A Partial Derandomization of Phase Retrieval via PhaseLift

[Building on, and evolving with, work by Candès, Strohmer, Voroninski, Li, Soltanolkotabi]

Outline

- Motivation
- Low-rank recovery
- Spherical Designs
- Results.

The Phase Retrieval Problem

Motivation: Far-Field Optics

- Illuminate small object with coherent light...
- ...at screen:

observed intenstity

 \simeq |Fourier transform of object|².

Motivation: Far-Field Optics

- Illuminate small object with coherent light...
- ...at screen:

observed intenstity

 \simeq |Fourier transform of object|².

Q: How does one recover the object from screen intensities?

Motivation: Phase Retrieval

Discrete model:

- Unknown $x \in \mathbb{C}^n$.
- Measurement vectors A₁,..., A_k, (represented as rows of sensing matrix A).

Motivation: Phase Retrieval

Discrete model:

- Unknown $x \in \mathbb{C}^n$.
- Measurement vectors A₁,..., A_k, (represented as rows of sensing matrix A).

The general phase retrieval problem:

Recover x from quadratic measurements: $y_i = |A_i x|^2$.

Motivation: Phase Retrieval

Discrete model:

- Unknown $x \in \mathbb{C}^n$.
- Measurement vectors A₁,..., A_k, (represented as rows of sensing matrix A).

The general phase retrieval problem:

Recover x from quadratic measurements: $y_i = |A_i x|^2$.

- $\{A_i\}$ a basis clearly not enough
- Small number of bases seems to work
- Practice: 2-D FT after masks

Problem has long history

Applications, geometry, algorithms studied since '70s...

Solution set is *algebraic variety*:

$$V := \{ x \mid (|A_i x|^2 - y_i) = 0 \forall i \}.$$

 \Rightarrow algebraic geometry seems right language.

Problem has long history

Applications, geometry, algorithms studied since '70s...

Solution set is *algebraic variety*:

$$V := \{x \mid (|A_i x|^2 - y_i) = 0 \forall i\}.$$

 \Rightarrow algebraic geometry seems right language.

One central result in this language:

 O(4n) "generic" measurements required and sufficient [Mixon, Voroninski, Wolf, ...; past few years]

From AG to convex optimization

Problems with AG:

- Ill-equipped to handle approximations, noise, uncertainties.
- Doesn't naturally yield efficient algorithms.
- Difficult to handle *specific*, non-generic cases.

From AG to convex optimization

Problems with AG:

- Ill-equipped to handle approximations, noise, uncertainties.
- Doesn't naturally yield efficient algorithms.
- Difficult to handle *specific*, non-generic cases.

New approach in 2012: PhaseLift, based on convex optimization [Candès, Strohmer, Voroniski].

"Lift" quadratic equation to matrix version [Balan et al.]:

$$y_i = |A_i x|^2 = \operatorname{tr}(A_i A_i^*) x x^*.$$

"Lift" quadratic equation to matrix version [Balan et al.]:

$$y_i = |A_i x|^2 = \operatorname{tr}(A_i A_i^*) x x^*.$$

Then recovery equivalent to affinely constrained rank-minimization:

min rank X s.t. $X = X^{\dagger}$ tr $(A_i A_i^*)X = y_i$.

 $(X = xx^* \text{ is solution}).$

"Lift" quadratic equation to matrix version [Balan et al.]:

$$y_i = |A_i x|^2 = \operatorname{tr}(A_i A_i^*) x x^*.$$

Then recovery equivalent to affinely constrained rank-minimization:

min rank X s.t. $X = X^{\dagger}$ tr $(A_i A_i^*)X = y_i$.

 $(X = xx^* \text{ is solution}).$

- But these are NP-hard in general.
- Any hope?

"Lift" quadratic equation to matrix version [Balan et al.]:

$$y_i = |A_i x|^2 = \operatorname{tr}(A_i A_i^*) x x^*.$$

Then recovery equivalent to affinely constrained rank-minimization:

min rank X s.t. $X = X^{\dagger}$ tr $(A_i A_i^*)X = y_i$.

 $(X = xx^* \text{ is solution}).$

- But these are NP-hard in general.
- Any hope?

Well... rewind to 2009 & recall low-rank recovery results

Low-rank matrix recovery via convex optimization

Consider hermitian (n × n)-matrix X of rank r ≪ n:

$$X = \sum_{i=1}^r v_i v_i^*.$$

Consider hermitian (n × n)-matrix X of rank r ≪ n:

$$X=\sum_{i=1}^r v_i v_i^*.$$

• Described by $\simeq (r \times n) \ll n^2$ parameters.

Consider hermitian (n × n)-matrix X of rank r ≪ n:

$$X=\sum_{i=1}^r v_i v_i^*.$$

• Described by $\simeq (r \times n) \ll n^2$ parameters.

► Now choose (overcomplete) matrix basis {B_i}^{n²}_{i=1}

$$X=\sum_{i=1}^{n^2}c_iB_i.$$

Consider hermitian (n × n)-matrix X of rank r ≪ n:

$$X=\sum_{i=1}^r v_i v_i^*.$$

• Described by $\simeq (r \times n) \ll n^2$ parameters.

