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Compressed Sensing in Inverse Problems

Typical analog/infinite-dimensional inverse problem where
compressed sensing is/can be used:

(i) Magnetic Resonance Imaging (MRI)
(ii) X-ray Computed Tomography
(iii) Thermoacoustic and Photoacoustic Tomography
(iv) Single Photon Emission Computerized Tomography
(v) Electrical Impedance Tomography
(vi) Electron Microscopy
(vii) Reflection seismology
(viii) Radio interferometry
(ix) Fluorescence Microscopy
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Compressed Sensing in Inverse Problems

Most of these problems are modelled by the Fourier transform

F f (ω) =

∫
Rd

f (x)e−2πiω·x dx ,

or the Radon transform Rf : S× R→ C (where S denotes the circle)

Rf (θ, p) =

∫
〈x,θ〉=p

f (x) dm(x),

where dm denotes Lebesgue measure on the hyperplane {x : 〈x , θ〉 = p}.

I Fourier slice theorem ⇒ both problems can be viewed as the
problem of reconstructing f from pointwise samples of its Fourier
transform.

g = F f , f ∈ L2(Rd). (1)
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Compressed Sensing

I Given the linear system

Ux0 = y .

I Solve
min ‖z‖1 subject to PΩUz = PΩy ,

where PΩ is a projection and Ω ⊂ {1, . . . ,N} is subsampled
with |Ω| = m.

If
m ≥ C · N · µ(U) · s · log(ε−1) · log (N) .

then P(z = x0) ≥ 1− ε, where

µ(U) = max
i ,j
|Ui ,j |2

is referred to as the incoherence parameter.
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Pillars of Compressed Sensing

I Sparsity

I Incoherence

I Uniform Random Subsampling

In addition: The Restricted Isometry Property + uniform recovery.

Problem: These concepts are absent in virtually all the problems
listed above. Moreover, uniform random subsampling gives highly
suboptimal results.

Compressed sensing is currently used with great success in these
fields, however the current theory does not cover this.

5 / 47



Uniform Random Subsampling

U = UdftV
−1
dwt.

5% subsamp-map Reconstruction Enlarged
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Sparsity

I The classical idea of sparsity in compressed sensing is that
there are s important coefficients in the vector x0 that we
want to recover.

I The location of these coefficients is arbitrary.
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Sparsity and the Flip Test

Let

x =

and
y = Udfx , A = PΩUdfV

−1
dw ,

where PΩ is a projection and Ω ⊂ {1, . . . ,N} is subsampled with
|Ω| = m. Solve

min ‖z‖1 subject to Az = PΩy .
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Sparsity - The Flip Test
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Figure: Wavelet coefficients and subsampling reconstructions from 10% of Fourier coefficients with

distributions (1 + ω2
1 + ω2

2 )−1 and (1 + ω2
1 + ω2

2 )−3/2.

If sparsity is the right model we should be able to flip the
coefficients. Let

zf =
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Sparsity - The Flip Test

I Let
ỹ = UdfV

−1
dw zf

I Solve
min ‖z‖1 subject to Az = PΩỹ

to get ẑf .

I Flip the coefficients of ẑf back to get ẑ , and let x̂ = V−1
dw ẑ .

I If the ordering of the wavelet coefficients did not matter i.e.
sparsity is the right model, then x̂ should be close to x .
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Sparsity- The Flip Test: Results

Figure: The reconstructions from the reversed coefficients.

Conclusion: The ordering of the coefficients did matter. Moreover, this
phenomenon happens with all wavelets, curvelets, contourlets and
shearlets and any reasonable subsampling scheme.

Question: Is sparsity really the right model?
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Sparsity - The Flip Test

CS reconstr. CS reconstr, w/ flip Subsampling
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Sparsity - The Flip Test (contd.)

CS reconstr. CS reconstr, w/ flip Subsampling
flipped coeffs. pattern
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Sparsity - The Flip Test (contd.)

CS reconstr. CS reconstr, w/ flip Subsampling
flipped coeffs. pattern

1024, 10%

UdftV
−1
dwt

Radio
interferometry
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What about the RIP?

I Did any of the matrices used in the examples satisfy the RIP?
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Images are not sparse, they are asymptotically sparse

How to measure asymptotic sparsity: Suppose

f =
∞∑
j=1

βjϕj .

Let
N =

⋃
k∈N
{Mk−1 + 1, . . . ,Mk},

where 0 = M0 < M1 < M2 < . . . and {Mk−1 + 1, . . . ,Mk} is the set of
indices corresponding to the kth scale.
Let ε ∈ (0, 1] and let

sk := sk(ε) = min
{

K :
∥∥∥ K∑

i=1

βπ(i)ϕπ(i)

∥∥∥ ≥ ε∥∥∥ Mk∑
i=Mk−1+1

βjϕj

∥∥∥},
in order words, sk is the effective sparsity at the kth scale. Here
π : {1, . . . ,Mk −Mk−1} → {Mk−1 + 1, . . . ,Mk} is a bijection such that
|βπ(i)| ≥ |βπ(i+1)|.
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Images are not sparse, they are asymptotically sparse
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Figure: Relative sparsity of Daubechies 8 wavelet coefficients. 17 / 47



Images are not sparse, they are asymptotically sparse

Curvelets
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Contourlets
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Shearlets
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Analog inverse problems are coherent

Let
Un = UdfV

−1
dw ∈ Cn×n

where Udf is the discrete Fourier transform and Vdw is the discrete
wavelet transform. Then

µ(Un) = 1

for all n and all Daubechies wavelets!
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Analog inverse problems are coherent, why?

