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The Big Picture

Signal: x

Auxiliary (side) 
Information: y

Output: g(x,y)
Information Scalable Coding:

How to encode signal for general functions g(·,·)?

Main questions:
Rate- and computation-efficient encoding

Accurate and efficient computation of g(·,·)
Interaction of encoding and computation



The Big Picture

Signal: x

Auxiliary (side) 
Information: y

Output: g(x,y)
Example/Special Case:

Function computes just signal, g(x,y)=x, 
No auxiliary information

⇒ Conventional compression/source coding
Encoding Efficiency: Rate

Accuracy of function computation: Distortion
Interaction: Rate/Distortion theory



The Big Picture

Signal: x

Auxiliary (side) 
Information: y

Output: g(x,y)
Example/Special Case:

Function computes just signal, g(x,y)=x, 
Auxiliary information: similar signals

⇒ Distributed source coding (coding with side information)

Slepian-Wolf coding: discrete source, lossless—no distortion
Wyner-Ziv coding: continuous source, lossy—rate/distortion



The Big Picture

Signal: x

Auxiliary (side) 
Information: y

Output: g(x,y)
Today

Function computes functions of signal distances, 

g(x,y)=g(║x-y║2), 
Auxiliary information: other signals 
⇒ Coding of signal distances

Main tool: Embeddings



Similar pictures 
and metadata

Motivation: Augmented Reality

Server-side processing increasingly important
(e.g. cloud computing, augmented reality)

Compression is necessary
Goal: detection; not image transmission

Q: Should we transmit the signal?
Can we reduce the rate?



Signal/Image DatabaseSignal/Image Database

Signal/Image-based Retrieval

Feature Extraction

Query Signal/Image Descriptive
Features

?



Detection/Classification Pipeline (typical)

Feature 
Extraction

Detection/
Classification

“Golden 
Gate Bridge”

Server-side

Image transmission

Server-side
Requires 

reconstruction

Detection/Classification: Based on signal geometry



Detection/Classification Pipeline (efficient)

Feature 
Extraction

Detection/
Classification

“Golden 
Gate Bridge”

Server-side

Features transmission

Client-side
Inexpensive

Goal: rate-efficient geometry-preserving transmission

Detection/Classification: Based on signal geometry



GEOMETRY-PRESERVING EMBEDDINGS



Isometric (approximate) embeddings

f (x)

f -1(x)

Transformations that preserve distances

Original space
high-dimensional and
expensive to work with

Embedding space
lower dimension or 
easier to work with

(hopefully)

For all x,y in S :  dS(x,y) ! dW(f(x),f(y))

S W



f(x) = Ax

Johnson-Lindenstrauss embeddings

f -1(x)

Original space
Distance metric: ℓ2

P points in N 

Embedding space
Embed in M

Distance metric: ℓ2
M=O(logP) dimensions

For all x,y in S:

(1− �)�x− y�22 ≤ �f(x)− f(y)�22 ≤ (1 + �)�x− y�22

Transformations that preserve distances

S⊂ N W⊂ M



Johnson-Lindenstrauss embeddings

Random projection
f(x)=Ax

(entries of A Gaussian, +1/-1 Bernoulli, etc.)

With overwhelming probability on A, for all x,y in S:

(1− �)�x− y�22 ≤ �f(x)− f(y)�22 ≤ (1 + �)�x− y�22
using only                               dimensions M = O

�
log P

�2

�

Bound (almost) tight:                              dimensions necessaryM = O

�
log P

�2 log 1
�

�

BUT: Quantization is necessary for transmission!
 Are J-L Embeddings still appropriate?

S⊂ N W⊂ M



Quantized J-L Embeddings

J-L 
embedding

Scalar 
Quantization 
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Multibit Binary (1-bit)
y y

Quantization cells

Quantization points

B-bit scalar quantizer 
with dynamic range ±S

Quantization interval
"=S!2-B+1

 Binary quantizer (B=1) 
just preserves sign

S⊂ N W⊂ M



(1− �)�x− y�2 − 2−B+1S ≤
�Q(f(x))−Q(f(y))�2

≤ (1 + �)�x− y�2 + 2−B+1S

Johnson-Lindenstrauss With Quantization [w/ Li, Rane] 

Consider S⊂ N containing P points. 
We can embed S in M such that for all x,y in S:

using only                               dimensions

and B bits per dimension
(with appropriate normalizations/saturation levels) 

Total rate: R=BM

M = O

�
log P

�2

�



(1− �)�x− y�2 − 2−
R
M +1S ≤
�Q(f(x))−Q(f(y))�2

≤ (1 + �)�x− y�2 + 2−
R
M +1S

Quantized J-L at Fixed Rate

Given total rate: R=MB
How to assign B and M? More M or more B? 