► Now choose (overcomplete) matrix basis {B_i}^{n²}_{i=1}

$$X=\sum_{i=1}^{n^2}c_iB_i.$$

Problem statement:

(Low-rank matrix recovery). Can one recover a rank-r matrix X from only O(r n) randomly chosen expansion coefficients c_i w.r.t. some fixed matrix basis?

(*matrix* or *basis-independent* or *non-commutative* version of c.s.)

Some pairs of bases and matrices don't work:

$$\left[\begin{array}{cccccc} 0 & 0 & \dots & 0 & 1 \\ 0 & 0 & \dots & 0 & 0 \\ \vdots & \vdots & & \vdots & \vdots \\ 0 & 0 & \dots & 0 & 0 \end{array}\right]$$

Some pairs of bases and matrices don't work:

ΓO	0	 0	1
0	0	 0	0
	÷	÷	÷
0	0	 0	0

• Introduce "well-posedness parameter" μ :

$$|\operatorname{tr} B_i X|^2 \simeq \mu \frac{r}{n}.$$

Two ways to guarantee well-posed problems:

Some pairs of bases and matrices don't work:

0	0	 0	1
0	0	 0	0
÷	÷	÷	:
0	0	 0	0

Introduce "well-posedness parameter" μ:

$$|\operatorname{tr} B_i X|^2 \simeq \mu \frac{r}{n}.$$

Two ways to guarantee well-posed problems:

- Restrict basis:
 - demand B_i to have "small operator norm"; akin to Fourier basis in c.s.
 - Unitary operator bases optimal [DG09]

Some pairs of bases and matrices don't work:

0	0	 0	1
0	0	 0	0
÷	÷	÷	:
0	0	 0	0

Introduce "well-posedness parameter" μ:

$$|\operatorname{tr} B_i X|^2 \simeq \mu \frac{r}{n}.$$

Two ways to guarantee well-posed problems:

- Restrict basis:
 - demand B_i to have "small operator norm"; akin to Fourier basis in c.s.

Unitary operator bases optimal [DG09]

- Restrict signals:
 - demand singular vectors of X be "spread out" [Candès *et al.* 09].

General Low-Rank Recovery

Theorem [Candès, Recht, Tao...; DG '09]

Any rank-r matrix X can be exactly recovered (w.h.p.) from rnµ (log² n) randomly chosen expansion coefficients

$$c_k = \operatorname{tr} B_k X.$$

The unknown matrix X minimizes the nuclear norm in the affine space defined by the known coefficients.

... back to phase retrieval.

PhaseLift

Neither condition for μ small works for phase retrieval:

- $B_i = A_i A_i^*$ are rank-1: worst case.
- $X = xx^*$ with x highly structured: worst case.

PhaseLift

Neither condition for μ small works for phase retrieval:

- $B_i = A_i A_i^*$ are rank-1: worst case.
- $X = xx^*$ with x highly structured: worst case.

First results [Candès, Strohmer, Voroninski, Li '12]:

- Assume *Gaussian* measurements, $A_{i,j} \sim \mathcal{N}(0,1)$.
- $\blacktriangleright \Rightarrow O(n)$ samples guarantee recovery.

Great. But.

 $\begin{array}{l} \min \|X\|_* \\ \text{s.t.} \quad X = X^{\dagger} \\ \operatorname{tr}(A_i A_i^*) X = y_i. \end{array}$

Achieved - Put phase retrieval into convex optimization realm:

- Rigorous recovery guarantees
- Formulation is robust against noise
- Efficient algorithms (at least in computer science sense)

Great. But.

 $\min \|X\|_*$ s.t. $X = X^{\dagger}$ $\operatorname{tr}(A_i A_i^*) X = y_i.$

Achieved - Put phase retrieval into convex optimization realm:

- Rigorous recovery guarantees
- Formulation is robust against noise
- Efficient algorithms (at least in computer science sense)

To be done - Gaussian measurements not completely satisfactory:

- Practically: doesn't cover common use cases
- Conceptually: unclear which properties "make it work"
- \Rightarrow derandomize these results!

Two simultaneous pre-prints arXiv:1310

[DG, Richard Küng, Felix Krahmer]:

- Conceptual approach: find right "well-posedness parameter"
- Quite general, but rather abstract, condition
- Based on "spherical designs"

[Emmanuel Candès, Xiadong Li, Mahdi Soltanolkotabi]:

- Practical point of view
- Solution for masked Fourier case

Two simultaneous pre-prints arXiv:1310

[DG, Richard Küng, Felix Krahmer]:

- Conceptual approach: find right "well-posedness parameter"
- Quite general, but rather abstract, condition
- Based on "spherical designs"

[Emmanuel Candès, Xiadong Li, Mahdi Soltanolkotabi]:

- Practical point of view
- Solution for masked Fourier case

(Technical parts of papers surprisingly similar).

