Composite Self-concordant Minimization

Volkan Cevher

Laboratory for Information and Inference Systems-**LIONS**Ecole Polytechnique Federale de Lausanne (EPFL)

volkan.cevher@epfl.ch

joint work with Quoc Tran Dinh Anastasios Kyrillidis Yen-Huan Li

20mposite minimization

$$\min_{\mathbf{x} \in \mathbb{R}^n} \left\{ \phi(\mathbf{x}) := f(\mathbf{x}) + g(\mathbf{x}) \right\}$$

a

f convex and smooth

convex and possibly nonsmooth

Motivation

Problem (P) covers many practical problems:

- Unconstrained basic LASSO / logistic regression
- Graphical model selection / latent variable graphical model selection
- Poisson imaging reconstruction / LASSO problem with unknown variance
- Low-rank recovery / clustering
- Atomic norm regularization / off-the-grid array processing

Composite minimization

$$\min_{\mathbf{x} \in \mathbb{R}^n} \left\{ \phi(\mathbf{x}) := f(\mathbf{x}) + g(\mathbf{x}) \right\}$$

a

f convex and smooth

convex and possibly nonsmooth

Motivation

Problem (P) covers many practical LARGE SCALE problems:

- Unconstrained basic LASSO / logistic regression
- Graphical model selection / latent variable graphical model selection
- Poisson imaging reconstruction / LASSO problem with unknown variance
- Low-rank recovery / clustering
- Atomic norm regularization / off-the-grid array processing

need scalable algorithms

$$\min_{\mathbf{x} \in \mathbb{R}^n} \left\{ \phi(\mathbf{x}) := f(\mathbf{x}) + g(\mathbf{x}) \right\}$$

•a

f

convex and smooth

g

convex and possibly nonsmooth

Classes of smooth functions (f)

- \mathcal{F}_L L-Lipschitz gradient
- \mathcal{F}_{μ} μ -strongly convex

$$\|\nabla f(x) - \nabla f(y)\| \le L\|y - x\|$$
$$\mu \mathbb{I} \le \nabla^2 f(x) \le L \mathbb{I}$$

$$\min_{\mathbf{x} \in \mathbb{R}^n} \left\{ \phi(\mathbf{x}) := f(\mathbf{x}) + g(\mathbf{x}) \right\}$$

•a

f

convex and smooth

g

convex and possibly nonsmooth

Classes of smooth functions (f)

- \mathcal{F}_L L-Lipschitz gradient
- \mathcal{F}_{μ} μ -strongly convex

$$\|\nabla f(x) - \nabla f(y)\| \le L\|y - x\|$$
$$\mu \mathbb{I} \le \nabla^2 f(x) \le L \mathbb{I}$$

$$\min_{\mathbf{x} \in \mathbb{R}^n} \left\{ \phi(\mathbf{x}) := f(\mathbf{x}) + g(\mathbf{x}) \right\}$$

a

f

convex and smooth

g

convex and possibly nonsmooth

Classes of smooth functions (f)

- \mathcal{F}_L L-Lipschitz gradient
- \mathcal{F}_{μ} μ -strongly convex

$$\|\nabla f(x) - \nabla f(y)\| \le L\|y - x\|$$
$$\mu \mathbb{I} \le \nabla^2 f(x) \le L \mathbb{I}$$

Following **prox** computation is **tractable:**

$$\operatorname{prox}_{\gamma \boldsymbol{g}}(\mathbf{s}) := \arg\min_{\mathbf{x}} \left\{ \boldsymbol{g}(\mathbf{x}) + \frac{1}{2\gamma} \|\mathbf{x} - \mathbf{s}\|_{2}^{2} \right\}$$

$$\min_{\mathbf{x} \in \mathbb{R}^n} \left\{ \phi(\mathbf{x}) := f(\mathbf{x}) + g(\mathbf{x}) \right\}$$

a

convex and smooth

convex and possibly nonsmooth

Classes of smooth functions (f)

- \mathcal{F}_L L-Lipschitz gradient
- \mathcal{F}_{μ} μ -strongly convex

$$\|\nabla f(x) - \nabla f(y)\| \le L\|y - x\|$$
$$\mu \mathbb{I} \le \nabla^2 f(x) \le L \mathbb{I}$$

Following **prox** computation is **tractable**:

$$\operatorname{prox}_{\gamma \boldsymbol{g}}(\mathbf{s}) := \arg\min_{\mathbf{x}} \left\{ \boldsymbol{g}(\mathbf{x}) + \frac{1}{2\gamma} \|\mathbf{x} - \mathbf{s}\|_{2}^{2} \right\} \quad \text{if } g(\mathbf{x}) = \|\mathbf{x}\|_{1}, \text{ then} \\ \operatorname{prox}_{\gamma \boldsymbol{g}}(\mathbf{s}) := \operatorname{SoftThresh}(\mathbf{s}, \gamma)$$

Example:

if
$$g(\mathbf{x}) = \|\mathbf{x}\|_1$$
, then $\operatorname{prox}_{\gamma g}(\mathbf{s}) = \operatorname{SoftThresh}(\mathbf{s}, \gamma)$

$$\min_{\mathbf{x}\in\mathbb{R}^n}\left\{\phi(\mathbf{x}):=f(\mathbf{x})+g(\mathbf{x})
ight\}$$
 of \mathbf{g} convex and smooth \mathbf{g} convex and possibly nonsmooth with "tractable" prox

Classes of smooth functions (f)

- \mathcal{F}_L L-Lipschitz gradient
- \mathcal{F}_{μ} μ -strongly convex

$$\|\nabla f(x) - \nabla f(y)\| \le L\|y - x\|$$
$$\mu \mathbb{I} \preceq \nabla^2 f(x) \preceq L \mathbb{I}$$

well-understood

Fast gradient schemes (Nesterov's methods)

Newton/quasi Newton schemes

Composite minimization: an uncharted region

$$\min_{\mathbf{x} \in \mathbb{R}^n} \left\{ \phi(\mathbf{x}) := f(\mathbf{x}) + g(\mathbf{x})
ight\}$$

convex and smooth

convex and possibly nonsmooth with "tractable" prox

Classes of smooth functions (f)

- \mathcal{F}_L L-Lipschitz gradient
- \mathcal{F}_{μ} μ -strongly convex

$$\|\nabla f(x) - \nabla f(y)\| \le L\|y - x\|$$

$$\mu \mathbb{I} \le \nabla^2 f(x) \le L\mathbb{I}$$

Scalability is NOT great

Fast gradient schemes (Nesterov's methods)

Newton/quasi Newton schemes

Composite self-concordant minimization

$$\min_{\mathbf{x} \in \mathbb{R}^n} \left\{ \phi(\mathbf{x}) := f(\mathbf{x}) + g(\mathbf{x}) \right\}$$

f

convex and self-concordant

g

convex and possibly nonsmooth with "tractable" prox

Classes of smooth functions (f)

- \mathcal{F}_L L-Lipschitz gradient
- \mathcal{F}_{μ} μ -strongly convex
- \mathcal{F}_2 self-concordant

Key structure for the interior point method

Example: Log-determinant for LMIs

Application: Graphical model selection

Given a data set $\mathcal{D} := \{\mathbf{x}_1, \dots, \mathbf{x}_N\}$, where \mathbf{x}_i is a Gaussian random variable. Let Σ be the **covariance matrix** corresponding to the **graphical model** of the Gausian Markov random field. The aim is to learn a **sparse matrix** Θ that approximates the inverse Σ^{-1} .

$$\frac{\operatorname{Optimization problem}}{\min \limits_{\Theta \succ 0} \left\{ \underbrace{-\log \det(\Theta) + \operatorname{trace}(\Sigma \Theta)}_{f(\mathbf{x})} + \underbrace{\rho \| \operatorname{vec}(\Theta) \|_1}_{g(\mathbf{x})} \right\}$$

Log-barrier for linear/quadratic inequalities

- Poisson imaging reconstruction via TV regularization
- -a

$$x^* \in \underset{x}{\operatorname{argmin}} \left\{ \underbrace{\sum_{i=1}^{m} a_i^T x - \sum_{i=1}^{m} y_i \log(a_i^T x + b_i) + \mathbf{g}(x)}_{\mathbf{f}(x)} \right\}$$

Basic pursuit denoising problem (BPDP): Barrier formulation

$$\mathbf{x}_{t}^{*} = \operatorname{argmin}_{\mathbf{x}} \left\{ \underbrace{-t \log \left(\sigma^{2} - \|\mathbf{A}\mathbf{x} - \mathbf{y}\|_{2}^{2}\right)}_{=:f(\mathbf{x})} + g(\mathbf{x}) \right\}$$

