A Partial Derandomization of Phase Retrieval via PhaseLift

David Gross
Richard Küng (Freiburg)

Felix Krahmer (Göttingen)

TU Berlin
December 2013
[Building on, and evolving with, work by
Candès, Strohmer, Voroninski, Li, Soltanolkotabi]

Outline

- Motivation
- Low-rank recovery
- Spherical Designs
- Results.

The Phase Retrieval Problem

Motivation: Far-Field Optics

- Illuminate small object with coherent light. . .
- ... at screen:
observed intenstity
$\simeq \mid$ Fourier transform of object $\left.\right|^{2}$.

Motivation: Far-Field Optics

- Illuminate small object with coherent light. . .
- . . . at screen:
observed intenstity
$\simeq \mid$ Fourier transform of object $\left.\right|^{2}$.

Q: How does one recover the object from screen intensities?

Motivation: Phase Retrieval

Discrete model:

- Unknown $x \in \mathbb{C}^{n}$.
- Measurement vectors A_{1}, \ldots, A_{k}, (represented as rows of sensing matrix A).

Motivation: Phase Retrieval

Discrete model:

- Unknown $x \in \mathbb{C}^{n}$.
- Measurement vectors A_{1}, \ldots, A_{k}, (represented as rows of sensing matrix A).

The general phase retrieval problem: Recover x from quadratic measurements: $y_{i}=\left|A_{i} x\right|^{2}$.

Motivation: Phase Retrieval

Discrete model:

- Unknown $x \in \mathbb{C}^{n}$.
- Measurement vectors A_{1}, \ldots, A_{k}, (represented as rows of sensing matrix A).

The general phase retrieval problem:
Recover x from quadratic measurements: $y_{i}=\left|A_{i} x\right|^{2}$.
diffraction pattern

- $\left\{A_{i}\right\}$ a basis clearly not enough
- Small number of bases seems to work
- Practice: 2-D FT after masks

Problem has long history

Applications, geometry, algorithms studied since '70s...

Solution set is algebraic variety:

$$
V:=\left\{x \mid\left(\left|A_{i} x\right|^{2}-y_{i}\right)=0 \forall i\right\} .
$$

\Rightarrow algebraic geometry seems right language.

Problem has long history

Applications, geometry, algorithms studied since '70s...

Solution set is algebraic variety:

$$
V:=\left\{x \mid\left(\left|A_{i} x\right|^{2}-y_{i}\right)=0 \forall i\right\}
$$

\Rightarrow algebraic geometry seems right language.

One central result in this language:

- $O(4 n)$ "generic" measurements required and sufficient [Mixon, Voroninski, Wolf, ... ; past few years]

From AG to convex optimization

Problems with AG:

- III-equipped to handle approximations, noise, uncertainties.
- Doesn't naturally yield efficient algorithms.
- Difficult to handle specific, non-generic cases.

From AG to convex optimization

Problems with AG:

- III-equipped to handle approximations, noise, uncertainties.
- Doesn't naturally yield efficient algorithms.
- Difficult to handle specific, non-generic cases.

New approach in 2012: PhaseLift, based on convex optimization [Candès, Strohmer, Voroniski].

Lift it. . .

"Lift" quadratic equation to matrix version [Balan et al.]:

$$
y_{i}=\left|A_{i} x\right|^{2}=\operatorname{tr}\left(A_{i} A_{i}^{*}\right) x x^{*}
$$

Lift it. . .

"Lift" quadratic equation to matrix version [Balan et al.]:

$$
y_{i}=\left|A_{i} x\right|^{2}=\operatorname{tr}\left(A_{i} A_{i}^{*}\right) x x^{*}
$$

Then recovery equivalent to affinely constrained rank-minimization:

$$
\begin{array}{ll}
& \min \operatorname{rank} X \\
\text { s.t. } & X=X^{\dagger} \\
& \operatorname{tr}\left(A_{i} A_{i}^{*}\right) X=y_{i}
\end{array}
$$

($X=x x^{*}$ is solution).

Lift it. . .

"Lift" quadratic equation to matrix version [Balan et al.]:

$$
y_{i}=\left|A_{i} x\right|^{2}=\operatorname{tr}\left(A_{i} A_{i}^{*}\right) x x^{*}
$$

Then recovery equivalent to affinely constrained rank-minimization:

$$
\begin{array}{ll}
& \min \operatorname{rank} X \\
\text { s.t. } & X=X^{\dagger} \\
& \operatorname{tr}\left(A_{i} A_{i}^{*}\right) X=y_{i}
\end{array}
$$

($X=x x^{*}$ is solution).

- But these are NP-hard in general.
- Any hope?

Lift it. . .

