Compressive sensing in the analog world

Mark A. Davenport

Georgia Institute of Technology School of Electrical and Computer Engineering

Compressive Sensing

$$y = Ax$$
 $x = D\alpha$

Can we really acquire analog signals with "CS"?

Challenge 1

Map analog sensing to matrix multiplication

If x(t) is bandlimited, $x(t) = \sum_{n=-\infty}^{\infty} x[n]\operatorname{sinc}(t/T_s - n)$ $y[m] = \langle \phi_m(t), x(t) \rangle = \sum_{n=-\infty}^{\infty} x[n] \langle \phi_m(t), \operatorname{sinc}(t/T_s - n) \rangle$

Challenge 2

Map analog sparsity into a sparsifying dictionary

Candidate Analog Signal Models

	Model for $\boldsymbol{x}(t)$	Sparsifying dictionary for x	Sparsity level for x
multitone	sum of S tones	overcomplete DFT?	S-sparse

- Typical model in CS
- Coherence
- "Off-grid" tones

Candidate Analog Signal Models

	Model for $\boldsymbol{x}(t)$	Sparsifying dictionary for x	Sparsity level for x
multitone	sum of S tones	overcomplete DFT?	S-sparse
multiband	sum of K bands	?	?

- Landau
- Bresler, Feng, Venkataramani
- Eldar and Mishali

The Problem with the DFT

Discrete Prolate Spheroidal Sequences (DPSS's)

Slepian [1978]: Given an integer N and $W \leq \frac{1}{2}$, the DPSS's are a collection of N vectors

$$s_0, s_1, \ldots, s_{N-1} \in \mathbb{R}^N$$

that satisfy

$$\mathcal{T}_N(\mathcal{B}_W(s_\ell))) = \lambda_\ell s_\ell.$$

The DPSS's are perfectly time-limited, but when $\lambda_\ell \approx 1$ they are highly concentrated in frequency.

DPSS Eigenvalue Concentration

The first $\approx 2NW$ eigenvalues ≈ 1 . The remaining eigenvalues ≈ 0 .

Another Perspective: Subspace Fitting

$$e_f := \begin{bmatrix} e^{j2\pi f0} \\ e^{j2\pi f} \\ \vdots \\ e^{j2\pi f(N-1)} \end{bmatrix}$$

Suppose that we wish to minimize

$$\int_{-W}^{W} \|e_f - P_Q e_f\|_2^2 \, df$$

over all subspaces Q of dimension k .

Optimal subspace is spanned by the first k "DPSS vectors".

DPSS Examples

DPSS's for Bandpass Signals

DPSS Dictionaries for CS

Most multiband signals, when sampled and time-limited, are well-approximated by a sparse representation in D.

Empirical Results: DFT Comparison

[Davenport and Wakin - 2012]

Empirical Results: DFT Comparison

[Davenport and Wakin - 2012]

Recovery Guarantees?

The Treachery of Images

Ceci n'est pas une pipe.

The Treachery of α

- Given x, choice of α is no longer unique
- Correlations in $D\,{\rm make}$ it difficult to establish guarantees via standard tools
- If *D* is poorly conditioned, we can have $\|D\widehat{\alpha} D\alpha\|_2 \gg \|\widehat{\alpha} \alpha\|_2$ or $\|D\widehat{\alpha} D\alpha\|_2 \ll \|\widehat{\alpha} \alpha\|_2$

Signal-focused Recovery Strategy

- Focus on x instead of α
- Measure error in terms of $\|\widehat{x} x\|_2$ instead of $\|\widehat{lpha} lpha\|_2$

$$\sqrt{1-\delta_k} \|\alpha\|_2 \cdot \|AD\alpha\|_2 \cdot \sqrt{1+\delta_k} \|\alpha\|_2$$

$$\sqrt{1-\delta_k} \|D\alpha\|_2 \cdot \|AD\alpha\|_2 \cdot \sqrt{1+\delta_k} \|D\alpha\|_2$$

CoSaMP

initialize: $r = y, x^0 = 0, \ell = 0, \Gamma = \emptyset$ until converged:

proxy:
$$h = A^*r$$

identify: $= \{2S \text{ largest elements of } |h|\}$
merge: $T = \cup \Gamma$
update: $\widetilde{x} = \underset{\supp(z)\subseteq T}{\operatorname{arg min}} ||y - Az||_2$
 $\Gamma = \{S \text{ largest elements of } |\widetilde{x}|\}$
 $x^{\ell+1} = \widetilde{x}|_{\Gamma}$
 $r^{\ell+1} = y - Ax^{\ell+1}$
 $\ell = \ell + 1$
output: $\widehat{x} = x^{\ell}$

