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The Grey-Rankin Bound

Definition: A binary code {c,}2", C ZY is self-complementary if
copn(m) =cy(m)+1 (mod 2), Vm=1,.... M, n=1,... /N.
Its distance is the minimum Hamming distance between any two c,'s:
A= ,gr?d(cn,cn/).
In 1962, Grey proved self-complementary codes satisfy 2N < %.
Example: M =6, N =16, A =2, 2N = 32 = 22(6-2)

5—(6-227
0000000000000000[1111111111111111
0101010101010101{1010101010101010
0110011001100110{1001100110011001
0000111100001111(1111000011110000
0101010110101010(1010101001010101
0110100110010110/1001011001101001

What does this have to do with compressed sensing?
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The Rankin Bound

A self-complementary code {c,}2N, C ZY yields vectors {o,}N_;, C RV,

cn(m)

a(m) i= (1)),

Example: M =6, N =16

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 -1 1 -1 1 -1 1 -1 1 -1 1 -1 1 -1 1 -1
¢_ 1 -1 —1 1 1 -1 -1 1 1 -1 —1 1 1 -1 -1 1
- 1
1
1

\/6 1 1 1 -1 -1 -1 -1 1 1 1 1 -1 -1 -1 -1

—1 1 -1 1 -1 1 -1 -1 1 -1 1 -1 1 -1 1
-1 -1 1 -1 1 1 -1 -1 1 1 -1 1 -1 -1 1

The Grey-Rankin bound follows from a special case of a more general
result: in 1956, Rankin showed that if there exists N antipodal pairs of
spherical caps of radius % in RM, then M, N and 6 necessarily satisfy:

(M —1)N

.2
0 < —— .
sin“ 0 < MN=1)
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The Rankin Bound

A self-complementary code {c,}2N, C ZY yields vectors {o,}N_;, C RV,
oulm) = (D).

Example: M =6, N =16

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 -1 1 -1 1 -1 1 -1 1 -1 1 -1 1 -1 1 -1

¢ _ 1 -1 —1 1 1 -1 -1 1 1 -1 —1 1 1 -1 -1 1

- 1 1 1 1 -1 -1 -1 -1 1 1 1 1 -1 -1 -1 -1
\/6 1 -1 1 -1 1 -1 1 -1 1

1 -1 -1 1 -1 1 1 -1 1

1 -1 1 -1 1 -1 1
1 1 -1 1 -1 -1 1

The Grey-Rankin bound follows from a special case of a more general
result: in 1956, Rankin showed that if there exists N antipodal pairs of
spherical caps of radius g in RM, then M, N and 6 necessarily satisfy:

2gey (M-ON _MN-1)-(M-JN _ N-M
=TT MINCT) T M(N — 1) T MN—1)
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Welch's (Rankin's) Lower Bound on Coherence
Theorem: [Welch 74] If {¢,} N, are unit norm vectors in CM, then

M(N — 1) =HBe= n#n’ ¢n,¢n,>|

with equality < {¢,}"_, is an equiangular tight frame (ETF), i.e.
» the rows of ® are orthogonal and have constant norm,

» the columns of ® are unit norm,

> the dot products of distinct columns of ® have constant magnitude.

Proof: 0 < oo™ — i,
= ||¢*¢— 13, — 2
—ZZI Tl
n=1 p’'=1
n'#n

< N(N —1) [,r;an>,<|<<Pms0n/>l2 - MM,
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Gray-Rankin Bound Equality & +1-Valued ETF

1 € ZY achieves the Grey-Rankin bound if and only if

Theorem: [Grey 62; Jasper, Mixon & F 13] A self-complementary code

{Cn}%

M~2(—1)%(™ is an ETF.
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Why Care?

v

The previous result identifies certain optimal codes with ETFs.

v

ETFs have optimally small coherence.

v

Small coherence is important in compressed sensing.

v

Coding theory, ETFs and compressed sensing have rich literatures.

v

Can coding theory yield new results in compressed sensing or ETFs?

» Can compressed sensing or ETFs yield new results in coding theory?
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ETF Construction Method 1: Difference Sets

Theorem: [Turyn 65; Strohmer & Heath 03; Xia, Zhou & Giannakis 05;
Ding & Feng 07] If D is a subset of a finite abelian group G, then the
rows of the character table of G that correspond to D form an ETF if
and only if D is a difference set in G, namely if

is a constant function of g € G.

Example: G =735, M =#(D) =6, N =#(G) =16, A = 2:

Mg) =#{(d,d')eDxD:g=d—-d'}

(0,0,0,0) (0,0,1,0) (1,0,0,0) (1,0,0,1) (1,1,0,0) (1, , 1)
(0, ,0) (0,0,0,0) (0,0,1,0) (1,0,0,0) (1,0,0,1) (1, ,0) (1, , 1)
(0, ,0) (0,0,1,0) (0,0,0,0) (1,0,1,0) (1,0,1,1) (1, ,0) (1, , 1)
(1, ,0) (1,0,0,0) (1,0,1,0) (0,0,0,0) (0,0,0,1) (0, ,0) (o, 1)
(1, , 1) (1,0,0,1) (1,0,1,1) (0,0,0,1) (0,0,0,0) (0, ,1) (o, ,0)
(1, ,0) (1,1,0,0) (1,1,1,0) (0,1,0,0) (0,1,0,1) (0, ,0) (o, , 1)
(1, ,1) (1,1,1,1) (1,1,0,1) (0,1,1,1) (0,1,1,0) (0, ,1) (0, ,0)
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Difference Set ETF Example with M =6, N = 16
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Difference Set ETF Example with M =6, N = 16
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Difference Set ETF Example with M =6, N = 16
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ETF = RIP?