LASSO problem with unknown variance

$$\mathbf{x}^* \equiv (\phi^*, \gamma^*) = \underset{\phi, \gamma}{\operatorname{argmin}} \left\{ \underbrace{-\log(\gamma) + \frac{1}{2n} \|\gamma \mathbf{y} - \mathbf{X} \phi\|_2^2}_{=:f(\mathbf{x})} + \underbrace{\lambda \|\phi\|_1}_{=:g(\mathbf{x})} \right\}$$

Composite self-concordant minimization

$$\min_{\mathbf{x} \in \mathbb{R}^n} \left\{ \phi(\mathbf{x}) := f(\mathbf{x}) + g(\mathbf{x}) \right\}$$

f

convex and self-concordant

convex and possibly nonsmooth with "tractable" prox

Classes of smooth functions (f)

i) a variable metric (path following) forward-backward following) forward-backward framework
ii) convergence theory without the lij convergence theory without the lij novel variants and extensions for iii) novel variants and extensions for several applications & SCOPT

Basic algorithmic framework

• Main properties of $\mathcal{F}_{\mu,L}$

Lower surrogate	$f(\mathbf{y}) \ge f(\mathbf{x}) + \nabla f(\mathbf{x})^T (\mathbf{y} - \mathbf{x}) + \frac{\mu}{2} \ \mathbf{y} - \mathbf{x}\ _2^2$	$\mathbf{x}, \mathbf{y} \in \text{dom}(f)$
Upper surrogate	$f(\mathbf{y}) \le f(\mathbf{x}) + \nabla f(\mathbf{x})^T (\mathbf{y} - \mathbf{x}) + \frac{L}{2} \mathbf{y} - \mathbf{x} _2^2$	$\mathbf{x}, \mathbf{y} \in \text{dom}(f)$
Hessian surrogates	$\mu \mathbb{I} \preceq \nabla^2 f(\mathbf{x}) \preceq L \mathbb{I}$	$\mathbf{x} \in \text{dom}(f)$

• Main properties of $\mathcal{F}_{\mu,L}$

Lower surrogate	$f(\mathbf{y}) \ge f(\mathbf{x}) + \nabla f(\mathbf{x})^T (\mathbf{y} - \mathbf{x}) + \frac{\mu}{2} \ \mathbf{y} - \mathbf{x}\ _2^2$	$\mathbf{x}, \mathbf{y} \in \text{dom}(f)$
Upper surrogate	$f(\mathbf{y}) \le f(\mathbf{x}) + \nabla f(\mathbf{x})^T (\mathbf{y} - \mathbf{x}) + \frac{L}{2} \mathbf{y} - \mathbf{x} _2^2$	$\mathbf{x}, \mathbf{y} \in \text{dom}(f)$
Hessian surrogates	$\mu \mathbb{I} \preceq \nabla^2 f(\mathbf{x}) \preceq L \mathbb{I}$	$\mathbf{x} \in \text{dom}(f)$

$$\mathbf{x}^{k+1} := \arg\min_{\mathbf{x}} \left\{ f(\mathbf{x}^k) + \nabla f(\mathbf{x}^k)^T (\mathbf{x} - \mathbf{x}^k) + \frac{L}{2} ||\mathbf{x} - \mathbf{x}^k||_2^2 + g(\mathbf{x}) \right\}$$

Main properties of $\mathcal{F}_{\mu,L}$

Lower surrogate	$f(\mathbf{y}) \ge f(\mathbf{x}) + \nabla f(\mathbf{x})^T (\mathbf{y} - \mathbf{x}) + \frac{\mu}{2} \mathbf{y} - \mathbf{x} _2^2$	$\mathbf{x}, \mathbf{y} \in \text{dom}(f)$
Upper surrogate	$f(\mathbf{y}) \le f(\mathbf{x}) + \nabla f(\mathbf{x})^T (\mathbf{y} - \mathbf{x}) + \frac{L}{2} \mathbf{y} - \mathbf{x} _2^2$	$\mathbf{x}, \mathbf{y} \in \text{dom}(f)$
Hessian surrogates	$\mu \mathbb{I} \preceq \nabla^2 f(\mathbf{x}) \preceq L \mathbb{I}$	$\mathbf{x} \in \text{dom}(f)$

• Main properties of $\mathcal{F}_{\mu,L}$

Lower surrogate	$f(\mathbf{y}) \ge f(\mathbf{x}) + \nabla f(\mathbf{x})^T (\mathbf{y} - \mathbf{x}) + \frac{\mu}{2} \mathbf{y} - \mathbf{x} _2^2$	$\mathbf{x}, \mathbf{y} \in \text{dom}(f)$
Upper surrogate	$f(\mathbf{y}) \le f(\mathbf{x}) + \nabla f(\mathbf{x})^T (\mathbf{y} - \mathbf{x}) + \frac{L}{2} \mathbf{y} - \mathbf{x} _2^2$	$\mathbf{x}, \mathbf{y} \in \text{dom}(f)$
Hessian surrogates	$\mu \mathbb{I} \preceq \nabla^2 f(\mathbf{x}) \preceq L \mathbb{I}$	$\mathbf{x} \in \text{dom}(f)$

 \mathcal{F}_L

• Main properties of $\mathcal{F}_{\mu,L}$

Lower surrogate	$f(\mathbf{y}) \ge f(\mathbf{x}) + \nabla f(\mathbf{x})^T (\mathbf{y} - \mathbf{x}) + \frac{\mu}{2} \mathbf{y} - \mathbf{x} _2^2$	$\mathbf{x}, \mathbf{y} \in \text{dom}(f)$
Upper surrogate	$f(\mathbf{y}) \le f(\mathbf{x}) + \nabla f(\mathbf{x})^T (\mathbf{y} - \mathbf{x}) + \frac{L}{2} \mathbf{y} - \mathbf{x} _2^2$	$\mathbf{x}, \mathbf{y} \in \text{dom}(f)$
Hessian surrogates	$\mu \mathbb{I} \preceq \nabla^2 f(\mathbf{x}) \preceq L \mathbb{I}$	$\mathbf{x} \in \text{dom}(f)$

 \mathcal{F}_L

$$f(\mathbf{x}^k) + \nabla f(\mathbf{x}^k)^T (\mathbf{x} - \mathbf{x}^k) + \frac{\mu}{2} ||\mathbf{x} - \mathbf{x}^k||_2^2 \le f(\mathbf{x})$$

$$\mathbf{x}^{k+1} = \text{prox}_g \left(\mathbf{x}^k - \frac{1}{L} \nabla f(\mathbf{x}^k) \right)$$

$$f(\mathbf{x}^k) - f(\mathbf{x}^*) \le \frac{L \|\mathbf{x}^0 - \mathbf{x}^*\|^2}{2k} \Rightarrow \text{iterations} = \mathcal{O}(\epsilon^{-1})$$

acceleration is possible

ullet Main properties of $\mathcal{F}_{\mu,L}$

Lower surrogate	$f(\mathbf{y}) \ge f(\mathbf{x}) + \nabla f(\mathbf{x})^T (\mathbf{y} - \mathbf{x}) + \frac{\mu}{2} \mathbf{y} - \mathbf{x} _2^2$	$\mathbf{x}, \mathbf{y} \in \text{dom}(f)$
Upper surrogate	$f(\mathbf{y}) \le f(\mathbf{x}) + \nabla f(\mathbf{x})^T (\mathbf{y} - \mathbf{x}) + \frac{L}{2} \mathbf{y} - \mathbf{x} _2^2$	$\mathbf{x}, \mathbf{y} \in \text{dom}(f)$
Hessian surrogates	$\mu \mathbb{I} \preceq \nabla^2 f(\mathbf{x}) \preceq L \mathbb{I}$	$\mathbf{x} \in \text{dom}(f)$

 \mathcal{F}_L

$$\|\nabla f(x) - \nabla f(y)\| \le L\|y - x\|$$

L is a global worst-case constant

$$\operatorname{prox}_{\gamma\boldsymbol{g}}(\mathbf{s}) := \arg\min_{\mathbf{x}} \left\{ \boldsymbol{g}(\mathbf{x}) + \frac{1}{2\gamma} \|\mathbf{x} - \mathbf{s}\|_2^2 \right\}$$