"Lift" quadratic equation to matrix version [Balan et al.]:

$$
y_{i}=\left|A_{i} x\right|^{2}=\operatorname{tr}\left(A_{i} A_{i}^{*}\right) x x^{*}
$$

Then recovery equivalent to affinely constrained rank-minimization:

$$
\begin{array}{ll}
& \min \operatorname{rank} X \\
\text { s.t. } & X=X^{\dagger} \\
& \operatorname{tr}\left(A_{i} A_{i}^{*}\right) X=y_{i} .
\end{array}
$$

($X=x x^{*}$ is solution).

- But these are NP-hard in general.
- Any hope?

Well. . . rewind to 2009 \& recall low-rank recovery results ...

Low-rank matrix recovery via convex optimization

Matrix version of compressed sensing

- Consider hermitian $(n \times n)$-matrix X of rank $r \ll n$:

$$
X=\sum_{i=1}^{r} v_{i} v_{i}^{*}
$$

Matrix version of compressed sensing

- Consider hermitian $(n \times n)$-matrix X of rank $r \ll n$:

$$
X=\sum_{i=1}^{r} v_{i} v_{i}^{*}
$$

- Described by $\simeq(r \times n) \ll n^{2}$ parameters.

Matrix version of compressed sensing

- Consider hermitian $(n \times n)$-matrix X of rank $r \ll n$:

$$
X=\sum_{i=1}^{r} v_{i} v_{i}^{*}
$$

- Described by $\simeq(r \times n) \ll n^{2}$ parameters.
- Now choose (overcomplete) matrix basis $\left\{B_{i}\right\}_{i=1}^{n^{2}}$

$$
X=\sum_{i=1}^{n^{2}} c_{i} B_{i}
$$

Matrix version of compressed sensing

- Consider hermitian $(n \times n)$-matrix X of rank $r \ll n$:

$$
X=\sum_{i=1}^{r} v_{i} v_{i}^{*}
$$

- Described by $\simeq(r \times n) \ll n^{2}$ parameters.
- Now choose (overcomplete) matrix basis $\left\{B_{i}\right\}_{i=1}^{n^{2}}$

$$
X=\sum_{i=1}^{n^{2}} c_{i} B_{i}
$$

Problem statement:
(Low-rank matrix recovery). Can one recover a rank- r matrix X from only $O(r n)$ randomly chosen expansion coefficients c_{i} w.r.t. some fixed matrix basis?
(matrix or basis-independent or non-commutative version of c.s.)

Incoherences

- Some pairs of bases and matrices don't work:

$$
\left[\begin{array}{ccccc}
0 & 0 & \ldots & 0 & 1 \\
0 & 0 & \ldots & 0 & 0 \\
\vdots & \vdots & & \vdots & \vdots \\
0 & 0 & \ldots & 0 & 0
\end{array}\right]
$$

Incoherences

- Some pairs of bases and matrices don't work:

$$
\left[\begin{array}{ccccc}
0 & 0 & \ldots & 0 & 1 \\
0 & 0 & \ldots & 0 & 0 \\
\vdots & \vdots & & \vdots & \vdots \\
0 & 0 & \ldots & 0 & 0
\end{array}\right]
$$

- Introduce "well-posedness parameter" μ :

$$
\left|\operatorname{tr} B_{i} X\right|^{2} \simeq \mu \frac{r}{n} .
$$

Two ways to guarantee well-posed problems:

Incoherences

- Some pairs of bases and matrices don't work:

$$
\left[\begin{array}{ccccc}
0 & 0 & \ldots & 0 & 1 \\
0 & 0 & \ldots & 0 & 0 \\
\vdots & \vdots & & \vdots & \vdots \\
0 & 0 & \ldots & 0 & 0
\end{array}\right]
$$

- Introduce "well-posedness parameter" μ :

$$
\left|\operatorname{tr} B_{i} X\right|^{2} \simeq \mu \frac{r}{n} .
$$

Two ways to guarantee well-posed problems:

- Restrict basis:
- demand B_{i} to have "small operator norm"; akin to Fourier basis in c.s.
- Unitary operator bases optimal [DG09]

Incoherences

- Some pairs of bases and matrices don't work:

$$
\left[\begin{array}{ccccc}
0 & 0 & \ldots & 0 & 1 \\
0 & 0 & \ldots & 0 & 0 \\
\vdots & \vdots & & \vdots & \vdots \\
0 & 0 & \ldots & 0 & 0
\end{array}\right]
$$

- Introduce "well-posedness parameter" μ :

$$
\left|\operatorname{tr} B_{i} X\right|^{2} \simeq \mu \frac{r}{n} .
$$

Two ways to guarantee well-posed problems:

- Restrict basis:
- demand B_{i} to have "small operator norm"; akin to Fourier basis in c.s.
- Unitary operator bases optimal [DG09]
- Restrict signals:
- demand singular vectors of X be "spread out" [Candès et al. 09].