Spherical designs

Brainstorm about properties of measurement vectors A_i :

• $\{A_i\}$ ortho-normal basis clearly not enough

Brainstorm about properties of measurement vectors A_i :

- $\{A_i\}$ ortho-normal basis clearly not enough
- It is clear from

$$y_i = \operatorname{tr}(A_i A_i^*) x x^*$$

that reconstruction possible if $\{A_i A_i^*\}$ form matrix basis

(That observation is Balan's *painless* method)

Brainstorm about properties of measurement vectors A_i :

- $\{A_i\}$ ortho-normal basis clearly not enough
- It is clear from

$$y_i = \operatorname{tr}(A_i A_i^*) x x^*$$

that reconstruction possible if $\{A_i A_i^*\}$ form matrix basis

(That observation is Balan's *painless* method)

Hence:

What is condition on A_i such that outer products $A_i A_i^*$ form ortho-normal matrix basis?

(their traceless part a tight frame in space of traceless matrices).

A set of vectors A_i is...

▶ ... tight frame iff

$$\mathbb{1} \propto \sum_{i} A_{i} A_{i}^{*} \propto \int_{S^{n-1}} A A^{*} \, \mathrm{d}A,$$

i.e. if it agrees with Haar measure to 2nd moments.

A set of vectors A_i is...

▶ ... tight frame iff

$$\mathbb{1} \propto \sum_i A_i A_i^* \propto \int_{S^{n-1}} A A^* \, \mathrm{d} A,$$

i.e. if it agrees with Haar measure to 2nd moments.

• ... such that $\{A_i A_i^*\}$ is tight frame in matrix space iff

$$P_{\mathsf{Sym}^2} \propto \sum_i A_i A_i^* \otimes A_i A_i^* \propto \int_{S^{n-1}} A A^* \otimes A A^* \mathrm{d} A,$$

i.e. if it agrees with Haar measure to 4th moments.

A set of vectors A_i is...

▶ ... tight frame iff

$$\mathbb{1} \propto \sum_i A_i A_i^* \propto \int_{S^{n-1}} A A^* \, \mathrm{d} A,$$

i.e. if it agrees with Haar measure to 2nd moments.

• ... such that $\{A_i A_i^*\}$ is tight frame in matrix space iff

$$P_{\mathsf{Sym}^2} \propto \sum_i A_i A_i^* \otimes A_i A_i^* \propto \int_{S^{n-1}} A A^* \otimes A A^* \mathrm{d} A,$$

i.e. if it agrees with Haar measure to 4th moments.

... a *k*-design iff
$$P_{\text{Sym}^{k}} \propto \sum_{i} (A_{i}A_{i}^{*})^{\otimes k} \propto \int_{S^{n-1}} (AA^{*})^{\otimes k} dA,$$
i.e. if it agrees with Haar to moments of order 2*k*.

2-dimensional example

Map \mathbb{C}^2 to \mathbb{R}^3 by:

 $(\sin \theta, e^{i\phi} \cos \theta) \rightarrow (\sin \theta \cos \phi, \sin \theta \sin \phi, \cos \theta).$

2-dimensional example

Map \mathbb{C}^2 to \mathbb{R}^3 by:

 $(\sin \theta, e^{i\phi} \cos \theta) \rightarrow (\sin \theta \cos \phi, \sin \theta \sin \phi, \cos \theta).$

ortho-normal basis is 1-design

set of equi-angular lines is 2-design

 set of "mutually unbiased bases" is 3-design

Spherical Designs: Summary

Spherical k-designs:

- Provide extrapolation between "basis" and "Haar random"
- Contain information about moments up to order 2k
- Appear naturally in Balan's painless phase retrieval scheme

Spherical Designs: Summary

Spherical k-designs:

- Provide extrapolation between "basis" and "Haar random"
- Contain information about moments up to order 2k
- Appear naturally in Balan's painless phase retrieval scheme

Some facts:

- Efficient, randomized constructions for any order
- Explicit construction for any dimension up to order 3
- Cardinality: O(n^{2k})

Basic philosophy:

Use "degree of agreement with Haar measure" as "well-posedness" parameter.

Basic philosophy:

Use "degree of agreement with Haar measure" as "well-posedness" parameter.

Theorem 1 [DG, Küng, Krahmer] PhaseLift works from random subset of *k*-design of size

$$O\big(d^{1+2/k}\,\log^2 d\big).$$

- Non-trivial for $k \ge 3$
- Tight if $k = 2 \log n$
- Conjecture: $O(n \operatorname{polylog}(n))$ possible for $k \geq 3$.

Basic philosophy:

Use "degree of agreement with Haar measure" as "well-posedness" parameter.

Theorem 2 [DG, Küng, Krahmer] Conversely, for k = 2, phase retrieval from sub-quadratic number of measurements impossible.

► I.e. subsampling from Balan-type ensemble impossible.

Summary

We have...

- ... constructed a partial derandomization of PhaseLift,
- ... pointed to spherical designs as general-purpose derandomization tools for structured signal recovery schemes. [See also M. Fickus talk ("shockingly bad" in his context)]

Thank you for your attention!

David Gross University of Freiburg TU Berlin December 2013