Variable metric proximal point operator

$$\operatorname{prox}_{\boldsymbol{H}^{-1}g}(s) := \arg\min_{\boldsymbol{x}} \left\{ g(\boldsymbol{x}) + \frac{1}{2} \|\boldsymbol{x} - s\|_{\boldsymbol{H}^{-1}}^{2} \right\}$$

$$f(\mathbf{x}) \leq f(\mathbf{x}^{k}) + \nabla f(\mathbf{x}^{k})^{T}(\mathbf{x} - \mathbf{x}^{k}) + \frac{L}{2} \|\mathbf{x} - \mathbf{x}^{k}\|_{2}^{2}$$

$$f(\mathbf{x}) \leq f(\mathbf{x}^{k}) + \nabla f(\mathbf{x}^{k})^{T}(\mathbf{x} - \mathbf{x}^{k}) + \frac{1}{2} \|\mathbf{x} - \mathbf{x}^{k}\|_{\boldsymbol{H}_{k}^{-1}}^{2}$$

$$\mathrm{prox}_{\gamma \boldsymbol{g}}(\mathbf{s}) := \arg\min_{\mathbf{x}} \left\{ \boldsymbol{g}(\mathbf{x}) + \frac{1}{2\gamma} \|\mathbf{x} - \mathbf{s}\|_2^2 \right\}$$

Variable metric proximal point operator

$$\operatorname{prox}_{\boldsymbol{H}^{-1}g}(s) := \arg\min_{\boldsymbol{x}} \left\{ g(\boldsymbol{x}) + \frac{1}{2} \|\boldsymbol{x} - s\|_{\boldsymbol{H}^{-1}}^{2} \right\}$$

$$f(\mathbf{x}) \leq f(\mathbf{x}^{k}) + \nabla f(\mathbf{x}^{k})^{T} (\mathbf{x} - \mathbf{x}^{k}) + \frac{L}{2} \|\mathbf{x} - \mathbf{x}^{k}\|_{2}^{2}$$

$$f(\mathbf{x}) \leq f(\mathbf{x}^{k}) + \nabla f(\mathbf{x}^{k})^{T} (\mathbf{x} - \mathbf{x}^{k}) + \frac{1}{2} \|\mathbf{x} - \mathbf{x}^{k}\|_{H_{k}^{-1}}^{2}$$

if
$$g(\mathbf{x}) = ||\mathbf{x}||_1$$
, then
 $\operatorname{prox}_{\gamma g}(\mathbf{s}) = \operatorname{SoftThresh}(\mathbf{s}, \gamma)$
 $\operatorname{prox}_{H^{-1}g}(s) = \operatorname{LASSO}$

A basic variable metric minimization framework

Proximal point scheme with variable metric [Bonnans, 1993]

Proximal point scheme with variable metric

Given x^0 , generate a sequence $\{x^k\}_{k\geq 0}$ such that

$$\boldsymbol{x}^{k+1} = \operatorname{prox}_{\boldsymbol{H}_{k}^{-1}} \left(\boldsymbol{x}^{k} - \boldsymbol{H}_{k}^{-1} \nabla f(\boldsymbol{x}^{k}) \right)$$

where H_k is symmetric positive definite

Variable metric proximal point operator

$$prox_{\mathbf{H}^{-1}\mathbf{g}}(s) := \arg\min_{x} \left\{ \mathbf{g}(x) + \frac{1}{2} ||x - s||_{\mathbf{H}^{-1}}^{2} \right\}$$

Additional accuracy vs. computation trade-offs

Order	Example	Components	k
1-st	Accelerated gradient	$\nabla f, \operatorname{prox}_{1/L\mathbf{I}_n}$	$\mathcal{O}(\epsilon^{-1/2})$
1^+ -th	BFGS	$H_k, \nabla f, \operatorname{prox}_{H_k^{-1}}$	$\mathcal{O}(\log \epsilon^{-1})$ or faster
2-nd	Proximal Newton, IPM	$\nabla^2 f, \nabla f, \operatorname{prox}_{\nabla^2 f^{-1}}$	$\mathcal{O}(\log \log \epsilon^{-1})$

• Main properties of $\mathcal{F}_{\mu,L}$

Lower surrogate	$f(\mathbf{y}) \ge f(\mathbf{x}) + \nabla f(\mathbf{x})^T (\mathbf{y} - \mathbf{x}) + \frac{\mu}{2} \mathbf{y} - \mathbf{x} _2^2$	$\mathbf{x}, \mathbf{y} \in \text{dom}(f)$
Upper surrogate	$f(\mathbf{y}) \le f(\mathbf{x}) + \nabla f(\mathbf{x})^T (\mathbf{y} - \mathbf{x}) + \frac{L}{2} \mathbf{y} - \mathbf{x} _2^2$	$\mathbf{x}, \mathbf{y} \in \text{dom}(f)$
Hessian surrogates	$\mu \mathbb{I} \preceq abla^2 f(\mathbf{x}) \preceq L \mathbb{I}$	$\mathbf{x} \in \text{dom}(f)$

• Main properties of $\mathcal{F}_{\mu,L}$

Lower surrogate	$f(\mathbf{y}) \ge f(\mathbf{x}) + \nabla f(\mathbf{x})^T (\mathbf{y} - \mathbf{x}) + \frac{\mu}{2} \mathbf{y} - \mathbf{x} _2^2$	$\mathbf{x}, \mathbf{y} \in \text{dom}(f)$
Upper surrogate	$f(\mathbf{y}) \le f(\mathbf{x}) + \nabla f(\mathbf{x})^T (\mathbf{y} - \mathbf{x}) + \frac{L}{2} \mathbf{y} - \mathbf{x} _2^2$	xGooa(f)
Hessian surrogates	$\mu \mathbb{I} \preceq abla^2 f(\mathbf{x}) \preceq L \mathbb{I}$	$\mathbf{x} \in \mathrm{dom}(f)$.

Main properties of \mathcal{F}_2

Lower surrogate	$f(\mathbf{y}) \ge f(\mathbf{x}) + \nabla f(\mathbf{x})^T (\mathbf{y} - \mathbf{x}) + \frac{\omega}{\omega} (\ \mathbf{y} - \mathbf{x}\ _{\mathbf{x}})$	$\mathbf{x}, \mathbf{y} \in \text{dom}(f)$
Upper surrogate	$f(\mathbf{y}) \le f(\mathbf{x}) + \nabla f(\mathbf{x})^T (\mathbf{y} - \mathbf{x}) + \boldsymbol{\omega_*} (\ \mathbf{y} - \mathbf{x}\ _{\mathbf{x}})$	$\ \mathbf{y} - \mathbf{x}\ _{\mathbf{x}} < 1$
Hessian surrogates	$(1 - \ \mathbf{y} - \mathbf{x}\ _{\mathbf{x}})^2 \nabla^2 f(\mathbf{x}) \leq \nabla^2 f(\mathbf{y}) \leq (1 - \ \mathbf{y} - \mathbf{x}\ _{\mathbf{x}})^{-2} \nabla^2 f(\mathbf{x})$	$\ \mathbf{y} - \mathbf{x}\ _{\mathbf{x}} < 1$

 $\|\mathbf{u}\|_{\mathbf{x}} := \left[\mathbf{u}^T
abla^2 f(\mathbf{x}) \mathbf{u} \right]^{1/2}$ Local norm:

Utility functions: $\omega_*(\tau) = -\tau - \ln(1-\tau), \ \tau \in [0,1)$ $\omega(\tau) = \tau - \ln(1+\tau), \ \tau \geq 0$

$$\omega(\tau) = \tau - \ln(1+\tau), \ \tau \ge 0$$

Main properties of \mathcal{F}_2

Lower surrogate	$f(\mathbf{y}) \ge f(\mathbf{x}) + \nabla f(\mathbf{x})^T (\mathbf{y} - \mathbf{x}) + \boldsymbol{\omega} (\ \mathbf{y} - \mathbf{x}\ _{\mathbf{x}})$	$\mathbf{x}, \mathbf{y} \in \mathrm{dom}(f)$
Upper surrogate	$f(\mathbf{y}) \le f(\mathbf{x}) + \nabla f(\mathbf{x})^T (\mathbf{y} - \mathbf{x}) + \boldsymbol{\omega}_* (\ \mathbf{y} - \mathbf{x}\ _{\mathbf{x}})$	$\ \mathbf{y} - \mathbf{x}\ _{\mathbf{x}} < 1$
Hessian surrogates	$(1 - \ \mathbf{y} - \mathbf{x}\ _{\mathbf{x}})^2 \nabla^2 f(\mathbf{x}) \leq \nabla^2 f(\mathbf{y}) \leq (1 - \ \mathbf{y} - \mathbf{x}\ _{\mathbf{x}})^{-2} \nabla^2 f(\mathbf{x})$	$\ \mathbf{y} - \mathbf{x}\ _{\mathbf{x}} < 1$

 $\|\mathbf{u}\|_{\mathbf{x}} := \left[\mathbf{u}^T
abla^2 f(\mathbf{x}) \mathbf{u}\right]^{1/2}$ Local norm:

