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Compressed sensing

Nearly sparse signal x

Compressive sensing focuses on
the robust recovery of (nearly)
sparse vectors from the minimal
amount of measurements
obtained by a linear process.

Random linear measurements

One typically considers model
problems of the type

Ax = y

where x ∈ RN is a (nearly) sparse
vector, A ∈ Rm×N is the linear
measurement matrix, m� N,
y ∈ Rm is the result of the
measurement.
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Restricted Isometry Property

Definition (Restricted Isometry Property (RIP))

A matrix A ∈ Rm×N has the Restricted Isometry Property of order
k if there exists 0 < δk < 1 such that

(1− δk) ‖x‖`2
≤ ‖Ax‖`2

≤ (1 + δk) ‖x‖`2

for all x with # supp(x) ≤ k .

Under RIP one has guarantees of stable recovery for

I Greedy algorithms (OMP, Orthogonal Least Squares,
CoSaMP, ...);

I `p-minimization (iterative hard-/soft-thresholding for
p = 0, 1).
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Nonlinear compressed sensing: state of the art
Natural Sciences, Engineering :
Many real-life measurements are nonlinear. Examples later ....

Need of the extension of the applicability of Compressed Sensing
towards nonlinear measurements!

For general measurements:
I Greedy algorithms - Blumensath and Davies (2008), iterative

hard thresholding - Blumensath (2012)
I Iterative hard thresholding and greedy algorithms - Beck and

Eldar (2013)

Rather straightforward generalizations of known methods for linear
measurements: no recovery guarantees though!

I Sparse solution of polynomial optimization via lifting -
Ohlsson et al. (2011-)

Concept inherited from PhaseLift (see below) with same
drawbacks: limited efficiency in high-dimension!
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Quasi-linear compressed sensing
In contrast to linear measurements, the nonlinearity actually plays
in a disparate manner within different recovery algorithms.

Hence, it does not exists a unique best algorithm for every possible
nonlinearity!

In this talk we provide a more unified view about algorithms, by
restricting the possible nonlinearity to quasi-linear maps fulfilling
generalized versions of the classical RIP:

A(x)x = y

Any nonlinear map F : RN → Rm can be written as

F (x) = A(x)x ,

where x → A(x) ∈ Rm×N is a matrix valued function depending on
x . When the dependency is smooth (e.g., at least Lipschitz
continuous) then we say that F is quasi-linear.
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First application example: asteroseismology

Mode of pulsation of a star

I Asteroseismology studies the
oscillation of variable pulsating stars
as seismic waves;

I Through the analysis of the
characteristic pattern of these
pulsations it is possible to provide
information about the internal layers
of the star;

I This helps to refine stellar structure
and evolution modelling

Problem:

Instantaneous stellar
shape identification
from light intensity
measurements

⇒

Finding the sparse
coefficient vector for a
Fourier (spherical
harmonic) expansion of
the star’s surface
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Asteroseismology measurements

Light intensity measurements at different light frequencies

Typical light filters used by telescopes



Quasi-linear modelling for asteroseismology measurements
in 2D

I Description of the shape contour by a function u(ϕ),
depending on a parameter −1 ≤ ϕ ≤ 1 and some inclination
angle θ.

Good approximation of its oscillatory behaviour with the sine
expansion

u(ϕ) =
d∑

i=1

xi sin((2πϕ+ θ)i),

with sparse coefficient vector x = (x1, . . . , xd).

I Modelling of the data acquisition process by a quasilinear
relationship with measurement matrix

A(x)l ,i :=

√
π

2d + 1

d∑
j=−d

ωl

(
fj

d∑
k=1

xk sin((2π
j

d
+θ)k)

)
fj sin((2π

j

d
+θ)i)
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Breaking the symmetry by limb darkening

Asymmetry introduced by limb darkening
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Second application example: phase retrieval
Reconstruct x ∈ RN from measurements y =

(
|〈bi , x〉|2

)m
i=1

, where

{bi : i = 1, . . .m} ⊂ RN is a set of measurement vectors.

Application fields:

I X-ray
I crystallography
I electron microscopy
I coherence theory
I diffraction imaging and optics
I speach enhancement



Some literature and our view

I Fienup (1978, 1982), Hayes (1982), Bates, Mnyama (1986),
Liu (1990)

I Balan, Casazza, and Edidin (2006)

I Candes, Strohmer, Voroninski (2013) and Li, Voroninski
(2013)

I Eldar, Mendelson (2012) and Schechtman, Beck, Eldar (2013)

I Goldfarb, Ma (2010)

I Ohlsson et al. (2011-)

Recast the problem in a quasi-linear model with measurement
matrix

A(x) =

x∗B1
...

x∗Bm

 ,

where B1 = b1b∗1, · · · ,Bm = bmb∗m.
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A class of fast decaying signals
The nonincreasing rearrangement of x ∈ Rd is defined as

r(x) = (|xj1 |, . . . , |xjd |)
>, where |xji | ≥ |xji+1

|, for i = 1, . . . ,N−1.

