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Abstract

Conventional Compressive sensing (CS) theory relies on data
representation in the form of vectors.

Many data types in various applications such as color imaging, video
sequences, and multi-sensor networks, are intrinsically represented by
higher-order tensors.

We propose Generalized Tensor Compressive Sensing (GTCS)–a
unified framework for compressive sensing of higher-order spare
tensors. Similar to Caiafa-Cichocki 2012-13

GTCS offers an efficient means for representation of multidimensional
data by providing simultaneous acquisition and compression from all
tensor modes.

We compare the performance of the proposed method with Kronecker
compressive sensing (KCS, Duarte-Baraniuk), and multi-way
compressive sensing (MWCS, Sidiropoulus-Kyrillidis). We
demonstrate experimentally that GTCS outperforms KCS and MWCS
in terms of both accuracy and speed.
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Compressive sensing of vectors: Noiseless

Σs,N is the set of all x ∈ RN with at most s nonzero coordinates

Sparse version of CS: Given x ∈ Σs,N compress it to a short vector

y = (y1, . . . , yM)>,M << N and send it to receiver

receiver gets y, possible with noise, decodes to x

Compressible version: coordinates of x have fast power law decay

Solution: y = Ax, A ∈ RM×N a specially chosen matrix, e.g. s-n. p.

Sparse noiseless recovery: x = arg min{‖z‖1,Az = y}

A has s-null property if for each Aw = 0,w 6= 0, ‖w‖1 > 2‖wS‖1
S ⊂ [N] := {1, . . . ,N}, |S| = s,

wS has zero coordinates outside S and coincides with w on S

Recovery condition M ≥ cs log(N/s), noiseless reconstruction O(N3)
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Compressive sensing of vectors with noise

A ∈ RM×N satisfies restricted isometry property (RIPs):

(1− δs)‖x‖2 ≤ ‖Ax‖2 ≤ (1 + δs)‖x‖2

for all x ∈ Σs,N and for some δs ∈ (0,1)

Recover with noise: x̂ = arg min{‖z‖1, ‖Az− y}‖2 ≤ ε}

reconstruction O(N3)

THM: Assume that A satisfies RIP2s property with δ2s ∈ (0,
√

2− 1).

Let x ∈ Σs,N ,y = Ax + e, ‖e‖2 ≤ ε. Then

‖x̂− x‖2 ≤ C2ε, where C2 =
4
√

1+δ2s

1−(1+
√

2)δ2s
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Compressive sensing of matrices I - noiseless

X = [xij ] = [x1 . . . xN1 ]> ∈ RN1×N2 is s-sparse.

Y = U1XU>2 = [y1, . . . ,yM2 ] ∈ RM1×M2 , U1 ∈ RM1×N1 ,U2 = RM2×N2

Mi ≥ cs log(Ni/s) and Ui has s-null property for i = 1,2

Thm M: X is determined from noiseless Y .

Algo 1: Z = [z1 . . . zM2 ] = XU>2 ∈ RN1×M2

each zi a linear combination of columns of X hence s-sparse

Y = U1Z = [U1z1, . . . ,U1zM2 ] so yi = U1zi for i ∈ [M2]

Recover each zi to obtain Z

Cost: M2O(N3
1 ) = O((log N2)N3

1 )

Z> = U2X> = [U2x1 . . .U2xN1 ]

Recover each xi from i − th column of Z>

Cost: N1O(N3
2 ) = O(N1N3

2 ), Total cost: O(N1N3
2 + (log N2)N3

1 )
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Compressive sensing of matrices II - noiseless

Algo 2: Decompose Y =
∑r

i=1 uiv>i ,

u1, . . . ,ur , v>1 , . . . ,v
>
r span column and row spaces of Y respectively

for example a rank decomposition of Y : r = rank Y

Claim ui = U1ai ,vj = U2bj , ai ,bj are s-sparse, i , j ∈ [r ].

Find ai ,bj . Then X =
∑r

i=1 aib>i
Explanation: Each vector in column and row spaces of X is s-sparse:

Range(Y ) = U1Range(X ), Range(Y>) = U2Range(X>)

Cost: Rank decomposition: O(rM1M2) using Gauss elimination or SVD

Note: rank Y ≤ rank X ≤ s

Reconstructions of ai ,bj : O(r(N3
1 + N3

2 ))

Reconstruction of X : O(rs2)

Maximal cost: O(s max(N1,N2)3)
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Why algorithm 2 works

Claim 1: Every vector in Range X and Range X> is s-sparse.