Utility functions: $\omega_*(\tau) = -\tau - \ln(1-\tau), \ \tau \in [0,1)$ $\omega(\tau) = \tau - \ln(1+\tau), \ \tau \geq 0$

$$\omega(\tau) = \tau - \ln(1+\tau), \ \tau \ge 0$$

Self-concordance: A mathematical tool

ullet Main properties of \mathcal{F}_2

Lower surrogate	$f(\mathbf{y}) \ge f(\mathbf{x}) + \nabla f(\mathbf{x})^T (\mathbf{y} - \mathbf{x}) + \frac{\omega}{\omega} (\ \mathbf{y} - \mathbf{x}\ _{\mathbf{x}})$	$\mathbf{x}, \mathbf{y} \in \text{dom}(f)$
Upper surrogate	$f(\mathbf{y}) \le f(\mathbf{x}) + \nabla f(\mathbf{x})^T (\mathbf{y} - \mathbf{x}) + \boldsymbol{\omega_*} (\ \mathbf{y} - \mathbf{x}\ _{\mathbf{x}})$	$\ \mathbf{y} - \mathbf{x}\ _{\mathbf{x}} < 1$
Hessian surrogates	$(1 - \ \mathbf{y} - \mathbf{x}\ _{\mathbf{x}})^2 \nabla^2 f(\mathbf{x}) \leq \nabla^2 f(\mathbf{y}) \leq (1 - \ \mathbf{y} - \mathbf{x}\ _{\mathbf{x}})^{-2} \nabla^2 f(\mathbf{x})$	$\ \mathbf{y} - \mathbf{x}\ _{\mathbf{x}} < 1$

• New variable metric framework with rigorous convergence guarantees

$$\min_{\mathbf{x} \in \mathbb{R}^n} \left\{ \phi(\mathbf{x}) := f(\mathbf{x}) + g(\mathbf{x}) \right\}$$

Includes several algorithms: Newton, quasi-Newton, and gradient methods...

Proximal Newton scheme

$$\mathbf{H}_k = \nabla^2 f(\mathbf{x}^k)$$

Given \mathbf{x}^0 , generate a sequence $\{\mathbf{x}^k\}_{k\geq 0}$ such that

$$\mathbf{x}^{k+1} := \mathbf{x}^k + \alpha_k \mathbf{d}_{\mathbf{H}_k}^k$$

where $\alpha_k \in (0,1]$ is step-size, $\mathbf{d}_{\mathbf{H}_k}^k$ is a search direction

Proximal Newton scheme

$$\mathbf{H}_k = \nabla^2 f(\mathbf{x}^k)$$

Given \mathbf{x}^0 , generate a sequence $\{\mathbf{x}^k\}_{k\geq 0}$ such that

$$\mathbf{x}^{k+1} := \mathbf{x}^k + \alpha_k \mathbf{d}_{\mathbf{H}_k}^k$$

where $\alpha_k \in (0,1]$ is step-size, $\mathbf{d}_{\mathbf{H}_k}^k$ is a search direction

• How to compute the Proximal Newton direction?

$$\mathbf{d}_{\mathbf{H}_k}^k := \arg\min_{\mathbf{d}} \left\{ f(\mathbf{x}^k) + \nabla f(\mathbf{x}^k)^T \mathbf{d} + \frac{1}{2} \mathbf{d}^T \mathbf{H}_k \mathbf{d} + \mathbf{g}(\mathbf{x}^k + \mathbf{d}) \right\}, \quad \mathbf{H}_k = \nabla^2 f(\mathbf{x}^k)$$

Proximal Newton scheme

$$\mathbf{H}_k = \nabla^2 f(\mathbf{x}^k)$$

Given \mathbf{x}^0 , generate a sequence $\{\mathbf{x}^k\}_{k>0}$ such that

$$\mathbf{x}^{k+1} := \mathbf{x}^k + \alpha_k \mathbf{d}_{\mathbf{H}_k}^k$$

where $\alpha_k \in (0,1]$ is step-size, $\mathbf{d}_{\mathbf{H}_k}^k$ is a search direction

How to compute the Proximal Newton direction?

 $\mathbf{d}_{\mathbf{H}_{k}}^{k} := \arg\min_{\mathbf{d}} \left\{ f(\mathbf{x}^{k}) + \nabla f(\mathbf{x}^{k})^{T} \mathbf{d} + \frac{1}{2} \mathbf{d}^{T} \mathbf{H}_{k} \mathbf{d} + \mathbf{g}(\mathbf{x}^{k} + \mathbf{d}) \right\}, \quad \mathbf{H}_{k} = \nabla^{2} f(\mathbf{x}^{k})$

$$\|\nabla f(x) - \nabla f(y)\| \le L\|y - x\|$$
$$\mu \mathbb{I} \le \nabla^2 f(x) \le L \mathbb{I}$$

$$\mu \mathbb{I} \preceq \nabla^2 f(x) \preceq L \mathbb{I}$$

Fast gradient schemes (Nesterov's methods)

Newton/quasi Newton schemes

Proximal Newton scheme

Key contribution: step size selection procedure $\mathbf{H}_k = \nabla^2 f(\mathbf{x}^k)$ Given \mathbf{x}^0 , generate a sequence $\{\mathbf{x}^n\}_{k}$ such that

$$\mathbf{H}_{k} = \nabla^{2} f(\mathbf{x}^{k})$$

$$\mathbf{x}^{k+1} := \mathbf{x}^k + \alpha_k \mathbf{d}_{\mathbf{H}_k}^k$$

where $\alpha_k \in (0,1]$ is step-size, $\mathbf{d}_{\mathbf{H}_k}^k$ is a search direction

How to compute the Proximal Newton direction?

$$\mathbf{d}_{\mathbf{H}_{k}}^{k} := \arg\min_{\mathbf{d}} \left\{ f(\mathbf{x}^{k}) + \nabla f(\mathbf{x}^{k})^{T} \mathbf{d} + \frac{1}{2} \mathbf{d}^{T} \mathbf{H}_{k} \mathbf{d} + \mathbf{g}(\mathbf{x}^{k} + \mathbf{d}) \right\}, \quad \mathbf{H}_{k} = \nabla^{2} f(\mathbf{x}^{k})$$

$$\|\nabla f(x) - \nabla f(y)\| \le L\|y - x\|$$
$$\mu \mathbb{I} \le \nabla^2 f(x) \le L \mathbb{I}$$

Fast gradient schemes (Nesterov's methods)

Newton/quasi Newton schemes

How do we compute the step-size?

Upper surrogate of f

$$f(\mathbf{x}^{k+1}) \le f(\mathbf{x}^k) + \nabla f(\mathbf{x}^k)^T (\mathbf{x}^{k+1} - \mathbf{x}^k) + \omega^* (\|\mathbf{x}^{k+1} - \mathbf{x}^k\|_{\mathbf{x}^k}), \quad \|\mathbf{x}^{k+1} - \mathbf{x}^k\|_{\mathbf{x}^k} < 1$$

Convexity of g and optimality condition of the subproblem

$$g(\mathbf{x}^{k+1}) - g(\mathbf{x}^k) \le -\alpha_k \nabla f(\mathbf{x}^k)^T \mathbf{d}_{\mathbf{H}_k}^k - \alpha_k \|\mathbf{d}_{\mathbf{H}_k}^k\|_{\mathbf{H}_k}^2.$$

How do we compute the step-size?

Upper surrogate of f

$$f(\mathbf{x}^{k+1}) \le f(\mathbf{x}^k) + \nabla f(\mathbf{x}^k)^T (\mathbf{x}^{k+1} - \mathbf{x}^k) + \omega^* (\|\mathbf{x}^{k+1} - \mathbf{x}^k\|_{\mathbf{x}^k}), \quad \|\mathbf{x}^{k+1} - \mathbf{x}^k\|_{\mathbf{x}^k} < 1$$

Convexity of g and optimality condition of the subproblem

$$g(\mathbf{x}^{k+1}) - g(\mathbf{x}^{k}) \leq -\alpha_{k} \nabla f(\mathbf{x}^{k})^{T} \mathbf{d}_{\mathbf{H}_{k}}^{k} - \alpha_{k} \|\mathbf{d}_{\mathbf{H}_{k}}^{k}\|_{\mathbf{H}_{k}}^{2}.$$

$$\phi(\mathbf{x}^{k+1}) \leq \phi(\mathbf{x}^{k}) - \alpha_{k} \|\mathbf{d}_{\mathbf{H}_{k}}^{k}\|_{\mathbf{H}_{k}}^{2} + \omega_{*} \left(\alpha_{k} \|\mathbf{d}_{\mathbf{H}_{k}}^{k}\|_{\mathbf{x}^{k}}\right)$$

How do we compute the step-size?