For 0 < κ < 1, we define the class of κ-rapidly decaying vectors in
RN by

Dκ = {x ∈ Rd : rj+1(x) ≤ κrj(x), for j = 1, . . . ,N − 1}.

Given x ∈ RN , the vector x{j} ∈ RN is the best j-sparse
approximation of x , i.e., it consists of the j largest entries of x in
absolute value and zeros elsewhere.
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`p-greedy solver

Greedy algorithm:
Input: A : RN → Rm×N nonlinear, y ∈ Rm

Initialize x (0) = 0 ∈ RM , Λ(0) = ∅
for j = 1, 2, . . . until some stopping criterion is met do

for l 6∈ Λ(j−1) do
Λ(j−1,l) := Λ(j−1) ∪ {l}

x (j ,l) := arg min
{x :supp(x)⊂Λ(j−1,l)}

∥∥A(x)x − y
∥∥
`p

end
Find index that minimizes the error:

lj := arg min
l

∥∥A(x (j ,l))x (j ,l) − y
∥∥
`p

Update: x (j) := x (j ,lj ), Λ(j) := Λ(j−1,lj )

end
Output: x (1), x (2), . . .



Recovery result based on a generalized RIP I

Theorem (Ehler, F., Sigl)
Let b = A(x̂)x̂ + e, where x̂ ∈ RN is the signal to be recovered and e ∈ Rm is a
noise term. Suppose further that 1 ≤ k ≤ N, rk(x̂) 6= 0, and 1 ≤ p <∞. If the
following conditions hold,

(i) there are αk , βk > 0 such that, for all k-sparse z ∈ RN ,

αk‖x̂{k} − z‖ ≤ ‖A(x̂{k})x̂{k} − A(z)z‖`p ≤ βk‖x̂{k} − z‖,

(ii) x̂ ∈ Dκ such that κ < α̃k√
α̃2

k
+(βk +2Lk )2

, where 0 < α̃k ≤ αk − 2‖e‖`p/rk(x̂)

and Lk ≥ 0 with ‖A(x̂)x̂ − A(x̂{k})x̂{k}‖`p ≤ Lk‖x̂ − x̂{k}‖,

then the `p-greedy Algorithm yields a sequence (x (j))k
j=1 satisfying

supp(x (j)) = supp(x̂{j}) and

‖x (j) − x̂‖ ≤ ‖e‖`p/αk + κj r1(x̂)
√

2

„
1 +

βk + 2Lk

αk

«
.

If x̂ is k-sparse, then ‖x (k) − x̂‖ ≤ ‖e‖`p/αk .



Application to 2D star oscillation retrieval

Iterative recovery by the greedy algorithm



RIP fails for phase retrieval measurements!

(a) k = 2

(b) k = 3



RIP fails for phase retrieval measurements!

The right term in the RIP is not anymore ‖x − z‖`2 but

‖xx∗ − zz∗‖HS ≤ ‖x − z‖‖x + z‖ ≤
√

2‖xx∗ − zz∗‖HS .



Recovery result based on a generalized RIP II

Theorem (Ehler, F., Sigl)
Let y = A(x̂)x̂ + e, where x̂ ∈ RN is the signal to be recovered and e ∈ Rm is a
noise term. Suppose further that 1 ≤ k ≤ N, rk(x̂) 6= 0, and 1 ≤ p <∞. If the
following conditions are satisfied,

(i) there are constants αk , βk > 0, such that, for all k-sparse z ∈ RN ,

αk‖x̂{k}x̂∗{k}−zz∗‖HS ≤ ‖A(x̂{k})x̂{k}−A(z)z‖`p ≤ βk‖x̂{k}x̂∗{k}−zz∗‖HS ,

(ii) x̂ ∈ Dκ with κ < α̃k√
α̃2

k
+2(βk +2Lk )2

, where 0 < α̃k ≤ αk − 2‖e‖`p/rk(x̂) and

Lk ≥ 0 with ‖A(x̂)x̂ − A(x̂{k})x̂{k}‖`p ≤ Lk‖x̂ x̂∗ − x̂{k}x̂
∗
{k}‖HS ,

then the `p-greedy Algorithm yields a sequence (x (j))k
j=1 satisfying

supp(x (j)) = supp(x̂{j}) and

‖x (j)x (j)∗ − x̂ x̂∗‖HS ≤ ‖e‖`p/αk + κj r1(x̂)
√

3(1 +
βk + 2Lk

αk
).