Key Steps

$$= \{2S \text{ largest elements of } |h|\}$$

$$\begin{split} \widetilde{x} &= \underset{\sup(z) \subseteq T}{\arg\min} \|y - Az\|_2 \\ \Gamma &= \{S \text{ largest elements of } |\widetilde{x}|\} \\ x^{\ell+1} &= \widetilde{x}|_{\Gamma} \end{split}$$

Given a vector in \mathbb{R}^n , use hard thresholding to find best sparse approximation

 \mathcal{P}_{Λ} : orthogonal projector onto $\mathcal{R}(D_{\Lambda})$

$$\Lambda_{\text{opt}}(z,S) = \underset{|\Lambda|=S}{\arg\min} \|z - \mathcal{P}_{\Lambda} z\|_{2}$$

Approximate Projection

$$\mathcal{P}_{\Lambda}$$
: orthogonal projector onto $\mathcal{R}(D_{\Lambda})$
 $\Lambda_{\mathrm{opt}}(z,S) = \operatorname*{arg\,min}_{|\Lambda|=S} \|z - \mathcal{P}_{\Lambda}z\|_2$

$$\mathcal{S}(z,S)$$
: estimate of $\Lambda_{\mathrm{opt}}(z,S)$

$$\|\mathcal{P}_{\Lambda_{\mathrm{opt}}}z - \mathcal{P}_{\mathcal{S}}z\|_2 \cdot \min\left(\epsilon_1 \|\mathcal{P}_{\Lambda_{\mathrm{opt}}}z\|_2, \ \epsilon_2 \|z - \mathcal{P}_{\Lambda_{\mathrm{opt}}}z\|_2
ight)$$

measure quality of approximation in "signal space", not "coefficient space"

Signal Space CoSaMP

initialize:
$$r=y, x^0=0, \ell=0, \Gamma=\emptyset$$

until converged:

proxy:
$$h = A^*r$$

identify: $= S(h, 2S)$
merge: $T = \cup \Gamma$
update: $\widetilde{x} = \underset{z \in \mathcal{R}(D_T)}{\arg \min} \|y - Az\|_2$
 $\Gamma = S(\widetilde{x}, S)$
 $x^{\ell+1} = \mathcal{P}_{\Gamma}(\widetilde{x})$
 $r^{\ell+1} = y - Ax^{\ell+1}$
 $\ell = \ell + 1$

output: $\widehat{x} = x^{\ell}$

Recovery Guarantees

Suppose there exists an S-sparse α such that $x = D\alpha$ and A satisfies the D-RIP of order 4S.

If we observe y = Ax + e, then

$$||x - x^{\ell+1}||_2 \cdot C_1 ||x - x^{\ell}||_2 + C_2 ||e||_2$$

For $\delta_{4k} = 0.029, \epsilon_1 = 0.1, \epsilon_2 = 1,$ $\|x - x^{\ell}\|_2 \cdot 2^{-\ell} \|x\|_2 + 25.4 \|e\|_2$

[Davenport, Needell, and Wakin - 2013]

Practical Choices for $\mathcal{S}(z,S)$

Given z, we want to find an S-sparse $\alpha\,$ such that $z\approx D\alpha\,$

- Any sparse recovery algorithm!
- CoSaMP
- Orthogonal Matching Pursuit (OMP)
- ℓ_1 -minimization followed by hard-thresholding

$$\mathcal{S}(z,S) = H_S \left(\underset{w:Dw=z}{\arg\min} \|w\|_1 \right)$$

Remaining Gaps

- None of the "practical choices" are proven to provide the desired approximate projections
- Experimental results suggest that (at least for certain dictionaries) none of these choices are sufficient
- Recent progress
 - Hegde and Indyk (2013)
 - Giryes and Needell (2013)
 - weaker requirements on approximate projection

Conclusion

- Dealing with analog signals in the traditional compressive sensing framework requires
 - new sparsifying dictionaries
 - modified algorithms
 - signal-focused analysis
- Many open questions remain
 - provably near-optimal algorithms for computing approximate projections
 - may actually involve the use of DPSS's
 - efficient methods for handling both multiband and multitone signals simultaneously

Thank You!