Upper surrogate of f

$$f(\mathbf{x}^{k+1}) \le f(\mathbf{x}^k) + \nabla f(\mathbf{x}^k)^T (\mathbf{x}^{k+1} - \mathbf{x}^k) + \omega^* (\|\mathbf{x}^{k+1} - \mathbf{x}^k\|_{\mathbf{x}^k}), \quad \|\mathbf{x}^{k+1} - \mathbf{x}^k\|_{\mathbf{x}^k} < 1$$

Convexity of g and optimality condition of the subproblem

$$g(\mathbf{x}^{k+1}) - g(\mathbf{x}^{k}) \le -\alpha_{k} \nabla f(\mathbf{x}^{k})^{T} \mathbf{d}_{\mathbf{H}_{k}}^{k} - \alpha_{k} \|\mathbf{d}_{\mathbf{H}_{k}}^{k}\|_{\mathbf{H}_{k}}^{2}.$$

$$\phi(\mathbf{x}^{k+1}) \le \phi(\mathbf{x}^{k}) - \alpha_{k} \|\mathbf{d}_{\mathbf{H}_{k}}^{k}\|_{\mathbf{H}_{k}}^{2} + \omega_{*} \left(\alpha_{k} \|\mathbf{d}_{\mathbf{H}_{k}}^{k}\|_{\mathbf{x}^{k}}\right)$$

• When $\mathbf{H}_k \equiv \nabla^2 f(\mathbf{x}^k)$, $\lambda_k := \|\mathbf{d}_{\mathbf{H}_k}^k\|_{\mathbf{x}^k}$

$$\phi(\mathbf{x}^{k+1}) \le \phi(\mathbf{x}^k) - \underbrace{\left[\alpha_k \lambda_k - \omega_* \left(\alpha_k \lambda_k\right)\right]}_{\psi(\alpha_k)}$$

maximize $\psi(\alpha_k)$ to get optimal α_k^*

$$\alpha_k^* = \frac{1}{\lambda_k + 1} \in (0, 1]$$

Analytic complexity

• Worst-case complexity to obtain an ε -approximate solution

$$\# \text{iterations} = \left\lfloor \frac{\phi(\mathbf{x}^0) - \phi(\mathbf{x}^*)}{0.021} \right\rfloor + O\left(\ln \ln \left(\frac{4.56}{\varepsilon}\right)\right)$$

Analytic complexity

• Worst-case complexity to obtain an ε -approximate solution

$$\# \text{iterations} = \left\lfloor \frac{\phi(\mathbf{x}^0) - \phi(\mathbf{x}^*)}{0.021} \right\rfloor + O\left(\ln \ln \left(\frac{4.56}{\varepsilon}\right)\right)$$

Analytic complexity

• Worst-case complexity to obtain an ε -approximate solution

Line-search enhancement

Objective:

$$\min_{\mathbf{\Theta} \succ 0} \left\{ \underbrace{-\log \det(\mathbf{\Theta}) + \operatorname{trace}(\mathbf{\Sigma}\mathbf{\Theta})}_{f(\mathbf{x})} + \underbrace{\rho \| \operatorname{vec}(\mathbf{\Theta}) \|_1}_{g(\mathbf{x})} \right\}$$

Objective:

$$\min_{\mathbf{\Theta} \succ 0} \left\{ \underbrace{-\log \det(\mathbf{\Theta}) + \operatorname{trace}(\mathbf{\Sigma}\mathbf{\Theta})}_{f(\mathbf{x})} + \underbrace{\rho \| \operatorname{vec}(\mathbf{\Theta}) \|_1}_{g(\mathbf{x})} \right\}$$

- Gradient and Hessian (large-scale, special structure)
 - Gradient of $f: \nabla f(\mathbf{x}) = \mathbf{vec}(\Sigma \mathbf{\Theta}^{-1}).$
 - Hessian of $f: \nabla^2 f(\mathbf{x}) = \mathbf{\Theta}^{-1} \otimes \mathbf{\Theta}^{-1}$

Objective:

$$\min_{\mathbf{\Theta} \succ 0} \left\{ \underbrace{-\log \det(\mathbf{\Theta}) + \operatorname{trace}(\mathbf{\Sigma}\mathbf{\Theta})}_{f(\mathbf{x})} + \underbrace{\rho \| \operatorname{vec}(\mathbf{\Theta}) \|_1}_{g(\mathbf{x})} \right\}$$

- Gradient and Hessian (large-scale, special structure)
 - Gradient of $f: \nabla f(\mathbf{x}) = \mathbf{vec}(\mathbf{\Sigma} \mathbf{\Theta}^{-1}).$
 - Hessian of $f: \nabla^2 f(\mathbf{x}) = \mathbf{\Theta}^{-1} \otimes \mathbf{\Theta}^{-1}$
- How to compute the Proximal Newton direction?

$$\mathbf{d}_{\mathbf{H}_{k}}^{k} := \arg\min_{\mathbf{d}} \left\{ f(\mathbf{x}^{k}) + \nabla f(\mathbf{x}^{k})^{T} \mathbf{d} + \frac{1}{2} \mathbf{d}^{T} \mathbf{H}_{k} \mathbf{d} + \mathbf{g}(\mathbf{x}^{k} + \mathbf{d}) \right\}, \quad \mathbf{H}_{k} = \nabla^{2} f(\mathbf{x}^{k})$$

Objective:

$$\min_{\mathbf{\Theta} \succ 0} \left\{ \underbrace{-\log \det(\mathbf{\Theta}) + \operatorname{trace}(\mathbf{\Sigma}\mathbf{\Theta})}_{f(\mathbf{x})} + \underbrace{\rho \| \operatorname{vec}(\mathbf{\Theta}) \|_1}_{g(\mathbf{x})} \right\}$$

- Gradient and Hessian (large-scale, special structure)
 - Gradient of $f: \nabla f(\mathbf{x}) = \mathbf{vec}(\mathbf{\Sigma} \mathbf{\Theta}^{-1}).$
 - Hessian of $f: \nabla^2 f(\mathbf{x}) = \mathbf{\Theta}^{-1} \otimes \mathbf{\Theta}^{-1}$
- Dual approach for solving subproblem (SP)

Primal subproblem	Dual subproblem (SPGL)				
$\min_{\Delta} \left\{ \frac{1}{2} \operatorname{trace}((\boldsymbol{\Theta}_{i}^{-1} \Delta)^{2}) + \operatorname{trace}(\mathbf{R}_{i} \Delta) + \rho \ \operatorname{vec}(\Delta)\ _{1} \right\}$	$\min_{\ \operatorname{vec}(\mathbf{U})\ _{\infty} \leq 1} \left\{ \frac{1}{2} \operatorname{trace}((\mathbf{\Theta}_{i} \mathbf{U})^{2}) + \operatorname{trace}(\mathbf{Q}_{i} \mathbf{U}) \right\}$				
$\mathbf{R}_i := \mathbf{\Sigma} - 2\mathbf{\Theta}_i^{-1}$	$\mathbf{Q}_i := \rho^{-1} [\mathbf{\Theta}_i \mathbf{\Sigma} \mathbf{\Theta}_i - 2\mathbf{\Theta}_i]$				

Unconstrained LASSO problem

Objective:

$$\min_{\mathbf{\Theta} \succ 0} \left\{ \underbrace{-\log \det(\mathbf{\Theta}) + \operatorname{trace}(\mathbf{\Sigma}\mathbf{\Theta})}_{f(\mathbf{x})} + \underbrace{\rho \| \operatorname{vec}(\mathbf{\Theta}) \|_1}_{g(\mathbf{x})} \right\}$$

- Gradient and Hessian (large-scale, special structure)
 - Gradient of $f: \nabla f(\mathbf{x}) = \mathbf{vec}(\Sigma \mathbf{\Theta}^{-1}).$
 - Hessian of f: $\nabla^2 f(\mathbf{x}) = \mathbf{\Theta}^{-1} \otimes \mathbf{\Theta}^{-1}$ No Cholesky decomposition

and matrix inversion

Dual approach for solving subproblem (SP)

