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The Phase Retrieval Problem



Motivation: Far-Field Optics

I Illuminate small object with
coherent light. . .

I . . . at screen:

observed intenstity

'
∣∣Fourier transform of object

∣∣2.

Q: How does one recover the object from screen intensities?
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Motivation: Phase Retrieval

Discrete model:

I Unknown x ∈ Cn.

I Measurement vectors A1, . . . ,Ak ,
(represented as rows of sensing matrix A).

The general phase retrieval problem:

Recover x from quadratic measurements: yi = |Aix |2.

I {Ai} a basis clearly not enough

I Small number of bases seems to
work

I Practice: 2-D FT after masks
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Problem has long history

Applications, geometry, algorithms studied since ’70s. . .

Solution set is algebraic variety:

V :=
{

x
∣∣ (|Aix |2 − yi ) = 0 ∀ i

}
.

⇒ algebraic geometry seems right language.

One central result in this language:

I O(4n) “generic” measurements required and sufficient
[Mixon, Voroninski, Wolf, . . . ; past few years]
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From AG to convex optimization

Problems with AG:

I Ill-equipped to handle approximations, noise, uncertainties.

I Doesn’t naturally yield efficient algorithms.

I Difficult to handle specific, non-generic cases.

New approach in 2012: PhaseLift, based on convex optimization
[Candès, Strohmer, Voroniski].
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Lift it. . .

“Lift” quadratic equation to matrix version [Balan et al.]:

yi = |Aix |2 = tr(AiA
∗
i )xx∗.

Then recovery equivalent to affinely constrained rank-minimization:

min rank X

s.t. X = X †

tr(AiA
∗
i )X = yi .

(X = xx∗ is solution).

I But these are NP-hard in general.

I Any hope?

Well. . . rewind to 2009 & recall low-rank recovery results . . .
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Low-rank matrix recovery via
convex optimization



Matrix version of compressed sensing
I Consider hermitian (n × n)-matrix X of

rank r � n:

X =
r∑

i=1

viv
∗
i .

I Described by ' (r × n)� n2 parameters.

I Now choose (overcomplete) matrix basis
{Bi}n

2

i=1

X =
n2∑
i=1

ciBi .

Problem statement:
(Low-rank matrix recovery). Can one recover a rank-r matrix
X from only O(r n) randomly chosen expansion coefficients
ci w.r.t. some fixed matrix basis?

(matrix or basis-independent or non-commutative version of c.s.)
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Incoherences
I Some pairs of bases and matrices don’t work:

0 0 . . . 0 1
0 0 . . . 0 0
...

...
...

...
0 0 . . . 0 0



I Introduce “well-posedness parameter” µ:

| tr BiX |2 ' µ
r

n
.

Two ways to guarantee well-posed problems:

I Restrict basis:
I demand Bi to have “small operator norm”; akin to Fourier

basis in c.s.
I Unitary operator bases optimal [DG09]

I Restrict signals:
I demand singular vectors of X be “spread out”

[Candès et al. 09].
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General Low-Rank Recovery
Theorem [Candès, Recht, Tao. . . ; DG ’09]

I Any rank-r matrix X can be exactly recovered (w.h.p.)
from rnµ (log2 n) randomly chosen expansion
coefficients

ck = tr BkX .

I The unknown matrix X minimizes the nuclear norm in
the affine space defined by the known coefficients.



. . . back to phase retrieval.



PhaseLift

min ‖X‖∗
s.t. X = X †

tr(AiA
∗
i )X = yi .

Neither condition for µ small works for phase retrieval:

I Bi = AiA
∗
i are rank-1: worst case.

I X = xx∗ with x highly structured: worst case.

First results [Candès, Strohmer, Voroninski, Li ’12]:

I Assume Gaussian measurements, Ai ,j ∼ N (0, 1).

I ⇒ O(n) samples guarantee recovery.
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Great. But.

min ‖X‖∗
s.t. X = X †

tr(AiA
∗
i )X = yi .

