right\}$$

A suitable measure for complexity:

Covering number:

$$N_{\mathcal{S}}(\varepsilon) := \min \left\{ k \in \mathbb{N} \mid \mathcal{S} \subseteq \bigcup_{i \in \{1, \dots, k\}} B^n(\boldsymbol{u}_i, \varepsilon), \ \boldsymbol{u}_i \in \mathbb{R}^n \right\}$$

A suitable measure for complexity:

Covering number:

$$N_{\mathcal{S}}(\varepsilon) := \min \left\{ k \in \mathbb{N} \mid \mathcal{S} \subseteq \bigcup_{i \in \{1, \dots, k\}} B^n(\boldsymbol{u}_i, \varepsilon), \; \boldsymbol{u}_i \in \mathbb{R}^n \right\}$$

(Lower) Minkowski dimension/Box-counting dimension:

$$\underline{\dim}_{\mathrm{B}}(\mathcal{S}) := \liminf_{\varepsilon \to 0} \frac{\log N_{\mathcal{S}}(\varepsilon)}{\log \frac{1}{\varepsilon}}$$

$$\longrightarrow$$
 for small ε : $N_{\mathcal{S}}(\varepsilon) \approx \varepsilon^{-\dim_{\mathbf{B}}(\mathcal{S})}$

Minkowski Dimension Compression Rate

Minkowski dimension compression rate:

$$R_{\mathrm{B}}(\varepsilon) := \limsup_{n \to \infty} a_n(\varepsilon)$$
 where

$$a_n(\varepsilon) := \inf \left\{ \frac{\dim_{\mathrm{B}}(\mathcal{S})}{n} \ \middle| \ \mathcal{S} \subseteq \mathbb{R}^n, \ \mathbb{P} \Bigg[\begin{bmatrix} \mathbf{x} \\ \mathbf{e} \end{bmatrix} \in \mathcal{S} \right] \ \geqslant 1 - \varepsilon \right\}$$

Minkowski Dimension Compression Rate

Minkowski dimension compression rate:

$$R_{\mathrm{B}}(\varepsilon) := \limsup_{n \to \infty} a_n(\varepsilon)$$
 where

$$a_n(\varepsilon) := \inf \left\{ \frac{\dim_{\mathrm{B}}(\mathcal{S})}{n} \mid \mathcal{S} \subseteq \mathbb{R}^n, \ \mathbb{P} \left[\begin{bmatrix} \mathbf{x} \\ \mathbf{e} \end{bmatrix} \in \mathcal{S} \right] \geqslant 1 - \varepsilon \right\}$$

Among all approximate support sets:

Minkowski Dimension Compression Rate

Minkowski dimension compression rate:

$$R_{\mathrm{B}}(\varepsilon) := \limsup_{n \to \infty} a_n(\varepsilon)$$
 where

$$a_n(\varepsilon) := \inf \left\{ \frac{\dim_{\mathrm{B}}(\mathcal{S})}{n} \mid \mathcal{S} \subseteq \mathbb{R}^n, \ \mathbb{P} \left[\begin{bmatrix} \mathbf{x} \\ \mathbf{e} \end{bmatrix} \in \mathcal{S} \right] \geqslant 1 - \varepsilon \right\}$$

Among all approximate support sets:

the smallest possible Minkowski dimension (per blocklength)

Main Result

Theorem

Let $R > R_B(\varepsilon)$. Then, for every fixed full-rank matrix $\mathbf{B} \in \mathbb{R}^{m \times \ell}$ with $m \geqslant \ell$ and for Lebesgue a.a. matrices $\mathbf{A} \in \mathbb{R}^{m \times (n-\ell)}$, where $m = \lfloor Rn \rfloor$, there exists a measurable separator g such that for sufficiently large n

$$\mathbb{P}\bigg[g\bigg([\mathbf{A}\ \mathbf{B}]\begin{bmatrix}\mathbf{x}\\\mathbf{e}\end{bmatrix}\bigg)\neq \begin{bmatrix}\mathbf{x}\\\mathbf{e}\end{bmatrix}\bigg]<\varepsilon$$

Main Result

Theorem

Let $R > R_B(\varepsilon)$. Then, for every fixed full-rank matrix $\mathbf{B} \in \mathbb{R}^{m \times \ell}$ with $m \geqslant \ell$ and for Lebesgue a.a. matrices $\mathbf{A} \in \mathbb{R}^{m \times (n-\ell)}$, where $m = \lfloor Rn \rfloor$, there exists a measurable separator g such that for sufficiently large n

$$\mathbb{P}\bigg[g\bigg([\mathbf{A}\ \mathbf{B}]\begin{bmatrix}\mathbf{x}\\\mathbf{e}\end{bmatrix}\bigg)\neq \begin{bmatrix}\mathbf{x}\\\mathbf{e}\end{bmatrix}\bigg]<\varepsilon$$