Primal subproblem	Dual subproblem (SPGL)					
$\min_{\Delta} \left\{ \frac{1}{2} \operatorname{trace}((\boldsymbol{\Theta}_{i}^{-1} \Delta)^{2}) + \operatorname{trace}(\mathbf{R}_{i} \Delta) + \rho \ \operatorname{vec}(\Delta)\ _{1} \right\}$	$\min_{\ \operatorname{vec}(\mathbf{U})\ _{\infty} \leq 1} \left\{ \frac{1}{2} \operatorname{trace}((\mathbf{\Theta}_{i}\mathbf{U})^{2}) + \operatorname{trace}(\mathbf{Q}_{i}\mathbf{U}) \right\}$					
$\mathbf{R}_i := \mathbf{\Sigma} 2\mathbf{\Theta}_i^{-1}$	$\mathbf{Q}_i := \rho^{-1} [\mathbf{\Theta}_i \mathbf{\Sigma} \mathbf{\Theta}_i - 2\mathbf{\Theta}_i]$					

Unconstrained LASSO problem

Objective:

$$\min_{\mathbf{\Theta} \succ 0} \left\{ \underbrace{-\log \det(\mathbf{\Theta}) + \operatorname{trace}(\mathbf{\Sigma}\mathbf{\Theta})}_{f(\mathbf{x})} + \underbrace{\rho \| \operatorname{vec}(\mathbf{\Theta}) \|_{1}}_{g(\mathbf{x})} \right\}$$

- Gradient and Hessian (large-scale, special structure)
 - Gradient of $f: \nabla f(\mathbf{x}) = \mathbf{vec}(\Sigma \mathbf{\Theta}^{-1}).$
 - Hessian of f: $\nabla^2 f(\mathbf{x}) = \mathbf{\Theta}^{-1} \otimes \mathbf{\Theta}^{-1}$ No Cholesky decomposition

and matrix inversion

Dual approach for solving subproblem (SP)

Primal subproblem	Dual subproblem (SPGL)
Unconstrained LASSO problem	$\min_{\ \operatorname{vec}(\mathbf{U})\ _{\infty} \leq 1} \left\{ \frac{1}{2} \operatorname{trace}((\mathbf{\Theta}_{i} \mathbf{U})^{2}) + \operatorname{trace}(\mathbf{Q}_{i} \mathbf{U}) \right\}$
$\mathbf{R}_i := \mathbf{\Sigma} - 2\mathbf{\Theta}_i^{-1}$	$\mathbf{Q}_i := \rho^{-1} [\mathbf{\Theta}_i \mathbf{\Sigma} \mathbf{\Theta}_i - 2\mathbf{\Theta}_i]$

How to compute proximal Newton decrement $\lambda_i := \|\mathbf{d}^i\|_{\mathbf{x}^i}$?

$$\lambda_i := [p - 2 \operatorname{trace}(\mathbf{W}_i) + \operatorname{trace}(\mathbf{W}_i^2)]^{1/2}, \quad \mathbf{W}_i = \mathbf{\Theta}_i(\mathbf{\Sigma} - \rho \mathbf{U}^*)$$

Graphical model selection: numerical examples

Our method vs QUIC [Hseih2011]

- QUIC subproblem solver: special block-coordinate descent
- Our subproblem solver: general proximal algorithms

Convergence behaviour [rho = 0.5]: Lymph [p = 587] (left), Leukemia [p = 1255] (right)

Step-size selection strategies: Arabidopsis [p = 834], Leukemia [p = 1255], Hereditary [p = 1869]

	Synth	etic (ρ =	= 0.01)	Arabidopsis ($ ho=0.5$) Leukemia ($ ho=0.1$) Hereditary ($ ho=0.1$)							= 0.1)	
LS SCHEME	#iter	#chol	#Mm	#iter	#chol	#Mm	#iter	#chol	#Mm	#iter	#chol	#Mm
NoLS	25.4	-	3400	18	-	1810	44	-	9842	72	-	20960
BtkLS	25.5	37.0	2436	11	25	718	15	50	1282	19	63	2006
E-BtkLS	25.5	36.2	2436	11	24	718	15	49	1282	15	51	1282
FwLS	18.1	26.2	1632	10	17	612	12	34	844	14	44	1126

Graphical model selection: numerical examples

Our method vs QUIC [Hseih2011]

- QUIC subproblem solver: special block-coordinate descent

On the average x5 acceleration (up to x15) over Matlab QUIC

Convergence behaviour [rho = 0.5]: Lymph [p = 587] (left), Leukemia [p = 1255] (right)

Step-size selection strategies: Arabidopsis [p = 834], Leukemia [p = 1255], Hereditary [p = 1869]

	Synth	etic (ρ =	= 0.01)	Arabio	dopsis (p	0 = 0.5	Leuk	emia (ρ	= 0.1)	Hered	itary (ρ	= 0.1)
LS SCHEME	#iter	#chol	#Mm	#iter	#chol	#Mm	#iter	#chol	#Mm	#iter	#chol	#Mm
NoLS	25.4	-	3400	18	-	1810	44	-	9842	72	-	20960
BtkLS	25.5	37.0	2436	11	25	718	15	50	1282	19	63	2006
E-BtkLS	25.5	36.2	2436	11	24	718	15	49	1282	15	51	1282
FwLS	18.1	26.2	1632	10	17	612	12	34	844	14	44	1126

Composite minimization: alternatives?

$$\min_{\mathbf{x} \in \mathbb{R}^n} \left\{ \phi(\mathbf{x}) := f(\mathbf{x}) + g(\mathbf{x}) \right\}$$

a

f

convex and smooth

convex and possibly nonsmooth

Existing numerical approaches

- Splitting methods

- **Forward-backward**: applicable if **f** has Lipschitz gradient

- **Douglas-Rachford** decomposition: **f** and **g** have "tractable" proximity operators

- Augmented Lagrangian methods (e.g., D-R again)

$$\min_{\mathbf{x} \in \mathbb{R}^n} \left\{ \phi(\mathbf{x}, \mathbf{y}) := f(\mathbf{x}) + g(\mathbf{y}) \right\}$$
s.t.
$$\mathbf{x} - \mathbf{y} = 0$$

Prox operator of self-concordant functions are costly!

Our "cheaper" variable metric strategies

Proximal gradient scheme*

Given \mathbf{x}^0 , generate a sequence $\{\mathbf{x}^k\}_{k>0}$ such that

$$\left(\mathbf{x}^{k+1} := \mathbf{x}^k + \alpha_k \mathbf{d}_{\mathbf{H}_k}^k\right)$$

where $\alpha_k \in (0,1]$ is step-size, $\mathbf{d}_{\mathbf{H}_k}^k$ is a search direction

• How to compute the search direction?

$$\mathbf{d}_{\mathbf{H}_k}^k := \arg\min_{\mathbf{d}} \left\{ f(\mathbf{x}^k) + \nabla f(\mathbf{x}^k)^T \mathbf{d} + \frac{1}{2} \mathbf{d}^T \mathbf{H}_k \mathbf{d} + g(\mathbf{x}^k + \mathbf{d}) \right\}, \quad \mathbf{H}_k = \mathbf{D}_k : \text{ diagonal}$$

No Lipschitz assumption

A new predictor corrector scheme (with local linear convergence*)

Proximal quasi-Newton scheme (BFGS updates)*

$$\min_{\boldsymbol{\Theta} \succ 0} \left\{ \underbrace{-\log \det(\boldsymbol{\Theta}) + \operatorname{trace}(\boldsymbol{\Sigma} \boldsymbol{\Theta})}_{f(\mathbf{x})} + \underbrace{\frac{\rho \| \operatorname{vec}(\boldsymbol{\Theta}) \|_1}{g(\mathbf{x})}} \right\}$$

$$\min_{\boldsymbol{\Theta} \succ 0} \left\{ \underbrace{-\log \det(\boldsymbol{\Theta}) + \operatorname{trace}(\boldsymbol{\Sigma} \boldsymbol{\Theta})}_{f(\mathbf{x})} + \underbrace{\rho \| \operatorname{vec}(\boldsymbol{\Theta}) \|_{1}}_{g(\mathbf{x})} \right\}$$

$$\min_{\boldsymbol{\Theta} \succ 0} \left\{ \underbrace{-\log \det(\boldsymbol{\Theta}) + \operatorname{trace}(\boldsymbol{\Sigma} \boldsymbol{\Theta})}_{f(\mathbf{x})} + \underbrace{\frac{\rho \| \operatorname{vec}(\boldsymbol{\Theta}) \|_1}{g(\mathbf{x})}} \right\}$$

Graph learning: Lymph [p = 587]

Theory is based on the notion of "restricted strong convexity"

$$\min_{\boldsymbol{\Theta} \succ 0} \left\{ \underbrace{-\log \det(\boldsymbol{\Theta}) + \operatorname{trace}(\boldsymbol{\Sigma}\boldsymbol{\Theta})}_{f(\mathbf{x})} + \underbrace{\rho \| \operatorname{vec}(\boldsymbol{\Theta}) \|_{1}}_{g(\mathbf{x})} \right\}$$