Note that
WOT-lim

n→∞
UdfV

−1
dw = U,

where

U =

 〈ϕ1, ψ1〉 〈ϕ2, ψ1〉 · · ·
〈ϕ1, ψ2〉 〈ϕ2, ψ2〉 · · ·

...
...

. . .

.
Thus, we will always have

µ(UdfV
−1
dw ) ≥ c .
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Analog inverse problems are asymptotically
incoherent

Fourier to DB4 Fourier to Legendre Polynomials

Figure: Plots of the absolute values of the entries of the matrix U
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Hadamard and wavelets are coherent

Let
Un = HV−1

dw ∈ Cn×n

where H is a Hadamard matrix and Vdw is the discrete wavelet
transform. Then

µ(Un) = 1

for all n and all Daubechies wavelets!
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Hadamard and wavelets are asymptotically
incoherent

Hadamard to Haar Hadamard to DB8 Enlarged
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We need a new theory

I Such theory must incorporates asymptotic sparsity and
asymptotic incoherence.

I It must explain the two intriguing phenomena observed in
practice:

I The optimal sampling strategy is signal structure dependent
I The success of compressed sensing is resolution dependent

I The theory cannot be RIP based (at least not with the
classical definition of the RIP)
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Sparsity in levels

Definition
For r ∈ N let M = (M1, . . . ,Mr ) ∈ Nr with 1 ≤ M1 < . . . < Mr

and s = (s1, . . . , sr ) ∈ Nr , with sk ≤ Mk −Mk−1, k = 1, . . . , r ,
where M0 = 0. We say that β ∈ l2(N) is (s,M)-sparse if, for each
k = 1, . . . , r ,

∆k := supp(β) ∩ {Mk−1 + 1, . . . ,Mk},

satisfies |∆k | ≤ sk . We denote the set of (s,M)-sparse vectors by
Σs,M.
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Sparsity in levels

Definition
Let f =

∑
j∈N βjϕj ∈ H, where β = (βj)j∈N ∈ l1(N). Let

σs,M(f ) := min
η∈Σs,M

‖β − η‖l1 . (2)
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Multi-level sampling scheme

Definition
Let r ∈ N, N = (N1, . . . ,Nr ) ∈ Nr with 1 ≤ N1 < . . . < Nr ,
m = (m1, . . . ,mr ) ∈ Nr , with mk ≤ Nk − Nk−1, k = 1, . . . , r , and
suppose that

Ωk ⊆ {Nk−1 + 1, . . . ,Nk}, |Ωk | = mk , k = 1, . . . , r ,

are chosen uniformly at random, where N0 = 0. We refer to the set

Ω = ΩN,m := Ω1 ∪ . . . ∪ Ωr .

as an (N,m)-multilevel sampling scheme.
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Local coherence

Definition
Let U ∈ CN×N . If N = (N1, . . . ,Nr ) ∈ Nr and M = (M1, . . . ,Mr ) ∈ Nr

with 1 ≤ N1 < . . .Nr and 1 ≤ M1 < . . . < Mr we define the (k, l)th local
coherence of U with respect to N and M by

µN,M(k , l) =
√
µ(P

Nk−1

Nk
UP

Ml−1

Ml
) · µ(P

Nk−1

Nk
U), k, l = 1, . . . , r ,

where N0 = M0 = 0.
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The optimization problem

inf
η∈`1(N)

‖η‖`1 subject to ‖PΩUη − y‖ ≤ δ. (3)
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Theoretical Results

Theorem
Let U ∈ CN×N be an isometry and β ∈ CN . Suppose that Ω = ΩN,m is a
multilevel sampling scheme, where N = (N1, . . . ,Nr ) ∈ Nr and
m = (m1, . . . ,mr ) ∈ Nr . Let (s,M), where M = (M1, . . . ,Mr ) ∈ Nr ,
M1 < . . . < Mr , and s = (s1, . . . , sr ) ∈ Nr , be any pair such that the following
holds: for ε > 0 and 1 ≤ k ≤ r ,

1 &
Nk − Nk−1

mk
· log(ε−1) ·

 
rX

l=1

µN,M(k, l) · sl

!
· log (N) , (4)

and mk & m̂k · (log(ε−1) + 1) · log (N) , with m̂k satisfying

1 &
rX

k=1

„
Nk − Nk−1

m̂k
− 1

«
· µN,M(k, l) · s̃k , ∀ l = 1, . . . , r , (5)

for all s̃1, . . . , s̃r ∈ (0,∞) such that
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Theoretical Results

Theorem

s̃1 + . . .+ s̃r ≤ s1 + . . .+ sr = s, s̃k ≤ Sk(N,M, s).