General Low-Rank Recovery

Theorem [Candès, Recht, Tao...; DG '09]

- Any rank- r matrix X can be exactly recovered (w.h.p.) from $r n \mu\left(\log ^{2} n\right)$ randomly chosen expansion coefficients

$$
c_{k}=\operatorname{tr} B_{k} X
$$

- The unknown matrix X minimizes the nuclear norm in the affine space defined by the known coefficients.

... back to phase retrieval.

PhaseLift

$$
\begin{array}{ll}
& \min \|X\|_{*} \\
\text { s.t. } & X=X^{\dagger} \\
& \operatorname{tr}\left(A_{i} A_{i}^{*}\right) X=y_{i} .
\end{array}
$$

Neither condition for μ small works for phase retrieval:

- $B_{i}=A_{i} A_{i}^{*}$ are rank-1: worst case.
- $X=x x^{*}$ with x highly structured: worst case.

PhaseLift

$$
\begin{array}{ll}
& \min \|X\|_{*} \\
\text { s.t. } & X=X^{\dagger} \\
& \operatorname{tr}\left(A_{i} A_{i}^{*}\right) X=y_{i} .
\end{array}
$$

Neither condition for μ small works for phase retrieval:

- $B_{i}=A_{i} A_{i}^{*}$ are rank-1: worst case.
- $X=x x^{*}$ with x highly structured: worst case.

First results [Candès, Strohmer, Voroninski, Li '12]:

- Assume Gaussian measurements, $A_{i, j} \sim \mathcal{N}(0,1)$.
- $\Rightarrow O(n)$ samples guarantee recovery.

Great. But.

$$
\begin{array}{ll}
& \min \|X\|_{*} \\
\text { s.t. } & X=X^{\dagger} \\
& \operatorname{tr}\left(A_{i} A_{i}^{*}\right) X=y_{i} .
\end{array}
$$

Achieved - Put phase retrieval into convex optimization realm:

- Rigorous recovery guarantees
- Formulation is robust against noise
- Efficient algorithms (at least in computer science sense)

Great. But.

$$
\begin{array}{ll}
& \min \|X\|_{*} \\
\text { s.t. } & X=X^{\dagger} \\
& \operatorname{tr}\left(A_{i} A_{i}^{*}\right) X=y_{i} .
\end{array}
$$

Achieved - Put phase retrieval into convex optimization realm:

- Rigorous recovery guarantees
- Formulation is robust against noise
- Efficient algorithms (at least in computer science sense)

To be done - Gaussian measurements not completely satisfactory:

- Practically: doesn't cover common use cases
- Conceptually: unclear which properties "make it work"
\Rightarrow derandomize these results!

Two simultaneous pre-prints arXiv:1310

[DG, Richard Küng, Felix Krahmer]:

- Conceptual approach: find right "well-posedness parameter"
- Quite general, but rather abstract, condition
- Based on "spherical designs"
[Emmanuel Candès, Xiadong Li, Mahdi Soltanolkotabi]:
- Practical point of view
- Solution for masked Fourier case

Two simultaneous pre-prints arXiv:1310

[DG, Richard Küng, Felix Krahmer]:

- Conceptual approach: find right "well-posedness parameter"
- Quite general, but rather abstract, condition
- Based on "spherical designs"
[Emmanuel Candès, Xiadong Li, Mahdi Soltanolkotabi]:
- Practical point of view
- Solution for masked Fourier case
(Technical parts of papers surprisingly similar).

Spherical designs

Painless motivation for spherical designs

Brainstorm about properties of measurement vectors A_{i} :

- $\left\{A_{i}\right\}$ ortho-normal basis clearly not enough

Painless motivation for spherical designs

Brainstorm about properties of measurement vectors A_{i} :

- $\left\{A_{i}\right\}$ ortho-normal basis clearly not enough
- It is clear from

$$
y_{i}=\operatorname{tr}\left(A_{i} A_{i}^{*}\right) x x^{*}
$$

that reconstruction possible if $\left\{A_{i} A_{i}^{*}\right\}$ form matrix basis

- (That observation is Balan's painless method)

Painless motivation for spherical designs

Brainstorm about properties of measurement vectors A_{i} :

- $\left\{A_{i}\right\}$ ortho-normal basis clearly not enough
- It is clear from

$$
y_{i}=\operatorname{tr}\left(A_{i} A_{i}^{*}\right) x x^{*}
$$

that reconstruction possible if $\left\{A_{i} A_{i}^{*}\right\}$ form matrix basis

- (That observation is Balan's painless method)

Hence:
What is condition on A_{i} such that outer products $A_{i} A_{i}^{*}$ form ortho-normal matrix basis?
(their traceless part a tight frame in space of traceless matrices).