Graph learning: Lymph [p = 587]

Theory is based on the notion of "restricted strong convexity"

$$\min_{\Theta \succ 0} \left\{ \underbrace{-\log \det(\Theta) + \operatorname{trace}(\Sigma\Theta)}_{f(\mathbf{x})} \right\}$$

$$\underbrace{x_2 \qquad \text{descend directions}}_{f(\mathbf{x})}$$

$$\underbrace{x_1}_{\text{convergence depends on the full condition number}}$$

Graph learning: Lymph [p = 587]

Theory is based on the notion of "restricted strong convexity"

$$\min_{\boldsymbol{\Theta} \succ 0} \left\{ \underbrace{-\log \det(\boldsymbol{\Theta}) + \operatorname{trace}(\boldsymbol{\Sigma} \boldsymbol{\Theta})}_{f(\mathbf{x})} \right\}$$

Theory is based on the notion of "restricted strong convexity"

Theory is based on the notion of "restricted strong convexity"

Graph learning: Lymph [p = 587]

Heteroschedastic LASSO [rho decreases from left to right]

$$\mathbf{x}^* \equiv (\phi^*, \gamma^*) = \underset{\phi, \gamma}{\operatorname{argmin}} \left\{ \underbrace{-\log(\gamma) + \frac{1}{2n} \|\gamma \mathbf{y} - \mathbf{X}\phi\|_2^2 + \rho \|\phi\|_1}_{=:f(\mathbf{x})} \right\}$$

A greedy enhancement

$$\min_{\mathbf{x} \in \mathbb{R}^n} \left\{ \phi(\mathbf{x}) := f(\mathbf{x}) + g(\mathbf{x}) \right\}$$

$$\begin{split} \hat{\mathbf{x}}^k &:= (1 - \alpha_k) \mathbf{x}^k + \alpha_k \mathbf{s}_g^k \\ \text{prox: } \mathbf{s}_g^k &:= \arg\min_{\mathbf{x} \in \text{dom}(F)} \left\{ Q(\mathbf{x}; \mathbf{x}^k, \mathbf{D}_k) + g(\mathbf{x}) \right\} \end{split}$$

A greedy enhancement

$$\min_{\mathbf{x} \in \mathbb{R}^n} \left\{ \phi(\mathbf{x}) := f(\mathbf{x}) + g(\mathbf{x}) \right\}$$

$$\phi(\mathbf{x}^k)$$

$$\phi(\mathbf{s}_g^k)$$

$$\phi(\hat{\mathbf{x}}^k)$$

$$\phi(\mathbf{s}_g^k)$$

$$\mathbf{x}^k := \mathbf{s}_g^k$$

$$\mathbf{Case 2}$$

$$\mathbf{Case 1}$$

$$\begin{split} \hat{\mathbf{x}}^k &:= (1 - \alpha_k) \mathbf{x}^k + \alpha_k \mathbf{s}_g^k \\ \text{prox: } \mathbf{s}_g^k &:= \arg\min_{\mathbf{x} \in \text{dom}(F)} \left\{ Q(\mathbf{x}; \mathbf{x}^k, \mathbf{D}_k) + g(\mathbf{x}) \right\} \end{split}$$

A greedy enhancement

$$\min_{\mathbf{x} \in \mathbb{R}^n} \left\{ \phi(\mathbf{x}) := f(\mathbf{x}) + g(\mathbf{x}) \right\}$$

slows down convergence!

$$\begin{split} \hat{\mathbf{x}}^k &:= (1 - \alpha_k) \mathbf{x}^k + \alpha_k \mathbf{s}_g^k \\ \text{prox: } \mathbf{s}_g^k &:= \arg\min_{\mathbf{x} \in \text{dom}(F)} \left\{ Q(\mathbf{x}; \mathbf{x}^k, \mathbf{D}_k) + g(\mathbf{x}) \right\} \end{split}$$

A greedy enhancement

$$\min_{\mathbf{x} \in \mathbb{R}^n} \left\{ \phi(\mathbf{x}) := f(\mathbf{x}) + g(\mathbf{x}) \right\}$$

simple decision:

based on the function values $\phi(\mathbf{s}_q^k)$, $\phi(\hat{\mathbf{x}}^k)$ and $\phi(\mathbf{x}^k)$

$$\begin{split} \hat{\mathbf{x}}^k &:= (1 - \alpha_k) \mathbf{x}^k + \alpha_k \mathbf{s}_g^k \\ \text{prox: } \mathbf{s}_g^k &:= \arg\min_{\mathbf{x} \in \text{dom}(F)} \left\{ Q(\mathbf{x}; \mathbf{x}^k, \mathbf{D}_k) + g(\mathbf{x}) \right\} \end{split}$$

A greedy enhancement

$$\min_{\mathbf{x} \in \mathbb{R}^n} \left\{ \phi(\mathbf{x}) := f(\mathbf{x}) + g(\mathbf{x}) \right\}$$

simple decision:

based on the function values $\phi(\mathbf{s}_q^k)$, $\phi(\hat{\mathbf{x}}^k)$ and $\phi(\mathbf{x}^k)$

cost:

practically none if implemented carefully

$$\begin{split} \hat{\mathbf{x}}^k &:= (1 - \alpha_k) \mathbf{x}^k + \alpha_k \mathbf{s}_g^k \\ \text{prox: } \mathbf{s}_g^k &:= \arg\min_{\mathbf{x} \in \text{dom}(F)} \left\{ Q(\mathbf{x}; \mathbf{x}^k, \mathbf{D}_k) + g(\mathbf{x}) \right\} \end{split}$$

Poisson imaging reconstruction via TV

Our method vs SPIRAL-TAP [Harmany2012]

Original image

Poisson noise image

Reconstructed image (ProxGrad) Reconstructed image (ProxGradNewton) Reconstructed image (SPIRAL-TAF

- Poisson imaging reconstruction via TV regularization
- -a

$$x^* \in \underset{x}{\operatorname{argmin}} \left\{ \underbrace{\sum_{i=1}^{m} a_i^T x - \sum_{i=1}^{m} y_i \log(a_i^T x + b_i) + \mathbf{g}(x)}_{\mathbf{f}(x)} \right\}$$

Poisson imaging reconstruction via TV

Our method vs SPIRAL-TAP [Harmany2012]

Barrier extensions

Constrained convex problems

$$g^* := \min_{\mathbf{x} \in \Omega} g(\mathbf{x})$$

• Ω is endowed with a self-concordant barrier f(x);

Constrained convex problems

$$g^* := \min_{\mathbf{x} \in \Omega} g(\mathbf{x})$$

• Ω is endowed with a self-concordant barrier f(x);

• Examples:

$$\Omega: \mathbf{X} \succeq 0 \qquad \Rightarrow \qquad f_{\Omega}(\mathbf{X}) = -\log \det(\mathbf{X})
\Omega: \mathbf{a}^{T} \mathbf{x} \geq 0 \qquad \Rightarrow \qquad f_{\Omega}(\mathbf{x}) = -\log(\mathbf{a}^{T} \mathbf{x})
\Omega: ||\mathbf{A}\mathbf{x} - \mathbf{b}|| \leq \sigma \quad \Rightarrow \qquad f_{\Omega}(\mathbf{x}) = -\log(\sigma^{2} - ||\mathbf{A}\mathbf{x} - \mathbf{b}||^{2})$$

Constrained convex problems

$$g^* := \min_{\mathbf{x} \in \Omega} g(\mathbf{x})$$

• Ω is endowed with a self-concordant barrier f(x);

• Examples:

$$\Omega: \mathbf{X} \succeq 0 \qquad \Rightarrow \qquad f_{\Omega}(\mathbf{X}) = -\log \det(\mathbf{X})
\Omega: \mathbf{a}^{T} \mathbf{x} \geq 0 \qquad \Rightarrow \qquad f_{\Omega}(\mathbf{x}) = -\log(\mathbf{a}^{T} \mathbf{x})
\Omega: ||\mathbf{A}\mathbf{x} - \mathbf{b}|| \leq \sigma \quad \Rightarrow \qquad f_{\Omega}(\mathbf{x}) = -\log(\sigma^{2} - ||\mathbf{A}\mathbf{x} - \mathbf{b}||^{2})$$

Main idea: solve a sequence of composite self-concordant problems

$$\min_{\mathbf{x} \in \text{int}(\Omega)} \left\{ F(\mathbf{x}; t) := g(\mathbf{x}) + tf(\mathbf{x}) \right\}$$

How does it work?