- simple and intuitive proof inspired by [Sauer et al., 1991]
- almost all matrices A are "incoherent" to a given matrix B

Proposition

Let $S \subseteq \mathbb{R}^n$ be such that $\underline{\dim}_B(S) < m$ and let $\mathbf{B} \in \mathbb{R}^{m \times \ell}$ be a full-rank matrix with $m \geqslant \ell$. Then

$$ig\{ oldsymbol{u} \in \mathcal{S} ackslash \{ oldsymbol{0} \} \ ig| \ [\mathbf{A} \ \mathbf{B}] oldsymbol{u} = oldsymbol{0} ig\} = \emptyset$$

Proposition

Let $S \subseteq \mathbb{R}^n$ be such that $\underline{\dim}_B(S) < m$ and let $\mathbf{B} \in \mathbb{R}^{m \times \ell}$ be a full-rank matrix with $m \geqslant \ell$. Then

$$ig\{ oldsymbol{u} \in \mathcal{S} ackslash \{ oldsymbol{0} \} \ ig| \ [\mathbf{A} \ \mathbf{B}] oldsymbol{u} = oldsymbol{0} ig\} = \emptyset$$

for Lebesgue a.a. $\mathbf{A} \in \mathbb{R}^{m \times (n-\ell)}$

lacksquare A and B ONBs, then there is no $(\mathbf{p},\mathbf{q})\neq 0$ such that

$$\mathbf{A}\mathbf{p} = \mathbf{B}\mathbf{q}$$
 and $\|\mathbf{p}\|_0 \|\mathbf{q}\|_0 < \frac{1}{\mu^2}$

lacksquare $\underline{\dim}_{\mathrm{B}}(\mathcal{S}) < m$, then for a.a. \mathbf{A} there is no $(\mathbf{p},\mathbf{q})
eq 0$ such that

$$\mathbf{A}\mathbf{p} = \mathbf{B}\mathbf{q}$$
 and $u = (\mathbf{p}, -\mathbf{q}) \in \mathcal{S}$

Proposition

Let $S \subseteq \mathbb{R}^n$ be such that $\underline{\dim}_B(S) < m$ and let $\mathbf{B} \in \mathbb{R}^{m \times \ell}$ be a full-rank matrix with $m \geqslant \ell$. Then

$$ig\{ oldsymbol{u} \in \mathcal{S} ackslash \{ oldsymbol{0} \} \ ig| \ [\mathbf{A} \ \mathbf{B}] oldsymbol{u} = oldsymbol{0} ig\} = \emptyset$$

Proposition

Let $S \subseteq \mathbb{R}^n$ be such that $\underline{\dim}_B(S) < m$ and let $\mathbf{B} \in \mathbb{R}^{m \times \ell}$ be a full-rank matrix with $m \geqslant \ell$. Then

$$ig\{ oldsymbol{u} \in \mathcal{S} ackslash \{ oldsymbol{0} \} \ ig| \ [\mathbf{A} \ \mathbf{B}] oldsymbol{u} = oldsymbol{0} ig\} = \emptyset$$

Proposition

Let $S \subseteq \mathbb{R}^n$ be such that $\underline{\dim}_B(S) < m$ and let $\mathbf{B} \in \mathbb{R}^{m \times \ell}$ be a full-rank matrix with $m \geqslant \ell$. Then

$$ig\{ oldsymbol{u} \in \mathcal{S} ackslash \{ oldsymbol{0} \} \ ig| \ [\mathbf{A} \ \mathbf{B}] oldsymbol{u} = oldsymbol{0} ig\} = \emptyset$$

Proposition

Let $S \subseteq \mathbb{R}^n$ be such that $\underline{\dim}_B(S) < m$ and let $\mathbf{B} \in \mathbb{R}^{m \times \ell}$ be a full-rank matrix with $m \geqslant \ell$. Then

$$ig\{ oldsymbol{u} \in \mathcal{S} ackslash \{ oldsymbol{0} \} \ ig| \ [\mathbf{A} \ \mathbf{B}] oldsymbol{u} = oldsymbol{0} ig\} = \emptyset$$