If x̂ is k-sparse, then ‖x (k)x (k)∗ − x̂ x̂∗‖HS ≤ ‖e‖`p/αk .



RIP verified probabilistically: complex random
measurement vectors

Theorem (Ehler, F., Sigl)

If {bi : i = 1, . . . ,m} are independent uniformly distributed vectors
on the unit sphere, then there is a constant α > 0 such that, for all
k-sparse x , z ∈ CN and m ≥ c1k log(eN/k),

m∑
i=1

∣∣|〈bi , x〉|2 − |〈bi , z〉|2
∣∣ ≥ αm‖xx∗ − zz∗‖HS

with probability of failure at most e−mc2 .

Extension of results of Eldar and Mendelson (2012) for the real case ...
First one uses results from Candes, Strohmer, Voroninski (2013) to show
that for fixed x , z ∈ Rd , there are c1, c > 0 such that, for all t > 0,

m∑
i=1

∣∣|〈bi , x〉|2 − |〈bi , z〉|2
∣∣ ≥ 1/

√
(2)(c1 − t)m‖xx∗ − zz∗‖HS

with probability of failure at most 2e−mct2 ⇒ union bound.
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k-sparse x , z ∈ CN and m ≥ c1k log(eN/k),

m∑
i=1

∣∣|〈bi , x〉|2 − |〈bi , z〉|2
∣∣ ≥ αm‖xx∗ − zz∗‖HS

with probability of failure at most e−mc2 .

Extension of results of Eldar and Mendelson (2012) for the real case ...
First one uses results from Candes, Strohmer, Voroninski (2013) to show
that for fixed x , z ∈ Rd , there are c1, c > 0 such that, for all t > 0,

m∑
i=1

∣∣|〈bi , x〉|2 − |〈bi , z〉|2
∣∣ ≥ 1/

√
(2)(c1 − t)m‖xx∗ − zz∗‖HS

with probability of failure at most 2e−mct2 ⇒ union bound.



Discrepancy in `1-norm :-(

As a consequence we have that

αk‖x̂{k}x̂∗{k}−zz∗‖HS ≤ ‖A(x̂{k})x̂{k}−A(z)z‖`p ≤ βk‖x̂{k}x̂∗{k}−zz∗‖HS ,

holds for p = 1 with high probability!

A proof for p = 2 is still open!
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`p-greedy solver

Greedy algorithm:
Input: A : RN → Rm×N nonlinear, y ∈ Rm

Initialize x (0) = 0 ∈ RM , Λ(0) = ∅
for j = 1, 2, . . . until some stopping criterion is met do

for l 6∈ Λ(j−1) do
Λ(j−1,l) := Λ(j−1) ∪ {l}

x (j ,l) := arg min
{x :supp(x)⊂Λ(j−1,l)}

∥∥A(x)x − y
∥∥
`p

end
Find index that minimizes the error:

lj := arg min
l

∥∥A(x (j ,l))x (j ,l) − y
∥∥
`p

Update: x (j) := x (j ,lj ), Λ(j) := Λ(j−1,lj )

end
Output: x (1), x (2), . . .



Iterative global optimizations

At each iteration j one needs to perform a global nonconvex
optimization in dimension j

⇒ complexity explosion?

I for p > 1 and for A(·) sufficiently smooth, at the j th step, one
can use Newton methods locally around previously found
approximations x (j);

I for p = 1 one needs to apply smoothing: for instance using an
iteratively reweighted least squares, whose iterations are
solved by Newton methods.
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Phase retrieval, p = 2, and fast algorithms

Assume we were allowed to consider p = 2 in the phase retrieval
problem (so far theoretically only p = 1, despite numerical
evidences!) and that x (j) =

∑j
n=1 αlneln .

Although not fully
equivalent to

x (j+1,l) := arg min
{x :supp(x)⊂Λ(j,l)}

∥∥A(x)x − y
∥∥
`2

we consider multiple optimizations for l /∈ Λ(l)

arg min
α∈R

 m∑
i=1

( j∑
n=1

αln(bi )ln + α · (bi )l

)2

− yi

2
 .

Easily solvable as fourth degree polynomial optimizations in the
sole variable α to find the optimal index lj+1. Then one applies a
Newton method starting from x̂ (j+1) = x (j) + α̂lj+1

elj+1
to steer

locally the guess to the optimal x (j+1).
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Conclusion about this greedy strategy

I It can be very competitive with respect to semi-definite
programs on matrices;

I It needs careful implementation of the global optimizations at
each step: Newton recommended;

I It does not work for phase retrieval for the Fourier basis; one
needs a “group greedy strategy”, see Schechtman, Beck, Eldar
(2013) for a very efficient algorithm (no guarantees though!)
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What about the popular `1-minimization?