Main idea: solve a sequence of composite self-concordant problems as opposed to DCO

$$\min_{\mathbf{x} \in \mathrm{int}(\Omega)} \left\{ F(\mathbf{x}; t) := g(\mathbf{x}) + tf(\mathbf{x}) \right\}$$

- $[4]: \Delta t_k := |t_{k+1} t_k|$
- The true solution trajectory $x_{t_k}^*$
- Approximate solution sequence $\{x^k\}$

One iteration k requires two updates simultaneously:

- Update the penalty parameter:

$$t_{k+1} := (1 - \sigma_k)t_k, \quad \sigma_k \in [\underline{\sigma}, 1) \quad (\text{e.g.}, \underline{\sigma} = 0.0337/\sqrt{\nu}).$$

- Update the iterative vector (can be solved approximately):

$$\mathbf{x}^{k+1} := \arg\min_{\mathbf{x}} \left\{ \frac{t_{k+1} \nabla f(\mathbf{x}^k)^T (\mathbf{x} - \mathbf{x}^k)}{2} + \frac{t_{k+1}}{2} (\mathbf{x} - \mathbf{x}^k)^T \nabla^2 f(\mathbf{x}^k) (\mathbf{x} - \mathbf{x}^k) + g(\mathbf{x}) \right\}$$

*Details: "An Inexact Proximal Path-Following Algorithm for Constrained Convex Minimization," optimization-online and lions.epfl.ch/publications.

How does it converge?

The algorithm consists of two PHASES:

- Phase I: Find a starting point $\mathbf{x}_{p_2}^0$ such that: $\|\mathbf{x}_{p_2}^0 \mathbf{x}^*(t_0)\|_{\mathbf{x}^*(t_0)} \le 0.05$
- Phase II: Perform the path-following iterations

Tracking properties on the penalty parameter and the iterative sequence in Phase II

-The penalty parameter t_k decreases at least with a factor $au:=1-\frac{0.0337}{\sqrt{
u}}$ at each iteration \mathbf{k} $t_{k+1}= au t_k$

- **Tracking error** of the iterative sequence:

if
$$\|\mathbf{x}^k - \mathbf{x}^*(t_k)\|_{\mathbf{x}^*(t_k)} \le 0.05$$
 then $\|\mathbf{x}^{k+1} - \mathbf{x}^*(t_{k+1})\|_{\mathbf{x}^*(t_{k+1})} \le 0.05$

Worst-case complexity:

- Phase I: Finding a starting point for Phase II requires at most

$$j_{\text{max}} := \left| \frac{F(\mathbf{x}^0; t_0) - F(\mathbf{x}^*(t_0); t_0)}{0.0012} \right| + 1$$

- Phase II: The worst-case complexity to reach an *ε*- solution is at most:

$$\mathcal{O}\left(\sqrt{\nu}\log\left(\frac{Ct_0}{\varepsilon}\right)\right)$$

- Note: This worst-case complexity is as the **same** as in standard path-following methods [see Nesterov2004]

Proximal path-following

Upshot: no-heavy lifting!

#variables

#constraints

Proximal path following for conic programming with rigorous guarantees

$$g^* := \min_{\mathbf{x} \in \Omega} g(\mathbf{x})$$

• Ω is endowed with a self-concordant barrier f(x);

Example: Low-rank SDP matrix approximation ...

$$\min_{\mathbf{X}} \quad \rho \| \operatorname{vec}(\mathbf{X} - \mathbf{M}) \|_{1} + (1 - \rho) \operatorname{tr}(\mathbf{X})
\text{s.t.} \quad \mathbf{X} \succeq 0, \ \mathbf{L}_{ij} \leq \mathbf{X}_{ij} \leq \mathbf{U}_{ij}, \ i, j = 1, \dots, n.$$

 ρ is a regularization parameter in (0, 1), M is the given input matrix.

 $Solver \setminus n$ 80 100 120 140 $[n_v; n_c]$ [16,200; 9,720] [25,250; 15,150] [36,300; 21,780] [49,350; 29,610] [64,400; 38,640]Size 15.73824.046 24.81725.326PFPN 36.531Time (sec) 508.418 881.398 1742.502 2948.441 SDPT3 156.340SeDuMi 231.530970.390 3820.828 9258.429 17096.580 306.9159 497.6706 635.4304 842.4626 1096.6516 PFPN $g(\mathbf{X}^*)$ SDPT3 306.9153 497.6754 635.4306 842.4644 1096.6540 306.9176 497.6821635.4384 842.4776 1096.6695 SeDuMi PFPN [20, 30.53%] [26, 27.37%] [30, 25.27%][35, 23.64%][40, 21.54%] [rank, sparsity] SDPT3 [20, 41.02%] [25, 36.99%][30, 51.61%] [35, 45.03%][40, 49.07%] [20, 45.23%][25, 64.20%][30, 54.83%][40, 59.24%]SeDuMi [35, 60.87%]

Proximal path-following

Upshot: desired scaling!

Proximal path following for conic programming with rigorous guarantees

$$g^* := \min_{\mathbf{x} \in \Omega} g(\mathbf{x})$$

• Ω is endowed with a self-concordant barrier f(x);

Example: Max-norm clustering

$$\min_{\mathbf{L}, \mathbf{R}, \mathbf{K}} \quad \| \operatorname{vec} (\mathbf{K} - \mathbf{A}) \|_{1}$$
s.t.
$$\begin{bmatrix} \mathbf{L} & \mathbf{K} \\ \mathbf{K}^{T} & \mathbf{R} \end{bmatrix} \succ 0, \ \mathbf{L}_{ii} \le 1, \ i = 1, \dots, p.$$

		SI	PT3	1	PF scheme
	p	variables	constraint	ts	variables
	50	15.1	2.6		10
DCO:	75	33.9	5.8		22.5
DCO.	100	60.2	10.2		40
	150	135.3	22.8		90
	200	240.4	40.4		160

	p	50	75	100	150	200
Time (sec)	PF SDPT3 splitting	62.450 4.396 102.217	109.426 21.282 236.366	202.600 64.939 354.444		2588.721
$g(\mathbf{K}^*)$	PF SDPT3 splitting	549.1860	1293.7890	2232.5897 2233.0747 2496.6535	5396.7305	9809.6934

Proximal path-following Upshot: auto. regularization!

Proximal path following for conic programming with rigorous guarantees

$$g^* := \min_{\mathbf{x} \in \Omega} g(\mathbf{x})$$

- Ω is endowed with a self-concordant barrier f(x);
- Main idea: solve a sequence of composite self-concordant problems as opposed to DCO

$$\min_{\mathbf{x} \in \mathrm{int}(\mathbf{\Omega})} \left\{ F(\mathbf{x}; \underline{\boldsymbol{t}}) := \underline{\boldsymbol{g}}(\mathbf{x}) + \underline{\boldsymbol{t}} \underline{\boldsymbol{f}}(\mathbf{x}) \right\}$$

Example: Max-norm clustering

Example: Graph selection

$$\min_{\mathbf{x} \in \mathbb{R}^n} \left\{ \phi(\mathbf{x}) := f(\mathbf{x}) + g(\mathbf{x}) \right\}$$

- \mathcal{F}_{μ} μ -strongly convex
- \mathcal{F}_L L-Lipschitz gradient
- \mathcal{F}_2 self-concordant

A new variable metric proximal-point framework for composite self-concordant minimization

Extensions

$$\min_{\mathbf{x} \in \mathbb{R}^n} \left\{ \phi(\mathbf{x}) := f(\mathbf{x}) + g(\mathbf{x}) \right\}$$

- \mathcal{F}_{μ} μ -strongly convex
- \mathcal{F}_L L-Lipschitz gradient
- \mathcal{F}_2 self-concordant

- Highlights
- Globalization:

strategy

- Search direction:

- Local convergence: Hessian

a new strategy for finding step-size **explicitly** motivate "forward-looking" line-search

efficient (strongly convex program)

quadratic convergence without boundedness of the

analytic quadratic convergence region

$$\min_{\mathbf{x} \in \mathbb{R}^n} \left\{ \phi(\mathbf{x}) := f(\mathbf{x}) + g(\mathbf{x}) \right\}$$

- \mathcal{F}_L L-Lipschitz gradient
- \mathcal{F}_2 self-concordant

Highlights

- Globalization:

a new strategy for finding step-size explicitly

motivate "forward-looking" line-search

strategy

- **Search direction**: efficient (strongly convex program)

Local convergence: quadratic convergence without boundedness of the

analytic quadratic convergence region

Practical contributions (this talk)

- SCOPT package has quasi-Newton / first & second order methods @lions.epfl.ch/software
- leverage fast proximal solvers for g(x) (structured norms etc.)
- → robust to subproblem solver accuracy

FOR THE WIN