Claim 2: Let X1 =
∑r

i=1 aib>i . Then X = X1.

Prf: Assume 0 6= X − X1 =
∑k

j=1 cjd>j , c1, . . . ,ck & d1, . . . ,dk lin. ind.

as Range X1 ⊂Range X , Range X>1 ⊂Range X>

c1, . . . ,ck ∈Range X , d1, . . . ,dk ∈Range X>

Claim: U1c1, . . .U1ck lin.ind..

Suppose 0 =
∑k

j=1 tiU1cj = U1
∑k

j=1 tjcj .

As c :=
∑k

j=1 tjcj ∈ Range X , c is s-sparse.

As U1 has null s-property c = 0⇒ t1 = . . . = tk = 0.

0 = Y − Y = U1(X − X1)U>2 =
∑k

j=1(U1cj)(d>j U>2 )⇒

U2d1 = . . . = U2dk = 0⇒ d1 = . . .dk = 0 as each di is s-sparse

So X − X1 = 0 contradition
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Sum.-Noiseless CS of matrices & vectors as matrices

1. Both algorithms are highly parallelizable

2. Algorithm 2 is faster by factor s min(N1,N2) at least

3. In many instances but not all algorithm 1 performs better.

4. Caveat: the compression is : M1M2 ≥ C2(log N1)(log N2).

5. Converting vector of length N to a matrix

Assuming N1 = Nα,N2 = N1−α

the cost of vector compressing is O(N3)

the cost of algorithm 1 is O((log N)N
9
5 ), α = 3

5

the cost of algorithm 2 is O(sN
3
2 ), α = 1

2 , s = O(log N)(?)

Remark 1: The cost of computing Y from s-sparse X : 2sM1M2

(Decompose X as sum of s standard rank one matrices)
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Compressive sensing of matrices with noise - I

Y = U1XU>2 + E , ‖E‖F ≤ ε

Algo 1: Recover each zi by ẑi = arg min{‖wi‖1, ‖U1wi − ci(Y )}‖2 ≤ ε}

Form Ẑ = [z1 . . . zM2 ] ∈ RN1×m2

‖ci(Ẑ )− ci(XU>2 ‖2 ≤ C2ε (optimistically C2ε√
M

)

‖Ẑ − XU>2 ‖F ≤
√

MC2ε (optimistically C2ε)

Obtain X̂ by recovering each row of X :

b̂i = arg min{‖wi‖1, ‖U2wi − ci(Ẑ>)}‖2 ≤
√

MC2ε}

‖b̂i − ci(X>)‖2 ≤
√

Mε (optimistically ‖b̂i − ci(X>)‖2 ≤ ε

Variation: Estimate s and take best rank s-approximation of Y : Ys

Similarly, after computing Ẑ from Ys replace Ẑ by Zs.

Costlier and no estimates
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Numerical simulations

We experimentally demonstrate the performance of GTCS methods on

sparse and compressible images and video sequences.

Our benchmark algorithm is Duarte-Baraniuk 2010

named Kronecker compressive sensing (KCS)

Another method is multi-way compressed sensing

of Sidoropoulus-Kyrillidis (MWCS) 2012

Our experiments use the `1-minimization solvers of Candes-Romberg.

We set the same threshold to determine the termination of

`1-minimization in all subsequent experiments.

All simulations are executed on a desktop with

2.4 GHz Intel Core i5 CPU and 8GB RAM.

We set Mi = K
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UIC logo

(a) The original
sparse image

(b) GTCS-S recov-
ered image

(c) GTCS-P recov-
ered image

(d) KCS recovered
image

Figure : The original image and the recovered images by GTCS-S (PSNR =
22.28 dB), GTCS-P (PSNR = 23.26 dB) and KCS (PSNR = 22.28 dB) when
K = 38, using 0.35 normalized number of samples.
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PSNR and reconstruction times for UIC logo
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(a) PSNR comparison
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(b) Recovery time comparison

Figure : PSNR and reconstruction time comparison on sparse image.
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Explanation of UIC logo representation I

The original UIC black and white image is of size 64× 64 (N = 4096
pixels). Its columns are 14-sparse and rows are 18-sparse. The image
itself is 178-sparse. For each mode, the randomly constructed
Gaussian matrix U is of size K × 64. So KCS measurement matrix
U ⊗ U is of size K 2 × 4096. The total number of samples is K 2. The

normalized number of samples is K 2

N . In the matrix case, GTCS-P
coincides with MWCS and we simply conduct SVD on the compressed
image in the decomposition stage of GTCS-P. We comprehensively
examine the performance of all the above methods by varying K from
1 to 45.
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Explanation of UIC logo representation II

