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The Phase Retrieval Problem
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observed intenstity

. 2
~  |Fourier transform of object|".

’ Q: How does one recover the object from screen intensities?
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Discrete model:
» Unknown x € C".

» Measurement vectors A1, ..., A,
(represented as rows of sensing matrix A).

The general phase retrieval problem:

Recover x from quadratic measurements: y; = |A;x|?.

xray

mask 3"& » {A;} a basis clearly not enough
diffraction
patter » Small number of bases seems to
work

» Practice: 2-D FT after masks
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Problem has long history
Applications, geometry, algorithms studied since '70s. . .

Solution set is algebraic variety:

V= {x] (JAix|> = yi) = 0V i}.

= algebraic geometry seems right language.

One central result in this language:

» O(4n) “generic’ measurements required and sufficient
[Mixon, Voroninski, Wolf, ...; past few years]
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From AG to convex optimization

Problems with AG:
» lll-equipped to handle approximations, noise, uncertainties.
» Doesn't naturally yield efficient algorithms.

» Difficult to handle specific, non-generic cases.

New approach in 2012: PhaseLift, based on convex optimization
[Candes, Strohmer, Voroniski].
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Lift it. ..
“Lift" quadratic equation to matrix version [Balan et al.]:
yi = |Aix|? = tr(A;AT)xx*.
Then recovery equivalent to affinely constrained rank-minimization:

min rank X
st. X=X
tr(A;Af)X =Y.

(X = xx* is solution).

> But these are NP-hard in general.

» Any hope?

Well. .. rewind to 2009 & recall low-rank recovery results . . .




Low-rank matrix recovery via
convex optimization
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Matrix version of compressed sensing

» Consider hermitian (n x n)-matrix X of
rank r < n:

r

*

X = E A7
i=1

» Described by ~ (r x n) < n? parameters.

» Now choose (overcomplete) matrix basis
n2
{Bi}i_1

I72
i=1

Problem statement:
(Low-rank matrix recovery). Can one recover a rank-r matrix
X from only O(r n) randomly chosen expansion coefficients
¢; w.r.t. some fixed matrix basis?

(matrix or basis-independent or non-commutative version of c.s.)
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Incoherences

» Some pairs of bases and matrices don't work:

00 ... 01
00 ... 00
00 ... 00

> Introduce “well-posedness parameter” pu:
r
|tr BiX|? ~ p—.
n

Two ways to guarantee well-posed problems:

> Restrict basis:
» demand B; to have “small operator norm”; akin to Fourier
basis in c.s.
» Unitary operator bases optimal [DG09]
> Restrict signals:
» demand singular vectors of X be “spread out”
[Candes et al. 09].



General Low-Rank Recovery

Theorem [Candes, Recht, Tao...; DG '09]

» Any rank-r matrix X can be exactly recovered (w.h.p.)
from rny (log® n) randomly chosen expansion

coefficients
¢, = tr B X.

» The unknown matrix X minimizes the nuclear norm in
the affine space defined by the known coefficients.
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... back to phase retrieval.



PhaselLift
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PhaselLift

xray
sample  source
mask

diffraction min ’ ’ X ’ ’ N

patten

st. X=XT
‘ tr(AANX = y;.

Neither condition for p small works for phase retrieval:
» B; = A;A7 are rank-1: worst case.
» X = xx* with x highly structured: worst case.
First results [Candés, Strohmer, Voroninski, Li '12]:
» Assume Gaussian measurements, A;;j ~ N(0,1).

» = O(n) samples guarantee recovery.
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Great. But.

xray

sample  source
mask

st @ min || X .
st. X =xt
tr(A,AT)X =Y.

Achieved — Put phase retrieval into convex optimization realm:
» Rigorous recovery guarantees
» Formulation is robust against noise

» Efficient algorithms (at least in computer science sense)

To be done — Gaussian measurements not completely satisfactory:
» Practically: doesn't cover common use cases
» Conceptually: unclear which properties “make it work”

= derandomize these results!
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Two simultaneous pre-prints arXiv:1310

[DG, Richard Kiing, Felix Krahmer]:
» Conceptual approach: find right “well-posedness parameter”
» Quite general, but rather abstract, condition

» Based on “spherical designs”

[Emmanuel Candeés, Xiadong Li, Mahdi Soltanolkotabi]:
» Practical point of view

» Solution for masked Fourier case

(Technical parts of papers surprisingly similar).



Spherical designs
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Painless motivation for spherical designs

Brainstorm about properties of measurement vectors A;:

» {A;} ortho-normal basis clearly not enough
> It is clear from
yi = tr(A;A7 )xx*
that reconstruction possible if {A;Af} form matrix basis

» (That observation is Balan's painless method)

Hence:
What is condition on A; such that outer products A;A7 form
ortho-normal matrix basis?

(their traceless part a tight frame in space of traceless matrices).
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Painless motivation for spherical designs
A set of vectors A; is. ..
> ...tight frame iff

1oy AA; o</ AA*dA,
; 5n—1

i.e. if it agrees with Haar measure to 2nd moments.
» ...such that {A;A7} is tight frame in matrix space iff

Psym2 & > AAT @ AJAT o /5 AN ® AATA,
i

i.e. if it agrees with Haar measure to 4th moments.

...a k-design iff

@K &k
Pyt o D (AiA}) ™" o /Snl (A7) dA,

i.e. if it agrees with Haar to moments of order 2k.
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2-dimensional example
Map C? to R3 by:

(sin 6, e'® cos #) — (sin @ cos ¢, sin O sin b, cos 6).

» ortho-normal basis is 1-design

> set of equi-angular lines is 2-design

» set of “mutually unbiased bases” is
3-design




Spherical Designs: Summary
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» Provide extrapolation between “basis” and “Haar random”
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Spherical Designs: Summary

Spherical k-designs:
» Provide extrapolation between “basis” and “Haar random”
» Contain information about moments up to order 2k

» Appear naturally in Balan's painless phase retrieval scheme

Some facts:
» Efficient, randomized constructions for any order
» Explicit construction for any dimension up to order 3
» Cardinality: O(n?¥)
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Basic philosophy:

Use “degree of agreement with Haar measure” as “well-
posedness”’ parameter.

Theorem 1 [DG, Kiing, Krahmer]
PhaseLift works from random subset of k-design of size

O(d*** log? d).

» Non-trivial for kK > 3
» Tight if k =2logn
» Conjecture: O(n polylog(n)) possible for k > 3.



Results

Basic philosophy:

Use “degree of agreement with Haar measure” as “well-
posedness”’ parameter.

Theorem 2 [DG, Kiing, Krahmer] Conversely, for k = 2,
phase retrieval from sub-quadratic number of measurements
impossible.

> |.e. subsampling from Balan-type ensemble impossible.



Summary

We have. ..
» ...constructed a partial derandomization of PhaselLift,

» ...pointed to spherical designs as general-purpose
derandomization tools for structured signal recovery schemes.
[See also M. Fickus talk (“shockingly bad” in his context)]



Thank you for your attention!
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