Painless motivation for spherical designs

A set of vectors A_{i} is...

- . . . tight frame iff

$$
\mathbb{1} \propto \sum_{i} A_{i} A_{i}^{*} \propto \int_{S^{n-1}} A A^{*} \mathrm{~d} A,
$$

i.e. if it agrees with Haar measure to 2nd moments.

Painless motivation for spherical designs

A set of vectors A_{i} is...

- . . . tight frame iff

$$
\mathbb{1} \propto \sum_{i} A_{i} A_{i}^{*} \propto \int_{S^{n-1}} A A^{*} \mathrm{~d} A
$$

i.e. if it agrees with Haar measure to 2 nd moments.

- ...such that $\left\{A_{i} A_{i}^{*}\right\}$ is tight frame in matrix space iff

$$
P_{\mathrm{Sym}^{2}} \propto \sum_{i} A_{i} A_{i}^{*} \otimes A_{i} A_{i}^{*} \propto \int_{S^{n-1}} A A^{*} \otimes A A^{*} \mathrm{~d} A
$$

i.e. if it agrees with Haar measure to 4th moments.

Painless motivation for spherical designs

A set of vectors A_{i} is...

- . . . tight frame iff

$$
\mathbb{1} \propto \sum_{i} A_{i} A_{i}^{*} \propto \int_{S^{n-1}} A A^{*} \mathrm{~d} A
$$

i.e. if it agrees with Haar measure to 2 nd moments.

- ...such that $\left\{A_{i} A_{i}^{*}\right\}$ is tight frame in matrix space iff

$$
P_{\mathrm{Sym}^{2}} \propto \sum_{i} A_{i} A_{i}^{*} \otimes A_{i} A_{i}^{*} \propto \int_{S^{n-1}} A A^{*} \otimes A A^{*} \mathrm{~d} A
$$

i.e. if it agrees with Haar measure to 4th moments.
.... a k-design iff

$$
P_{\mathrm{Sym}^{k}} \propto \sum_{i}\left(A_{i} A_{i}^{*}\right)^{\otimes k} \propto \int_{S^{n-1}}\left(A A^{*}\right)^{\otimes k} \mathrm{~d} A
$$

i.e. if it agrees with Haar to moments of order $2 k$.

2-dimensional example

$\operatorname{Map} \mathbb{C}^{2}$ to \mathbb{R}^{3} by:

$$
\left(\sin \theta, e^{i \phi} \cos \theta\right) \rightarrow(\sin \theta \cos \phi, \sin \theta \sin \phi, \cos \theta)
$$

2-dimensional example

Map \mathbb{C}^{2} to \mathbb{R}^{3} by:

$$
\left(\sin \theta, e^{i \phi} \cos \theta\right) \rightarrow(\sin \theta \cos \phi, \sin \theta \sin \phi, \cos \theta)
$$

Then:

- ortho-normal basis is 1-design
- set of equi-angular lines is 2-design
- set of "mutually unbiased bases" is 3-design

Spherical Designs: Summary

Spherical k-designs:

- Provide extrapolation between "basis" and "Haar random"
- Contain information about moments up to order $2 k$
- Appear naturally in Balan's painless phase retrieval scheme

Spherical Designs: Summary

Spherical k-designs:

- Provide extrapolation between "basis" and "Haar random"
- Contain information about moments up to order $2 k$
- Appear naturally in Balan's painless phase retrieval scheme

Some facts:

- Efficient, randomized constructions for any order
- Explicit construction for any dimension up to order 3
- Cardinality: $O\left(n^{2 k}\right)$

Results

Results

Basic philosophy:
Use "degree of agreement with Haar measure" as "wellposedness" parameter.

Results

Basic philosophy:
Use "degree of agreement with Haar measure" as "wellposedness" parameter.

Theorem 1 [DG, Küng, Krahmer]
PhaseLift works from random subset of k-design of size

$$
O\left(d^{1+2 / k} \log ^{2} d\right)
$$

- Non-trivial for $k \geq 3$
- Tight if $k=2 \log n$
- Conjecture: $O(n$ polylog $(n))$ possible for $k \geq 3$.

Results

Basic philosophy:
Use "degree of agreement with Haar measure" as "wellposedness" parameter.

Theorem 2 [DG, Küng, Krahmer] Conversely, for $k=2$, phase retrieval from sub-quadratic number of measurements impossible.

- I.e. subsampling from Balan-type ensemble impossible.

Summary

We have...

- ...constructed a partial derandomization of PhaseLift,
- ... pointed to spherical designs as general-purpose derandomization tools for structured signal recovery schemes. [See also M. Fickus talk ("shockingly bad" in his context)]

Thank you for your attention!

David Gross
University of Freiburg

TU Berlin
December 2013

