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Composite minimization

Motivation
Problem (P) covers many practical problems: 

    - Unconstrained basic LASSO / logistic regression

    - Graphical model selection / latent variable graphical model selection

    - Poisson imaging reconstruction / LASSO problem with unknown variance

    - Low-rank recovery / clustering

    - Atomic norm regularization / off-the-grid array processing
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g
convex and possibly nonsmooth with 

“tractable” prox

Fast gradient schemes (Nesterov’s methods)

Newton/quasi Newton schemes

Composite minimization: an uncharted region(P)
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Scalability is NOT great
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g
convex and possibly nonsmooth with 

“tractable” prox

Composite self-concordant minimization(P)
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f

convex and self-concordant

Classes of smooth functions (f)

Key structure for the interior point method



Example: Log-determinant for LMIs

• Application: Graphical model selection

Optimization problem



Log-barrier for linear/quadratic inequalities
• Poisson imaging reconstruction via TV regularization

• -a

• Basic pursuit denoising problem (BPDP): Barrier formulation

• LASSO problem with unknown variance



g
convex and possibly nonsmooth with 

“tractable” prox

Composite self-concordant minimization(P)

•a

•a

Classes of smooth functions (f)

f
convex and self-concordant

Our contributions:
  i) a variable metric (path 
following) forward-backward 
framework
 ii) convergence theory without the 
Lipschitz gradient assumption
iii) novel variants and extensions for 
several applications & SCOPT



Basic algorithmic framework
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A basic composite minimization framework

• Main properties of 

Lower surrogate

Upper surrogate

Hessian surrogates

ISTA

acceleration is possible

FISTA
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To adapt or not to adapt? 

Variable metric proximal point operator



• Proximal point scheme with variable metric [Bonnans, 1993]

Proximal point scheme with variable metric

PPA)

• Additional accuracy vs. computation trade-offs

Variable metric proximal point operator

A basic variable metric minimization framework
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Self-concordance: A mathematical tool

• Main properties of 

Lower surrogate

Upper surrogate

Hessian surrogates

• New variable metric framework with rigorous convergence guarantees

Includes several algorithms: Newton, quasi-Newton, and gradient methods... 
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Our composite self-concordant minimization framework

• Proximal Newton scheme

• How to compute the Proximal Newton direction?

Fast gradient schemes (Nesterov’s methods)

Newton/quasi Newton schemes

Key contribution: 
step size selection procedure
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How do we compute the step-size?
• Upper surrogate of f

• Convexity of g and optimality condition of the subproblem

• When                         ,



Analytic complexity
• Worst-case complexity to obtain an   -approximate solution
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quadratic convergence 
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Analytic complexity
• Worst-case complexity to obtain an   -approximate solution

quadratic convergence 
region

Can explicitly 
calculate

Line-search can 
accelerate the 
convergence

global convergence local convergence

• Line-search enhancement
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• Dual approach for solving subproblem (SP)
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• Gradient and Hessian (large-scale, special structure)

• Dual approach for solving subproblem (SP)

Primal subproblem Dual subproblem (SPGL)

No Cholesky decomposition 
and matrix inversion

Unconstrained LASSO problem

• How to compute proximal Newton decrement                     ?

Graphical model selection
• Objective:



Our method vs QUIC [Hseih2011]

- QUIC subproblem solver: 	

 	

 special block-coordinate descent

- Our subproblem solver: 	

	

 general proximal algorithms

Convergence behaviour [rho = 0.5]:  Lymph [p = 587] (left),    Leukemia [p = 1255] (right)

Graphical model selection: numerical examples

Step-size selection strategies: Arabidopsis [p = 834], Leukemia [p = 1255], Hereditary [p = 1869]

*Details: “A proximal Newton framework for composite minimization: Graph learning without Cholesky decompositions and matrix inversions,” ICML’13 and lions.epfl.ch/publications. 

http://infoscience.epfl.ch/record/183012/files/glearn_wo_matrix_inversion_2.pdf?version=1
http://infoscience.epfl.ch/record/183012/files/glearn_wo_matrix_inversion_2.pdf?version=1
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- Our subproblem solver: 	

	

 general proximal algorithms

Convergence behaviour [rho = 0.5]:  Lymph [p = 587] (left),    Leukemia [p = 1255] (right)

Graphical model selection: numerical examples

Step-size selection strategies: Arabidopsis [p = 834], Leukemia [p = 1255], Hereditary [p = 1869]

On the average x5 acceleration (up to x15) over Matlab QUIC

*Details: “A proximal Newton framework for composite minimization: Graph learning without Cholesky decompositions and matrix inversions,” ICML’13 and lions.epfl.ch/publications. 

http://infoscience.epfl.ch/record/183012/files/glearn_wo_matrix_inversion_2.pdf?version=1
http://infoscience.epfl.ch/record/183012/files/glearn_wo_matrix_inversion_2.pdf?version=1


Composite minimization: alternatives?