Proposition

Let $S \subseteq \mathbb{R}^n$ be such that $\underline{\dim}_B(S) < m$ and let $\mathbf{B} \in \mathbb{R}^{m \times \ell}$ be a full-rank matrix with $m \geqslant \ell$. Then

$$ig\{ oldsymbol{u} \in \mathcal{S} ackslash \{ oldsymbol{0} \} \ ig| \ [\mathbf{A} \ \mathbf{B}] oldsymbol{u} = oldsymbol{0} ig\} = \emptyset$$

Back to Discrete-Continuous Mixtures

$${\sf X}_i \ \text{i.i.d.} \ \sim (1-\rho_1)P_{\sf d_1} + \rho_1P_{\sf c_1}$$
 ${\sf E}_i \ \text{i.i.d.} \ \sim (1-\rho_2)P_{\sf d_2} + \rho_2P_{\sf c_2}$

where $0\leqslant \rho_i\leqslant 1$; for $P_{\mathsf{d}_1}=P_{\mathsf{d}_2}=\delta_0\to \mathsf{sparse}$ signal model Fraction of X_i 's $=1-\lambda$; fraction of E_i 's $=\lambda$

Back to Discrete-Continuous Mixtures

$$\begin{aligned} \mathbf{X}_i \quad \text{i.i.d.} \quad &\sim (1-\rho_1)P_{\mathsf{d}_1} + \rho_1P_{\mathsf{c}_1} \\ \mathbf{E}_i \quad \text{i.i.d.} \quad &\sim (1-\rho_2)P_{\mathsf{d}_2} + \rho_2P_{\mathsf{c}_2} \end{aligned}$$

where $0\leqslant \rho_i\leqslant 1$; for $P_{\mathsf{d}_1}=P_{\mathsf{d}_2}=\delta_0\to \mathsf{sparse}$ signal model Fraction of X_i 's $=1-\lambda$; fraction of E_i 's $=\lambda$

An exact expression for $R_{\rm B}(\varepsilon)$ and a converse:

Theorem

For discrete-continuous mixtures the optimal compression rate is

$$R_{\rm B}(\varepsilon) = (1 - \lambda)\rho_1 + \lambda \rho_2$$

Back to Discrete-Continuous Mixtures

$${\sf X}_i$$
 i.i.d. $\sim (1-\rho_1)P_{\sf d_1} + \rho_1P_{\sf c_1}$ ${\sf E}_i$ i.i.d. $\sim (1-\rho_2)P_{\sf d_2} + \rho_2P_{\sf c_2}$

where $0\leqslant \rho_i\leqslant 1$; for $P_{\mathsf{d}_1}=P_{\mathsf{d}_2}=\delta_0\to \mathsf{sparse}$ signal model Fraction of X_i 's $=1-\lambda$; fraction of E_i 's $=\lambda$

An exact expression for $R_{\rm B}(\varepsilon)$ and a converse:

Theorem

For discrete-continuous mixtures the optimal compression rate is

$$R_{\rm B}(\varepsilon) = (1 - \lambda)\rho_1 + \lambda \rho_2$$

Optimal no. of measurements = no. of nonzero components

The information-theoretic approach

applies to general source distributions

- applies to general source distributions
- lacktriangle works for given ${f B}$ for a.a. ${f A}$

- applies to general source distributions
- works for given B for a.a. A
- yields explicit expression for optimal compression rate (i.e., optimal no. of measurements) for sparse signals

- applies to general source distributions
- works for given B for a.a. A
- yields explicit expression for optimal compression rate (i.e., optimal no. of measurements) for sparse signals
 - \longrightarrow achieves linear scaling (got rid of $\log n$ factor)

- applies to general source distributions
- works for given B for a.a. A
- yields explicit expression for optimal compression rate (i.e., optimal no. of measurements) for sparse signals
 - \longrightarrow achieves linear scaling (got rid of $\log n$ factor)
- is of asymptotic nature

- applies to general source distributions
- works for given B for a.a. A
- yields explicit expression for optimal compression rate (i.e., optimal no. of measurements) for sparse signals
 - \longrightarrow achieves linear scaling (got rid of $\log n$ factor)
- is of asymptotic nature
- deals with the noiseless case

- applies to general source distributions
- works for given B for a.a. A
- yields explicit expression for optimal compression rate (i.e., optimal no. of measurements) for sparse signals
 - \longrightarrow achieves linear scaling (got rid of $\log n$ factor)
- is of asymptotic nature
- deals with the noiseless case
- provides existence results only for decoders

Thank you

"If you ask me anything I don't know,
I'm not going to answer."
— Y. Berra