Representation and Coding of Signal Distances

Petros Boufounos

petros@boufounos.com

(Joint work w/ Shantanu Rane)

Output: g(x,y)

Information Scalable Coding:

How to encode signal for general functions $g(\cdot, \cdot)$?

Main questions:

Rate- and computation-efficient encoding Accurate and efficient computation of $g(\cdot, \cdot)$ Interaction of encoding and computation

Output: g(x,y)

Example/Special Case:

Function **computes** just **signal**, g(x,y)=x, **No** auxiliary **information**

⇒ Conventional compression/source coding

Encoding Efficiency: Rate

Accuracy of function computation: **Distortion**

Interaction: Rate/Distortion theory

Output: g(x,y)

Example/Special Case:

Function **computes** just **signal**, g(x,y)=x, Auxiliary **information**: **similar signals**

⇒ **Distributed** source **coding** (coding with side information)

Slepian-Wolf coding: discrete source, lossless—no distortion Wyner-Ziv coding: continuous source, lossy—rate/distortion

Signal: *x*

Output: g(x,y)

Today

Function computes functions of signal distances,

$$g(x,y)=g(\|x-y\|_2),$$

Auxiliary information: other signals

⇒ Coding of signal distances

Main tool: **Embeddings**

Motivation: Augmented Reality

Server-side processing increasingly important (e.g. cloud computing, augmented reality)

Compression is necessary

Goal: detection; not image transmission

Q: Should we transmit the signal? Can we reduce the rate?

Signal/Image-based Retrieval

Berlin Cathedral

Building

Directions

Berlin Cathedral is the colloquial name for the Evangelical Oberpfarr- und Domkirche in Berlin, Germany. Wikipedia

Address: Am Lustgarten, 10178 Berlin, Germany

Opened: 1905

Hours: Sunday 12:00-7:9 See all

Phone: +49 30 20269152

Architectural styles: Rer ce architecture, Brick Gothic, Baroque

architecture, Neoclassica decture

Architects: Karl Friedrig / nkel, Julius Raschdorff

Detection/Classification Pipeline (typical)

Detection/Classification: Based on signal geometry

Detection/Classification Pipeline (efficient)

Detection/Classification: Based on signal geometry

Goal: rate-efficient geometry-preserving transmission

GEOMETRY-PRESERVING EMBEDDINGS

Isometric (approximate) embeddings

Original space high-dimensional and expensive to work with

Embedding space lower dimension or easier to work with (hopefully)

Transformations that preserve distances

For all x,y in $S: d_{S}(x,y) \approx d_{W}(f(x),f(y))$

Johnson-Lindenstrauss embeddings

Transformations that preserve distances

For all x,y in S:

$$(1 - \epsilon) \|x - y\|_2^2 \le \|f(x) - f(y)\|_2^2 \le (1 + \epsilon) \|x - y\|_2^2$$

Johnson-Lindenstrauss embeddings

With overwhelming probability on **A**, for all x,y in S:

$$(1-\epsilon)\|x-y\|_2^2 \leq \|f(x)-f(y)\|_2^2 \leq (1+\epsilon)\|x-y\|_2^2$$
 using only $M=O\left(\frac{\log P}{\epsilon^2}\right)$ dimensions

Bound (almost) tight:
$$M = O\left(\frac{\log P}{\epsilon^2 \log \frac{1}{\epsilon}}\right)$$
 dimensions necessary

BUT: Quantization is necessary for transmission!

Are J-L Embeddings still appropriate?

Quantized J-L Embeddings

Johnson-Lindenstrauss With Quantization [w/ Li, Rane]

Consider $S \subset \mathbb{R}^N$ containing P points.

We can embed S in \mathbb{R}^M such that for all x,y in S:

$$(1 - \epsilon) \|x - y\|_2 - 2^{-B+1} S \le$$

$$\|Q(f(x)) - Q(f(y))\|_2$$

$$\le (1 + \epsilon) \|x - y\|_2 + 2^{-B+1} S$$

using only
$$M = O\left(\frac{\log P}{\epsilon^2}\right)$$
 dimensions

and *B* bits per dimension (with appropriate normalizations/saturation levels)

Total rate: *R*=*BM*

Quantized J-L at Fixed Rate

Given total rate: R=MB

How to assign B and M? More M or more B?

Larger B, less quantization distortion

$$2^{-B+1}S$$

$$(1-\epsilon)\|x-y\|_2 - 2^{-\frac{R}{M}+1}S \le \frac{2^{-B+1}S}{\|Q(f(x)) - Q(f(y))\|_2}$$

$$\le (1+\epsilon)\|x-y\|_2 + 2^{-\frac{R}{M}+1}S$$

Larger M, less J-L type distortion ϵ

$$\epsilon = O(1/\sqrt{M})$$

Design tradeoff: Number of projections vs. bits per projection

Exploring the Design Trade-off

Exploring the Design Trade-off

IN PRACTICE

ZuBuD: Zurich Buildings Database

Success Probability

Success Probability with Fixed Rate

Performance Compared to Plain SIFT

Performance Compared to JPEG

JPEG images at 80 QF need 58.5kB on average

Information Scalability

Inference relies on clusters of signals

Large distances not necessary to determine clusters and nearest neighbors

Should not spend bits encoding large distances!