Design tradeoff: 
Number of projections vs. bits per projection

� = O(1/
√
M)

Larger M, less J-L type distortion ϵ

2−B+1S
Larger B, less quantization distortion



��x− y�2

2−B+1S

��x− y�2 + 2−B+1S

Exploring the Design Trade-off
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Exploring the Design Trade-off

Fixed M=256
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IN PRACTICE



Server Database

ZuBuD: Zurich Buildings Database

1005 images: 201 buildings from 5 viewpoints each
804 images (4 viewpoints per building) in server

201 query images (1 viewpoint per building)

? Building ID

Features Embedding



Success Probability

[Yeo et al.,2008]
[Min et al.,2010]

(embedding dimensionality M)
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QJL, B=1 bit (CP)
QJL, B=2 bits
QJL, B=3 bits
QJL, B=4 bits
QJL, B=5 bits

Success Probability with Fixed Rate

[Yeo et al.,2008]
[Min et al.,2010]

>33% improvement



Performance Compared to Plain SIFT
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Performance Compared to JPEG

JPEG images at 80 QF need 58.5kB on average
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?

Inference relies on clusters of signals 

Large distances not necessary to determine 
clusters and nearest neighbors

Should not spend bits encoding large distances!

But how?



GENERAL EMBEDDING DESIGN



(1− �)g(dS(x,x
�))− δ ≤
dW(f(x), f(x�))

≤ (1 + �)g(dS(x,x
�)) + δ

Generalized Embedding Maps

f -1(x)

Original space
Distance metric: dS

Embedding space
Embed in W

Distance metric: dW

For all x,y in S:
Assume we can construct a distance map g(·) 

S⊂ N W⊂ Mf (x)



dW(f(x), f(x�)) ≈ g(dS(x,x
�))

⇒ �dS = g−1(dW(f(x, f(x�))

Embedding Analysis

For all x,y in S:

Given two signal embeddings, x, x’ " f(x), f(x’)
What is the distance of the signals x, x’?

(1− �)g(dS(x,x
�))− δ ≤
dW(f(x), f(x�))

≤ (1 + �)g(dS(x,x
�)) + δ

dW(f(x), f(x�)) ≈ g(dS(x,x
�))

⇒ �dS = g−1(dW(f(x, f(x�))



dW(f(x), f(x�)) ≈ g(dS(x,x
�))

⇒ �dS = g−1(dW(f(x, f(x�))

Embedding Analysis

For all x,y in S:

���dS(x,x�)− �dS
��� � δ + �dW(f(x), f(x�)

g�(�dS)

Given distance estimate, what is the ambiguity?

Distance estimate:

Note dependence on slope!

(1− �)g(dS(x,x
�))− δ ≤
dW(f(x), f(x�))

≤ (1 + �)g(dS(x,x
�)) + δ



�dS

dW

dW

dS

g(·)

Embedding Analysis

For all x,y in S:

�dS

dW

���dS(x,x�)− �dS
��� � δ + �dW(f(x), f(x�)

g�(�dS)
Note dependence on slope!

(1− �)g(dS(x,x
�))− δ ≤
dW(f(x), f(x�))

≤ (1 + �)g(dS(x,x
�)) + δ(1− �)g(dS(x,x

�))− δ ≤
dW(f(x), f(x�))

≤ (1 + �)g(dS(x,x
�)) + δ

(1− �)g(dS(x,x
�))− δ ≤
dW(f(x), f(x�))

≤ (1 + �)g(dS(x,x
�)) + δ



y = h(Ax+w)

Embedding Design

Q: Can we design embeddings?