Figure ?? and ?? compare the peak signal to noise ratio (PSNR)
and the recovery time respectively. Both KCS and GTCS methods
achieve PSNR over 30dB when K = 39. As K increases, GTCS-S
tends to outperform KCS in terms of both accuracy and efficiency.
Although PSNR of GTCS-P is the lowest among the three methods, it
is most time efficient. Moreover, with parallelization of GTCS-P, the
recovery procedure can be further accelerated considerably. The
reconstructed images when K = 38, that is, using 0.35 normalized
number of samples, are shown in Figure ??????. Though
GTCS-P usually recovers much noisier image, it is good at recovering
the non-zero structure of the original image.
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Cameraman simulations I

(a) Cameraman in space domain
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(b) Cameraman in DCT domain

Figure : The original cameraman image (resized to 64 × 64 pixels) in space
domain and DCT domain.
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Cameraman simulations II
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(b) Recovery time comparison

Figure : PSNR and reconstruction time comparison on compressible image.
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Cameraman simulations III

(a) GTCS-S, K = 46,
PSNR = 20.21 dB

(b) GTCS-P/MWCS, K =
46, PSNR = 21.84 dB

(c) KCS, K = 46, PSNR =
21.79 dB

(d) GTCS-S,K = 63,
PSNR = 30.88 dB

(e) GTCS-P/MWCS, K =
63, PSNR = 35.95 dB

(f) KCS, K = 63, PSNR =
33.46 dB

Figure : Reconstructed cameraman images. In this two-dimensional case,
GTCS-P is equivalent to MWCS.
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Cameraman explanations

As shown in Figure ??, the cameraman image is resized to 64× 64
(N = 4096 pixels). The image itself is non-sparse. However, in some
transformed domain, such as discrete cosine transformation (DCT)
domain in this case, the magnitudes of the coefficients decay by power
law in both directions (see Figure ??), thus are compressible. We let
the number of measurements evenly split among the two modes.
Again, in matrix data case, MWCS concurs with GTCS-P. We
exhaustively vary K from 1 to 64.

Figure ?? and ?? compare the PSNR and the recovery time
respectively. Unlike the sparse image case, GTCS-P shows
outstanding performance in comparison with all other methods, in
terms of both accuracy and speed, followed by KCS and then GTCS-S.
The reconstructed images when K = 46, using 0.51 normalized
number of samples and when K = 63, using 0.96 normalized number
of samples are shown in Figure ??.
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Compressive sensing of tensors

M = (M1, . . . ,Md ),N = (N1, . . . ,Nd ) ∈ Nd , J = {j1, . . . , jk} ⊂ [d ]

Tensors: ⊗d
i=1R

Ni = RN1×...×Nd = RN

Contraction of A = [aij1 ,...,ijk
] ∈ ⊗jp∈JRNjp with T = [ti1,...,id ] ∈ RN :

A× T =
∑

ijp∈[Njp ],jp∈J aij1 ,...,ijk
ti1,...,id ∈ ⊗l∈[d ]\JRNl

X = [xi1,...,id ] ∈ RN, U = U1 ⊗ U2 ⊗ . . .⊗ Ud ∈ R(M1,N1,M2,N2,...,Md ,Nd )

Up = [u(p)
ip jp ] ∈ RMp×Np , p ∈ [d ], U Kronecker product of U1, . . . ,Ud .

Y = [yi1,...,id ] = X × U := X ×1 U1 ×2 U2 × . . .×d Ud ∈ RM

yi1,...,ip =
∑

jq∈[Nq ],q∈[d ] xj1,...,jd
∏

q∈[d ] uiq ,jq

Thm X is s-sparse, each Ui has s-null property

then X uniquely recovered from Y.

Algo 1: GTCS-S

Algo 2: GTCS-P
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Algo 1- GTCS-S

Unfold Y in mode 1: Y(1) = U1W1 ∈ RM1×(M2·...·Md ),

W1 := X(1)[⊗2
k=dUk ]> ∈ RN1×(M2·...·Md )

As for matrices recover the M̃2 := M2 · · ·Md columns ofW1 using U1

Complexity: O(M̃2N3
1 ).