But how?

GENERAL EMBEDDING DESIGN

Generalized Embedding Maps

Original space

Distance metric: $d_{\mathcal{S}}$

Embedding space

Embed in W

Distance metric: dw

Assume we can construct a **distance map** $g(\cdot)$

For all x,y in S:

$$(1 - \epsilon)g(d_{\mathcal{S}}(\mathbf{x}, \mathbf{x}')) - \delta \le$$

$$d_{\mathcal{W}}(f(\mathbf{x}), f(\mathbf{x}'))$$

$$\le (1 + \epsilon)g(d_{\mathcal{S}}(\mathbf{x}, \mathbf{x}')) + \delta$$

Embedding Analysis

For all x,y in S:

$$(1 - \epsilon)g(d_{\mathcal{S}}(\mathbf{x}, \mathbf{x}')) - \delta \le$$

$$d_{\mathcal{W}}(f(\mathbf{x}), f(\mathbf{x}'))$$

$$\le (1 + \epsilon)g(d_{\mathcal{S}}(\mathbf{x}, \mathbf{x}')) + \delta$$

Given two signal embeddings, $x, x' \Rightarrow f(x), f(x')$ What is the distance of the signals x, x'?

$$d_{\mathcal{W}}(f(\mathbf{x}), f(\mathbf{x}')) \approx g(d_{\mathcal{S}}(\mathbf{x}, \mathbf{x}'))$$

$$\Rightarrow \widetilde{d}_{\mathcal{S}} = g^{-1}(d_{\mathcal{W}}(f(\mathbf{x}, f(\mathbf{x}'))))$$

Embedding Analysis

For all x,y in S:

$$(1 - \epsilon)g(d_{\mathcal{S}}(\mathbf{x}, \mathbf{x}')) - \delta \le$$

$$d_{\mathcal{W}}(f(\mathbf{x}), f(\mathbf{x}'))$$

$$\le (1 + \epsilon)g(d_{\mathcal{S}}(\mathbf{x}, \mathbf{x}')) + \delta$$

Distance estimate:

$$\widetilde{d}_{\mathcal{S}} = g^{-1}(d_{\mathcal{W}}(f(\mathbf{x}, f(\mathbf{x}'))))$$

Given distance estimate, what is the ambiguity?

$$\left| d_{\mathcal{S}}(\mathbf{x}, \mathbf{x}') - \widetilde{d}_{\mathcal{S}} \right| \lesssim \frac{\delta + \epsilon d_{\mathcal{W}}(f(\mathbf{x}), f(\mathbf{x}'))}{g'(d_{\mathcal{S}})}$$

Note dependence on slope!

Embedding Analysis

For all x,y in S:

$$(1 - e)g(d_{\mathcal{S}}(\mathbf{x}, \mathbf{x}')) - \delta \leq d_{\mathcal{W}}(f(\mathbf{x}), f(\mathbf{x}'))$$

$$\leq (1 + \epsilon)g(d_{\mathcal{S}}(\mathbf{x}, \mathbf{x}')) + \delta$$

$$d_{\mathcal{W}} \xrightarrow{d_{\mathcal{W}}} \xrightarrow{(1 + \epsilon)g(d_{\mathcal{S}}(\mathbf{x}, \mathbf{x}')) + \delta} d_{\mathcal{S}}$$

$$|d_{\mathcal{S}}(\mathbf{x}, \mathbf{x}') - \widetilde{d}_{\mathcal{S}}| \lesssim \frac{\delta + \epsilon d_{\mathcal{W}}(f(\mathbf{x}), f(\mathbf{x}'))}{g'(d_{\mathcal{S}})}$$

Note dependence on slope!

Embedding Design

Q: Can we design embeddings?