A ∈ RM×NA: Yes. We start with a random matrix             ,

h(t) = h(t+ 1)a periodic function

w ∈ [0, 1)and random i.i.d., uniform dither

h(·) : HkFourier series coefficients of

h̄ = sup
t

h(t)− inf
t
h(t)Also, assume bounded:



Distance Map

w ∈ [0, 1) i.i.d, uniform

h(·) : HkFourier series coefficients of

h(t) = h(t+ 1) h̄ = sup
t

h(t)− inf
t
h(t)

A ∈ RM×N i.i.d., Gaussian, variance !2

Theorem (Embedding Design)

Consider a set S of Q points in RN , measured using y = h(Ax +w), with A, w,

and h(t) as above. With failure probability PF ≤ 2Q2e−2M δ2

h̄4 the following holds

g(�x− x��2)− δ ≤ 1

M
�y − y��22 ≤ g(�x− x��2) + δ

for all pairs x,x� ∈ S and corresponding measurements y,y�.
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Embedding-based Representation of Signal Distances
Petros T. Boufounos and Shantanu Rane

Mitsubishi Electric Research Laboratories
Cambridge, MA 02139, USA.
{petrosb,rane}@merl.com

Abstract—Traditional signal representation and coding theory is fo-

cused on how to most efficiently represent and encode a signal with

the goal of preserving it as best as possible. However, very often, the

processing only concerns specific information in the signal and does

not require conserving the signal itself. In this work we examine the

problem of representing signals such that some function of their distance

is preserved. For that goal, we consider randomized embeddings as a

representation mechanism and provide a framework to design them and

analyze their performance. This work generalizes previously developed

universal embeddings, already proven quite successful in practice.

Index Terms—distance representation, randomized embeddings

I. INTRODUCTION

S
IGNAL representation theory and practice has primarily focused
on how to best represent or code a signal incurring the smallest

possible distortion. For example, image or video representations
typically aim to minimize the distortion in the signal so that the visual
quality of the signal is maintained when displayed to a user. Quite
often, however, the user of a signal is not a human observer, but an
algorithm extracting information. In this case, the goal is different: the
representation should not destroy the information that the algorithm
requires, even if the signal itself cannot be completely recovered.

The representations examined in this paper target applications
in which only the information about the distance of one signal to
another, or a function of that distance is required. To represent dis-
tances, we exploit the distance-preserving properties of randomized
embeddings. Our approach generalizes well-known embeddings in a
manner than enables the design and control of the distance distortion.

An embedding is a transformation of a set of signals in a high-
dimensional space to a (typically) lower-dimensional space such
that some aspects of the geometry of the set are preserved. Thus,
computations requiring distance evaluations can be performed directly
using the embedding, rather than the signals themselves. The best
known embeddings are due to Johnson and Lindenstrauss, which
preserve �2 distances using a randomized linear map [1].

II. EMBEDDING DESIGN FOR RESPRESENTATION OF DISTANCES

In this work we consider a fairly general approach to design
embeddings that preserve distances of signals subject to a distance
map g(·). Such embeddings allow the design of representations and
coding schemes with control on the distortion in the distances, rather
than the distortion in the signals.

Specifically we examine embeddings of the form y = h(Ax +
w), where h(·) is a scalar function, applied element-wise to each
coefficient of its argument. We assume it is periodic with period
1, i.e., h(t) = h(t + 1), and has Fourier series denoted by Hk. It
is also bounded, with h̄ = supt h(t) − inft h(t). We assume the
rows, ai, of A are randomly chosen from a rotationally invariant
i.i.d. vector distribution and the elements of w are chosen from an
i.i.d. distribution uniform in [0, 1). Thus, any projection li = �ai,x�
is a random variable which we assume only depends on the length
d = �x�2. We use φ(ξ; d) to denote the characteristic function of this
random variable. For example, if elements of A are i.i.d. normally
distributed with variance σ2, then φN (σ)(ξ; d) = e

− 1
2 (σdξ)2 .

Under those assumptions, we define a distance map

g(d) = 2
�

k

|Hk|2(1− φ(k; d)). (1)

which, in the special case of normally distributed a, becomes

g(d) = 2
�

k

|Hk|2
�
1− e

− 1
2 (σdk)2

�
. (2)

The embedding represents distances subject to this distance map, with
accuracy characterized by the following theorem.