11 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 -1 1 -1 1 -1 1-1 1-1 1 -1 1 -1 1 —1
. _ 1 i -1-1 1 1-1-1 1 1 -1-1 1 1 -1 -1 1
Example-q)—\/g i1 1 1-1-1-1-1 1 1 1 1 -1 -1 —1 —1
1
1

-1 1 -1 1 -1 1 -1 -1 1 -1 1 -1 1 -1 1
-1 -1 1 -1 1 1 -1 —1 1 1 -1 1 -1 —1 1

Recall: This ETF yields a 6 x 32 GRBE self-complementary code.
Question: Is this ETF a good RIP matrix, i.e., for what values K < N
and § < 1 do we have |®x® — ]2 <46, VK C{1,...,N}, |[K| = K?
The case for:

> Gershgorin circles: ||®x®) — 1] < (K —1) max P P

» Random rows of a Hadamard matrix yields good RIP matrices
[Rudelson & Vershynin 08]; our rows our “pseudo-random.”

The case against:

» Square-root bottlebeck: by the Welch bound, Gershgorin circles only
guarantee @ can be (K, §)-RIP for some § < 1 for K ~ O(V'M).

> Difference sets yield linear GRBE codes (the codewords form a
subspace of ZM); coding theory tells us such ETFs have N ~ 2M.
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ETF Construction Method 2: Block Designs

Definition: A (2,k,v)-Steiner system is a set of v points V along with
a collection B of b subsets (blocks) of V such that:

» every block contains exactly k points,

> every point is contained in exactly r blocks,

> any two distinct points are contained in exactly one block.
A Steiner system is resolvable (Kirkman) if its blocks 55 can be
partitioned into subcollections so that each forms partition for V.

Example: For when k =2, v =4, r =3, b =6 consider the
b x v =6 x 4 incidence matrix of all 2-subsets of {1,2,3,4}:

O RO RO
= Ok OO =
—= OO R~k o
O Rk Olr O
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Example: Steiner ETF Construction
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Example: Steiner ETF Construction
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Example: Steiner ETF Construction
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Example: Steiner ETF Construction (— Kirkman)
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1

Example: Kirkman ETF Construction

— 4t
Sl ite L4
R R U R
Sletle 4 ++
CHP T
R e S A
S el e T s
R Il A R
CHtele Tt
e L LRI
top e g+
Colools . PTP 4+++
R et o+ +
oo Bl L R A
+ oo tellelle oy
solos T v
+o|l+o|l+o0 V—m-—

ocoloo I

12/16



Steiner/Kirkman ETFs and the Square-Root Bottleneck

Theorem: [Goethals & Seidel 70; F, Mixon & Tremain 12]
Any (2, k, v)-Steiner system generates an ETF with

v(v—1) 1
M:b:m, N=v(r+1)= (k_—|—1>

The redundancy of this ETF is % =k(1+ %) =~ k.

Theorem: [Jasper, Mixon & F 13] If a Steiner system is resolvable its
ETF can be rotated into a constant-amplitude Kirkman ETF.

Moreover, if {¢,}N_; is any Steiner or Kirkman ETF for CM, then it is
(K,0)-RIP for some § < 1 if and only if

1
_1\2
K< (pM 1) ,
A
where p = % Furthermore, every harmonic ETF generated via a
McFarland difference set is one of these.

In particular, none of these ETFs can surpass the square-root bottleneck.
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Our 6 x 16 Example Revisited

—1 1 —1 —1 1 —1

—1 —1 1 -1 -1 1
—1 —1 -1

1 —1 1
—1 —1 1

—1 —1 —1
—1 1 —1 -
1 1 —1 -

Sl

[ —

—1 1 —1
—1 —1 1 -

Question: Is this ® a good RIP matrix?

Answer:  Surprisingly, no!
It was generated with a McFarland difference set in Z3.
As such, it can be rotated to a 6 x 16 Steiner ETF.
This means four of its columns are linearly dependent.
Thus, @ is not RIP with K = 4.

Open Problem: Can any ETFs be good RIP matrices? In particular,

does the symmetry required to be as “pairwise nearly-orthonormal”
prevent them from having higher orders of “near orthonormality”?

14/16



Take Away

>

>

GRBE codes are equivalent to +1-valued ETFs.

The (Rankin-)Welch bound predates Welch's work by almost two
decades.

All known constructions of +1-valued ETFs (as well as most
constructions of ETFs in general) are provably incapable of breaking
compressed sensing's square-root bottleneck (low spark).

Coding theory informs ETFs: every +1-valued ETF arising from a
difference set must have N ~ 2M.

ETFs inform coding theory: assuming the Hadamard conjecture is
true and using asymptotic results on the existence of resolvable
block designs, there exists infinite families of +1-valued ETFs for
every redundancy approximately equal to 2 mod 4.

Moving forward, what does compressed sensing (random matrix
theory) tell us about coding theory?
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