A: Yes. We start with a random matrix $\mathbf{A} \in \mathbb{R}^{M imes N}$

a periodic function
$$h(t) = h(t+1)$$

and random i.i.d., uniform dither $\mathbf{w} \in [0,1)$

$$\mathbf{y} = h(\mathbf{A}\mathbf{x} + \mathbf{w})$$

Fourier series coefficients of $h(\cdot): H_k$

Also, assume bounded: $\bar{h} = \sup_t h(t) - \inf_t h(t)$

Distance Map

 $\mathbf{A} \in \mathbb{R}^{M imes N}$ i.i.d., Gaussian, variance σ^2 $\mathbf{w} \in [0,1)$ i.i.d, uniform h(t) = h(t+1) $ar{h} = \sup_t h(t) - \inf_t h(t)$

Fourier series coefficients of $h(\cdot)$: H_k

Theorem (Embedding Design)

Consider a set S of Q points in \mathbb{R}^N , measured using $\mathbf{y} = h(\mathbf{A}\mathbf{x} + \mathbf{w})$, with \mathbf{A} , \mathbf{w} , and h(t) as above. With failure probability $P_F \leq 2Q^2 e^{-2M\frac{\delta^2}{h^4}}$ the following holds

$$g(\|\mathbf{x} - \mathbf{x}'\|_2) - \delta \le \frac{1}{M} \|\mathbf{y} - \mathbf{y}'\|_2^2 \le g(\|\mathbf{x} - \mathbf{x}'\|_2) + \delta$$

for all pairs $\mathbf{x}, \mathbf{x}' \in \mathcal{S}$ and corresponding measurements \mathbf{y}, \mathbf{y}' .

With distance map:

$$g(d) = 2\sum_{k} |H_k|^2 \left(1 - e^{-\frac{1}{2}(\sigma dk)^2}\right)$$

Information Scalability

Inference relies on clusters of signals

Large distances not necessary to determine clusters and nearest neighbors

Should not spend bits encoding large distances!

But how?

UNIVERSAL QUANTIZED EMBEDDINGS

Rate-Efficient Scalar Quantization

Non-monotonic quantizer: Multiple intervals quantize to same value (Focus on 1-bit quantizer today)

Embedding Properties

Original space

Distance metric: ℓ_2 *P* points in \mathbb{R}^N

Embedding space

Embed in $\{0,1\}^M$ Hamming distance $M=O(\log P)$ dimensions

For all x,y in S:

$$g(d) - \delta \le d_H (f(x) - f(y)) \le g(d) + \delta$$

$$g(d) = \frac{1}{2} - \sum_{i=0}^{+\infty} \frac{e^{-\left(\frac{\pi(2i+1)\sigma d}{\sqrt{2}\Delta}\right)^2}}{\left(\pi\left(i + \frac{1}{2}\right)\right)^2}$$

Error Behavior

$$g(d) - \delta \le d_H \left(f(x) - f(y) \right) \le g(d) + \delta$$

$$g(d) = \frac{1}{2} - \sum_{i=0}^{+\infty} \frac{e^{-\left(\frac{\pi(2i+1)\sigma d}{\sqrt{2}\Delta}\right)^2}}{\left(\pi\left(i+\frac{1}{2}\right)\right)^2} \qquad g(d) \le \sqrt{\frac{2}{\pi}} \frac{\sigma d}{\Delta}$$

$$g(d) \le \frac{1}{2} - \frac{4}{\pi^2} e^{-\left(\frac{\pi\sigma d}{\sqrt{2}\Delta}\right)^2}$$

$$g(d) \ge \frac{1}{2} - \frac{1}{2} e^{-\left(\frac{\pi\sigma d}{\sqrt{2}\Delta}\right)^2}$$

$$D_0 \qquad d$$

Distance estimate:
$$\widetilde{d} = g^{-1} \left(d_H \left(f(x), f(y) \right) \right)$$

Estimate ambiguity:
$$\widetilde{d} - \frac{\delta}{g'(\widetilde{d})} \lesssim d \lesssim \widetilde{d} + \frac{\delta}{g'(\widetilde{d})}$$

Properties (slope) controlled by choice of Δ

Error Behavior

$$g(d) - \delta \le d_H \left(f(x) - f(y) \right) \le g(d) + \delta$$

"Linear" region: $\ell_2 \propto d_H$, slope controlled by Δ

"Flat" region: no distance information

Error Behavior

$$g(d) - \delta \le d_H \left(f(x) - f(y) \right) \le g(d) + \delta$$

Large ∆: small slope, more ambiguity, preserves larger distances

Small △: large slope, less ambiguity, preserves smaller distances

IN PRACTICE

ZuBuD: Zurich Buildings Database

In practice

In practice

In practice

Looking Ahead: The Big Picture

Information Scalable Coding:

Encode/embed the signal for general functions $g(\cdot, \cdot)$?

Preserving whole signal usually not necessary!

Solution known only for some special cases

Summary

- Embeddings a big step towards information scalability
 - Very effective for coding signal distances
 - Very efficient for big data and distributed systems
 - Very promising for quantization and distributed coding
- Embeddings exist for other distance metrics
 - Angle/correlation of signals (1-bit CS and phase embeddings)
 - Edit distance, Earth mover distance [Indyk et al.]
 - How to properly exploit/quantize them?
- General open problems
 - Embeddings/codings for function computation
 - Information scalability in more general inference problems

Questions/Comments?

petros@boufounos.com

http://boufounos.com