Achieved – Put phase retrieval into convex optimization realm:

I Rigorous recovery guarantees

I Formulation is robust against noise

I Efficient algorithms (at least in computer science sense)

To be done – Gaussian measurements not completely satisfactory:

I Practically: doesn’t cover common use cases

I Conceptually: unclear which properties “make it work”

⇒ derandomize these results!
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Two simultaneous pre-prints arXiv:1310

[DG, Richard Küng, Felix Krahmer]:

I Conceptual approach: find right “well-posedness parameter”

I Quite general, but rather abstract, condition

I Based on “spherical designs”

[Emmanuel Candès, Xiadong Li, Mahdi Soltanolkotabi]:

I Practical point of view

I Solution for masked Fourier case

(Technical parts of papers surprisingly similar).
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Spherical designs



Painless motivation for spherical designs

Brainstorm about properties of measurement vectors Ai :

I {Ai} ortho-normal basis clearly not enough

I It is clear from
yi = tr(AiA

∗
i )xx∗

that reconstruction possible if {AiA
∗
i } form matrix basis

I (That observation is Balan’s painless method)

Hence:
What is condition on Ai such that outer products AiA

∗
i form

ortho-normal matrix basis?
(their traceless part a tight frame in space of traceless matrices).
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Painless motivation for spherical designs
A set of vectors Ai is. . .

I . . . tight frame iff

1 ∝
∑
i

AiA
∗
i ∝

∫
Sn−1

AA∗ dA,

i.e. if it agrees with Haar measure to 2nd moments.

I . . . such that {AiA
∗
i } is tight frame in matrix space iff

PSym2 ∝
∑
i

AiA
∗
i ⊗ AiA

∗
i ∝

∫
Sn−1

AA∗ ⊗ AA∗dA,

i.e. if it agrees with Haar measure to 4th moments.
I

. . . a k-design iff

PSymk ∝
∑
i

(
AiA

∗
i

)⊗k ∝ ∫
Sn−1

(
AA∗

)⊗k
dA,

i.e. if it agrees with Haar to moments of order 2k .
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2-dimensional example

Map C2 to R3 by:

(sin θ, e iφ cos θ)→ (sin θ cosφ, sin θ sinφ, cos θ).

Then:

I ortho-normal basis is 1-design

I set of equi-angular lines is 2-design

I set of “mutually unbiased bases” is
3-design
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Spherical Designs: Summary

Spherical k-designs:

I Provide extrapolation between “basis” and “Haar random”

I Contain information about moments up to order 2k

I Appear naturally in Balan’s painless phase retrieval scheme

Some facts:

I Efficient, randomized constructions for any order

I Explicit construction for any dimension up to order 3

I Cardinality: O(n2k)
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Basic philosophy:

Use “degree of agreement with Haar measure” as “well-
posedness” parameter.



Results

Basic philosophy:

Use “degree of agreement with Haar measure” as “well-
posedness” parameter.

Theorem 1 [DG, Küng, Krahmer]
PhaseLift works from random subset of k-design of size

O
(
d1+2/k log2 d

)
.

I Non-trivial for k ≥ 3

I Tight if k = 2 log n

I Conjecture: O(n polylog(n)) possible for k ≥ 3.



Results

Basic philosophy:

Use “degree of agreement with Haar measure” as “well-
posedness” parameter.

Theorem 2 [DG, Küng, Krahmer] Conversely, for k = 2,
phase retrieval from sub-quadratic number of measurements
impossible.

I I.e. subsampling from Balan-type ensemble impossible.



Summary

We have. . .

I . . . constructed a partial derandomization of PhaseLift,

I . . . pointed to spherical designs as general-purpose
derandomization tools for structured signal recovery schemes.
[See also M. Fickus talk (“shockingly bad” in his context)]



Thank you for your attention!

David Gross
University of Freiburg

TU Berlin
December 2013