Now we need to recover

Y1 := X ×1 I1 ×2 U2 × . . .×d Ud ∈ RN1 ×M2 . . .×Md

Equivalently, recover N1, d − 1 mode tensors in RN2×...×Nd from

RM2×...×Md using d − 1 matrices U2, . . . ,Ud .

Complexity
∑d

i=1 Ñi−1M̃i+1N3
i

Ñ0 = M̃d+1 = 1, Ñi = N1 . . .Ni , M̃i = Mi . . .Md

d = 3: M2M3N3
1 + N1M3N3

2 + N1N2N3
3
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Algo 2- GTCS-P

Unfold X in mode k : X(k) ∈ RNk× N
Nk , N =

∏d
i=1 Ni .

As X is s-sparse rank kX := rank X(k) ≤ s.

Y(k) = UkX(k)[⊗i 6=kUi ]
> ⇒ Range Y(k) ⊂ UkRange X(k), rank Y(k) ≤ s.

X(1) =
∑R1

j=1 uiv>i , u1, . . . ,uR1 spans range of X(1) so R1 ≤ s

Each vi corresponds to Ui ∈ RN2×...Nd which is s-sparse

So (1) X =
∑R

j=1 u1,j ⊗ . . .⊗ ud ,j , R ≤ sd−1

uk ,1, . . . ,uk ,R ∈ RNk span Range X(k) and each is s-sparse

Compute decomposition Y =
∑R

j=1 w1,j ⊗ . . .⊗wd ,j , R ≤ sd−1,

wk ,1, . . . ,wk ,R ∈ RMk span Range Y(k), Compl: O(sd−1 ∏d
i=1 Mi)

Find uk ,j from wk ,j = Ukuk ,j and reconstruct X from (1)

Complexity O(dsd−1 max(N1, . . . ,Nd )3), s = O(log(max(N1, . . . ,Nd )))
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Summary of complexity converting linear data

Ni = Nαi ,Mi = O(log N), αi > 0,
∑d

i=1 αi = 1, s = log N

d = 3

GTCS-S: O((log N)2N
27
19 )

GTCS-P: O((log N)2N)

GTCS-P: O((log N)d−1N
3
d ) for any d .

Warning: the roundoff error in computing parfac decomposition of

Y and then of X increases significantly with d .
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Sparse video representation

We compare the performance of GTCS and KCS on video data. Each

frame of the video sequence is preprocessed to have size 24× 24 and

we choose the first 24 frames. The video data together is represented

by a 24× 24× 24 tensor and has N = 13824 voxels in total. To obtain

a sparse tensor, we manually keep only 6× 6× 6 nonzero entries in

the center of the video tensor data and the rest are set to zero.

The video tensor is 216-sparse and its mode-i fibers are all 6-sparse

i = 1,2,3. The randomly constructed Gaussian measurement matrix

for each mode is now of size K × 24 and the total number of samples is

K 3. The normalized number of samples is K 3

N .

We vary K from 1 to 13.
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PSNR and reconstruction time of sparse video
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(a) PSNR comparison
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(b) Recovery time comparison

Figure : PSNR and reconstruction time comparison on sparse video.
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Reconstruction errors of sparse video
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(a) Reconstruction error of
GTCS-S
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(b) Reconstruction error of
GTCS-P
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(c) Reconstruction error of
KCS

Figure : Visualization of the reconstruction error in the recovered video frame
9 by GTCS-S (PSNR = 130.83 dB), GTCS-P (PSNR = 44.69 dB) and KCS
(PSNR = 106.43 dB) when K = 12, using 0.125 normalized number of
samples.
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Conclusion

Real-world signals as color imaging, video sequences and
multi-sensor networks, are generated by the interaction of multiple
factors or multimedia and can be represented by higher-order tensors.
We propose Generalized Tensor Compressive Sensing (GTCS)-a
unified framework for compressive sensing of sparse higher-order
tensors. We give two reconstruction procedures, a serial method
(GTCS-S) and a parallelizable method (GTCS-P). We compare the
performance of GTCS with KCS and MWCS experimentally on various
types of data including sparse image, compressible image, sparse
video and compressible video. Experimental results show that GTCS
outperforms KCS and MWCS in terms of both accuracy and efficiency.
Compared to KCS, our recovery problems are in terms of each tensor
mode, which is much smaller comparing with the vectorization of all
tensor modes. Unlike MWCS, GTCS manages to get rid of tensor rank
estimation, which considerably reduces the computational complexity
and at the same time improves the reconstruction accuracy.
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