Theorem 2.1: Consider a set S of Q points in RN , measured using
y = h(Ax + w), with A, w, and h(t) as above. With failure

probability PF ≤ 2Q2
e
−2M �2

h̄4 the following holds

g(�x− x��2)− � ≤ 1
M

��y − y���2

2
≤ g(�x− x��2) + � (3)

for all pairs x,x� ∈ S and corresponding measurements y,y�.
If h(t) is Lipschitz continuous, Thm. 2.1 can be generalized to

arbitrary compact sets S, such as bounded sparse signals. With more
care we can allow for piecewise continuous h(t). This approach gen-
eralizes the results in [2], [3] and allows their extension from binary
embeddings of point clouds to multi-bit embeddings of compact sets.
Details are reserved for an extended version of this paper.

Although (3) characterizes the embedding ambiguity, this form
is not useful when representing or coding distances [4]. In such
applications, the goal is to estimate the true distance between signals,
given their representation, and characterize the estimate’s ambiguity.

Specifically, given the embedding distance de = �y−y��22/M , the
signal distance �x−x��2 can be estimated using �ds = g

−1(de). The
uncertainty of this estimate is approximately equal to �/g�(ds), i.e.,
inversely proportional to g

�(·), the slope of g(·). Thus, the steepest
parts of the distance map preserve distances best, while flatter parts
introduce more ambiguity. Note that scaling h(·) also affects the ratio
�2/h̄4 in the probability PF with which the embedding fails. To keep
this probability constant when scaling h(·), � will scale accordingly
and, therefore, the ambiguity will remain constant.

The ability to control the error and the ambiguity is integral to the
function of a representation. Scalar quantizers, for example, are often
non-uniform in order to better accommodate the signal statistics or
the distortion that users tolerate at different signal values. Similarly,
by manipulating the slope of g(·) it is possible to adjust the distortion
of the distance representation and make it distance-dependent.
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With distance map: 
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Inference relies on clusters of signals 

Large distances not necessary to determine 
clusters and nearest neighbors

Should not spend bits encoding large distances!

But how?



UNIVERSAL QUANTIZED EMBEDDINGS



Solution: Modify the quantizer

Non-monotonic quantizer: Multiple intervals quantize to same value
(Focus on 1-bit quantizer today)

Rate-Efficient Scalar Quantization

… …

0
1 2 3-1-2-3 y

Q(y)

1

1 2 3
-1-2-3

y

Q(y)

1
2
3

-4

4

… …

measurements
(w/ i.i.d. gaussian matrix)

dither
(i.i.d. uniform)

scaling/precision parameter
("m=", same for all measurements)

scalar quantizer
(non-monotonic)

qm = Q

�
�x,am�+ wm

∆m

�
, q = Q(∆−1(Ax+w))



g(d) =
1
2
−

+∞�

i=0

e
−

“
π(2i+1)σd√

2∆

”2

�
π

�
i + 1

2

��2

g(d)− δ ≤ dH (f(x)− f(y)) ≤ g(d) + δ

Embedding Properties

f (x)

f -1(x)

Original space
Distance metric: ℓ2

P points in N 

Embedding space
Embed in {0,1}M

Hamming distance
M=O(logP) dimensions

For all x,y in S:

S⊂ N W⊂ M



�d = g−1 (dH (f(x), f(y)))

�d− δ

g�(�d)
� d � �d+ δ

g�(�d)

Error Behavior

Properties (slope) controlled by choice of !

Distance estimate:

Estimate ambiguity:

0
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g(d)− δ ≤ dH (f(x)− f(y)) ≤ g(d) + δ



Error Behavior
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Error Behavior
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IN PRACTICE



Server Database

ZuBuD: Zurich Buildings Database

1005 images: 201 buildings from 5 viewpoints each
804 images (4 viewpoints per building) in server

201 query images (1 viewpoint per building)

? Building ID

Features Embedding
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Looking Ahead: The Big Picture

Signal: x

Auxiliary (side) 
Information: y

Output: g(x,y)

Information Scalable Coding:
Encode/embed the signal for general functions g(·,·)?

Preserving whole signal usually not necessary!

Solution known only for some special cases



Questions/Comments?
petros@boufounos.com              http://boufounos.com

Summary
• Embeddings a big step towards information scalability

– Very effective for coding signal distances
– Very efficient for big data and distributed systems
– Very promising for quantization and distributed coding

• Embeddings exist for other distance metrics
– Angle/correlation of signals (1-bit CS and phase embeddings)
– Edit distance, Earth mover distance [Indyk et al.]

– How to properly exploit/quantize them?

• General open problems
– Embeddings/codings for function computation
– Information scalability in more general inference problems