Existing numerical approaches
- Splitting methods

    - Forward-backward:                           applicable if f has Lipschitz gradient

    - Douglas-Rachford decomposition:      f and g have “tractable” proximity operators

(P)

•a

•a

- Augmented Lagrangian methods (e.g., D-R again)

Prox operator of self-concordant functions are costly!

g
convex and possibly nonsmooth

f
convex and smooth



Our “cheaper” variable metric strategies

• Proximal gradient scheme*

• How to compute the search direction? 

• No Lipschitz assumption

A new predictor corrector scheme (with local linear convergence*)

• Proximal quasi-Newton scheme (BFGS updates)*

*Details: “Composite Self-Concordant Minimization,” arxiv and lions.epfl.ch/publications. 
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Theory is based on the notion of “restricted strong convexity”

convergence depends on the restricted condition number



Heteroschedastic LASSO [rho decreases from left to right]

New theory: Local linear convergence of the PG 
method
Graph learning: Lymph [p = 587]
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Proximal gradient scheme: new engineering

• A greedy enhancement

cost: 
practically none if 
implemented carefully

prox:

simple decision:



Our method vs SPIRAL-TAP [Harmany2012]

Poisson imaging reconstruction via TV

• Poisson imaging reconstruction via TV regularization

• -a



Our method vs SPIRAL-TAP [Harmany2012]

Poisson imaging reconstruction via TV

On the average x10 acceleration (up to x250) over SPIRAL-TAP with better accuracy



Barrier extensions
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Constrained convex problems

• Examples:

• Main idea: solve a sequence of composite self-concordant problems 



How does it work?

*Details: “An Inexact Proximal Path-Following Algorithm for Constrained Convex Minimization,” optimization-online and lions.epfl.ch/publications. 

Main idea: solve a sequence of composite self-concordant problems as opposed to DCO

One iteration k requires two updates simultaneously:

- Update the penalty parameter:

- Update the iterative vector (can be solved approximately):



How does it converge?

Tracking properties on the penalty parameter and the iterative sequence in Phase II

- Tracking error of the iterative sequence:

Worst-case complexity:

- Phase 1:  Finding a starting point for Phase II requires at most

The algorithm consists of two PHASES:

- Phase II:  Perform the path-following iterations

- Phase II:  The worst-case complexity to reach an    - solution is at most:

- Phase I:  Find a starting point        such that:

- Note: This worst-case complexity is as the same as in standard path-following methods [see Nesterov2004]

- The penalty parameter      decreases at least with a factor                                   at each iteration k



Proximal path-following
Proximal path following for conic programming with rigorous guarantees

Example: Low-rank SDP matrix approximation ...

  is a regularization parameter in (0, 1), M is the given input matrix.

#variables 
#constraints

Upshot: no-heavy lifting!



DCO:

Example: Max-norm clustering

Proximal path following for conic programming with rigorous guarantees

Proximal path-following

splitting

splitting

Upshot: desired scaling!



Example: Max-norm clustering Example: Graph selection

Proximal path-following

- Main idea: solve a sequence of composite self-concordant problems as opposed to DCO

Proximal path following for conic programming with rigorous guarantees

Upshot: auto. regularization!
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A new variable metric proximal-point framework for 
composite self-concordant minimization

+ 
Extensions
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- Globalization: 	
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 motivate “forward-looking” line-search 
strategy

- Search direction:  	

 	

 	

 efficient (strongly convex program)

- Local convergence: 	

 	

 	

 quadratic convergence without boundedness of the Hessian

                                   	

	

 	

 analytic quadratic convergence region

• Highlights



Conclusions

➡ SCOPT package has quasi-Newton / first & second order methods @lions.epfl.ch/software

➡ leverage fast proximal solvers for g(x) (structured norms etc.)

➡ robust to subproblem solver accuracy 

- Globalization: 	

 	

 	

 	

 a new strategy for finding step-size explicitly
	

 	

 	

 	

 	

 	

 	

 motivate “forward-looking” line-search 
strategy

- Search direction:  	

 	

 	

 efficient (strongly convex program)

- Local convergence: 	

 	

 	

 quadratic convergence without boundedness of the Hessian

                                   	

	

 	

 analytic quadratic convergence region

• Highlights

• Practical contributions (this talk)

SCOPT FTW