Suppose that ξ ∈ `1(N) is a minimizer of (3). Then, with probability exceeding
1− sε, we have that

‖ξ − β‖ ≤ C ·
“
δ ·
√

K ·
`
1 + L ·

√
s
´

+ σs,M(f )
”
, (6)

for some constant C, where σs,M(f ) is as in (2), L = 1 +

q
log2(6ε−1)

log2(4KM
√

s)
and

K = maxk=1,...,r

n
Nk−Nk−1

mk

o
.
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Theoretical Results

Sk = Sk(N,M, s) = max
η∈Θ
‖PNk−1

Nk
Uη‖2,

where Θ is given by

Θ = {η : ‖η‖`∞ ≤ 1, |supp(P
Ml−1

Ml
η)| = sl , l = 1, . . . , r}.
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Fourier to wavelets

mk & log(ε−1)· log(N) · Nk − Nk−1

Nk−1

·

(
ŝk +

k−2∑
l=1

sl · 2−α(k−1−l) +
r∑

l=k+2

sl · 2−v(l−1−k)

)
,

where ŝk = max{sk−1, sk , sk+1}.
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The GLPU-Phantom

The Guerquin-Kern,Lejeune, Pruessmann, Unser-Phantom (ETH
and EPFL)
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r-level Sampling Scheme

Figure: The sampling pattern that will be used.
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256× 256 full sampling and 5% subsampling (DB4)

MSE is obviously different.
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4096× 4096 full sampling and 4% subsampling (DB4)

MSE is the same for both reconstructions.
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Seeing further with compressed sensing

Figure: The figure shows 512× 512 full sampling (= 262144 samples)
with 2048× 2048 zero padding.
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Seeing further with compressed sensing

Figure: The figure shows 6.25% subsampling from 2048× 2048
(= 262144 samples) and DB4.
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The Berlin Cathedral - a CS journey

A comparison at various resolutions, in terms of reconstruction
quality, speed and memory usage. Experiments performed on an
Intel i7-3770K @ 4.9 GHz and 32 GB RAM using SPGL1.
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The Berlin Cathedral - a CS journey (256x256)

15% Random 15% Multi level Fully sampled
Bernoulli to DB8 Hadamard to DB8 (original image)

RAM (GB): 4.8 < 0.1
Speed (it/s): 1.31 18.1
Conv. (sec): (4m27s) 267 18.6
Rel. err. (%): 22.4 14.7
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The Berlin Cathedral - a CS journey (512x512)

15% Random 15% Multi level Fully sampled
Bernoulli to DB8 Hadamard to DB8 (original image)

RAM (GB): 76.8 < 0.1
Speed (it/s): 0.15 4.9
Conv. (sec): (42m) 2517 (1m13s) 73.4
Rel. err. (%): 19.0 12.2
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The Berlin Cathedral - a CS journey (1024x1024)

15% Random 15% Multi level Fully sampled
Bernoulli to DB8 Hadamard to DB8 (original image)

RAM (GB): 1229 < 0.1
Speed (it/s): 0.0161 1.07
Conv. (sec): 6h 36m (3m45s) 225.4
Rel. err. (%): 10.4
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The Berlin Cathedral - a CS journey (2048x2048)

15% Random 15% Multi level Fully sampled
Bernoulli to DB8 Hadamard to DB8 (original image)

RAM (GB): 19661 < 0.1
Speed (it/s): 0.17
Conv. (sec): (28m) 1687
Rel. err. (%): 8.5
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The Berlin Cathedral - a CS journey (4096x4096)

15% Random 15% Multi level Fully sampled
Bernoulli to DB8 Hadamard to DB8 (original image)

RAM (GB): 314573 < 0.1
Speed (it/s): 0.041
Conv. (sec): (1h37m) 5852
Rel. err. (%): 6.56

45 / 47



The Berlin Cathedral - a CS journey (8192x8192)

15% Random 15% Multi level Fully sampled
Bernoulli to DB8 Hadamard to DB8 (original image)

RAM (GB): 5033165 < 0.1
Speed (it/s): 0.0064
Conv. (sec): 238d (8h30m) 30623
Rel. err. (%): 3.5
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Take home message: Compressed Sensing Vol. II

I The optimal sampling strategy depends on the structure of
the signal (unless you have perfect incoherence).

I Real world problems are usually completely coherent, yet
asymptotically incoherent. Thus, one must use multi-level
sampling.

I We have covered the abstract orthonormal basis case, but
there is tons of work to be done (frames, TV, curvelets,
contourlets, shearlets, polynomials, etc).

I When building hardware one does not need to strive for
incoherence, one only needs asymptotic incoherence.

I Speed and storage issues in compressive imaging can be
solved by using multi-level sampling.

I Related work:
I Krahmer and Ward
I Baranuik, Cevher, Duarte, Hegde (model based CS)
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