We consider the problem

arg min ‖x‖`1 subject to A(x)x = y .

In the noise case it is also standard to work with an additional
relaxation of it and instead solve for x̂α given by

x̂α := arg min
x∈RN

Jα(x), where Jα(x) := ‖A(x)x−y‖2
`2

+α‖x‖`1 ,

where α > 0 is sometimes called the relaxation parameter.



Existence result
We define the map

Sα : Rd → Rd , x 7→ Sα(x) := arg min
z∈RN

‖A(x)z − y‖2 + α‖z‖`1 .

Theorem (Ehler, F., Sigl)
Given y ∈ Rm, fix α > 0 and c1, c2, c3, γ > 0 are such that, for all x , z ∈ RN ,

(i) ‖A(x)‖2 ≤ c1,

(ii) there is zx ∈ Rd such that ‖zx‖`1 ≤ c2‖y‖ and A(x)zx = y,

(iii) ‖A(x)− A(z)‖2 ≤ c3‖x − z‖,

(iv) if z is 4
α2 (c1 + c2 + c2

1 c2)2‖y‖2-sparse, then

(1− γ)‖z‖2 ≤ ‖A(x)z‖2 ≤ (1 + γ)‖z‖2,

(v) the constants satisfy γ < 1− (1 + 2c1c2)c3‖y‖,

then Sα is a bounded contraction, so that x
(j+1)
α := Sα(x

(j)
α ) converges

towards a point xα satisfying

xα = arg min
z∈RN

‖A(xα)z − y‖2 + α‖z‖`1 .
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Iterative soft-thresholding algorithm

We introduce the soft-thresholding operator Sα : Rd → Rd ,
x 7→ Sα(x) given by

(Sα(x))i =


xi − α/2, α/2 ≤ xi

0, −α/2 < xi < α/2

xi + α/2, xi ≤ −α/2

,

and the algorithm:
Quasi-linear iterative soft-thresholding:
Input: A : RN → Rm×N , y ∈ Rm

Initialize x (0) as an arbitrary vector
for j = 1, 2, . . . until some stopping criterion is met do

x (j+1)
α = Sα

(
(I − A(x (j)

α )∗A(x (j)
α ))x (j)

α + A(x (j)
α )∗y

)
end
Output: x

(1)
α , x

(2)
α , . . .



Convergence

Theorem (Ehler, F., Sigl)
Suppose that the assumptions of previuos Theorem are satisfied and let xα be
the k-sparse fixed point. We define ẑα := (I − A(xα)∗A(xα))xα) + A(xα)∗y

and K = 4‖xα‖2

α2 + 4c
α

C, where C = sup1≤l<d(
√

l + 1‖ẑα − (ẑα){l}‖`2 ) and
c > 0 sufficiently large. Additionally assume that

(a) there is 0 < γ̃ < γ such that, for all K + k-sparse vectors z ∈ RN ,

(1− γ̃)‖z‖2 ≤ ‖A(xα)z‖2 ≤ (1 + γ̃)‖z‖2,

(b) the constants satisfy γ̃ + (1 + 4c1c2)c3‖b‖ < γ.

Then by using x
(0)
α = 0 as initial vector, the iterative Algorithm converges

towards xα with

‖x (j)
α − xα‖ ≤ γ j‖xα‖, j = 0, 1, 2, . . . .



(c) IST (d) IHT

Figure: Recovery rates for iterative hard- and soft-thresholding used with
the measurements A(x) = A1 + f (‖x − x0‖)× I with N = 80, m = 20,
A1 having i.i.d. Gaussian entries. The sparsity parameter k runs on the
horizontal axis from 1 to 10, the norm of x̂ runs on the vertical axis from
0.01 to 1. As expected, the recovery rates decrease with growing k.
Consistent with the theory, we also observe decreased recovery rates for
larger signal norms with soft-thresholding. Hard-thresholding appears
only successful for these parameters when k = 1, but throughout the
entire range of considered signal norms.



Conclusion

I We illustrated the classical theory of
compressed sensing and some of its
related algorithms

I We motivated the extension to
quasi-linear measurements by two
relevant real-life applications

I We introduced and analyze a greedy
algorithm to solve quasi-linear
compressed sensing problems

I We introduced and analyze a iterative
soft-thresholding algorithm to solve
quasi-linear compressed sensing
problems
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I WWW: http://www-m15.ma.tum.de/
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I Martin Ehler, Massimo Fornasier, Juliane Sigl, Quasi-linear

compressed sensing, submitted to Multiscale Modeling and
Simulation, July 2013, pp. 23

I Juliane Sigl, Quasi-linear compressed sensing, Master Thesis,
Technical University of Munich, March 2013
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