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Least-Squares

Suppose we are confronted with the noisy measurements:

y = Ax + z ,

where A ∈ Rm×n is the measurement matrix, y ∈ Rm is the measurement
vector, x ∈ Rn is the unknown desired signal, and z ∈ Rn is the unknown
noise vector.

In the general case, to be meaningful, we require that

m ≥ n.

A popular method for recovering x , is the least-squares criterion

min
x
‖y − Ax‖2

2,

whose solution is famously given by

x̂ =
(

ATA
)−1

AT y .
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Least-Squares

The squared error is then given by

‖x − x̂‖2
2 = zTA

(
ATA

)−2
AT z .

The mean square error: Assume z has iid N(0, σ2) entries. Then

E‖x − x̂‖2
2 = σ2trace

(
ATA

)−1
.

In fact, when m and n grow, we do not even need the expectation:

the squared error concentrates around σ2trace
(
ATA

)−1
.When A has

iid N(0, 1
m ) entries, ATA is a Wishart matrix whose asymptotic

eigendistribution is well known.Using this, we obtain

‖x − x̂‖2
2

mσ2
→ n

m − n
.

Babak Hassibi (Caltech) Structured Signals in Noise Dec 3, 2013 4 / 64



Least-Squares

The squared error is then given by

‖x − x̂‖2
2 = zTA

(
ATA

)−2
AT z .

The mean square error: Assume z has iid N(0, σ2) entries. Then

E‖x − x̂‖2
2 = σ2trace

(
ATA

)−1
.

In fact, when m and n grow, we do not even need the expectation:

the squared error concentrates around σ2trace
(
ATA

)−1
.When A has

iid N(0, 1
m ) entries, ATA is a Wishart matrix whose asymptotic

eigendistribution is well known.Using this, we obtain

‖x − x̂‖2
2

mσ2
→ n

m − n
.

Babak Hassibi (Caltech) Structured Signals in Noise Dec 3, 2013 4 / 64



Least-Squares

The squared error is then given by

‖x − x̂‖2
2 = zTA

(
ATA

)−2
AT z .

The mean square error: Assume z has iid N(0, σ2) entries. Then

E‖x − x̂‖2
2 = σ2trace

(
ATA

)−1
.

In fact, when m and n grow, we do not even need the expectation:

the squared error concentrates around σ2trace
(
ATA

)−1
.

When A has
iid N(0, 1

m ) entries, ATA is a Wishart matrix whose asymptotic
eigendistribution is well known.Using this, we obtain

‖x − x̂‖2
2

mσ2
→ n

m − n
.

Babak Hassibi (Caltech) Structured Signals in Noise Dec 3, 2013 4 / 64



Least-Squares

The squared error is then given by

‖x − x̂‖2
2 = zTA

(
ATA

)−2
AT z .

The mean square error: Assume z has iid N(0, σ2) entries. Then

E‖x − x̂‖2
2 = σ2trace

(
ATA

)−1
.

In fact, when m and n grow, we do not even need the expectation:

the squared error concentrates around σ2trace
(
ATA

)−1
.When A has

iid N(0, 1
m ) entries, ATA is a Wishart matrix whose asymptotic

eigendistribution is well known.

Using this, we obtain

‖x − x̂‖2
2

mσ2
→ n

m − n
.

Babak Hassibi (Caltech) Structured Signals in Noise Dec 3, 2013 4 / 64



Least-Squares

The squared error is then given by

‖x − x̂‖2
2 = zTA

(
ATA

)−2
AT z .

The mean square error: Assume z has iid N(0, σ2) entries. Then

E‖x − x̂‖2
2 = σ2trace

(
ATA

)−1
.

In fact, when m and n grow, we do not even need the expectation:

the squared error concentrates around σ2trace
(
ATA

)−1
.When A has

iid N(0, 1
m ) entries, ATA is a Wishart matrix whose asymptotic

eigendistribution is well known.Using this, we obtain

‖x − x̂‖2
2

mσ2
→ n

m − n
.

Babak Hassibi (Caltech) Structured Signals in Noise Dec 3, 2013 4 / 64



Least-Squares

The squared error for a fixed z :

‖x − x̂‖2
2 = zTA

(
ATA

)−2
AT z ≤ ‖Proj(z ,Range(A))‖2

2

σ2
min(A)

.

When A has iid N(0, 1
m ) entries, we have

I σmin(A) ≈ 1−
√

n
m .

I ‖Proj(z ,Range(A))‖2
2 ≈ n

m‖z‖2
2.

Thus,
‖x − x̂‖2

2

‖z‖2
2

→≤
( √

n√
m −√n

)2

.
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Least-Squares

The worst-case square error:

‖x − x̂‖2
2 = zTA

(
ATA

)−2
AT z ≤ ‖z‖2

2

σ2
min(A)

.

When A has iid N(0, 1
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n
m .

Thus,
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Least-Squares in Summary

Assume y = Ax + z and that A has iid N(0, 1
m ) entries.

when z has zero-mean iid Gaussian entries:
‖x−x̂‖2

2

‖z‖2
2
→ n

m−n .

when z is arbitrary, but independent of A:
‖x−x̂‖2

2

‖z‖2
2
→≤

( √
n√

m−
√
n

)2

when z can be chosen according to A:
‖x−x̂‖2

2

‖z‖2
2
→≤

( √
m√

m−
√
n

)2

The above all hold with high probability in A.

Note that
n

m − n
≤
( √

n√
m −√n

)2

≤
( √

m√
m −√n

)2

.
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Structured Signals

We are increasingly confronted with very large data sets where we
need to extract some signal-of-interest

I machine learning, image processing, signal processing, statistics, etc.
I sensor networks, social networks, DNA microarrays, etc.

On the face of it, this could lead to the curse of dimensionality

Fortunately, in many applications, the signal of interest lives in a
manifold of much lower dimension than that of the original ambient
space

In this setting, it is important to have signal recovery algorithms that
are computationally efficient and that need not access the entire data
directly (hence compressed recovery)

The goal of compressed sampling is to perform sampling and sensing
simultaneously
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Noisy Compressed Sensing

Consider a “desired” signal x ∈ Rn, which is k-sparse, i.e., has only k < n
(often k � n) non-zero entries. Suppose we make m noisy measurements
of x using the m × n measurement matrix A to obtain

y = Ax + z .

How many measurements m do we need to find a good estimate of x?

.

Suppose each set of m columns of A are linearly independent. Then,
if m > k , we can always find the sparsest solution to

min
x
‖y − Ax‖2

2 ,

via exhaustive search of

(
n
k

)
such least-squares problems

This would give the normalized square errors:

k

m − k
,

( √
k√

m −
√

k

)2

,

( √
m√

m −
√

k

)2

.
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Noisy Compressed Sensing

But can we do this more efficiently? And for what values of m?

There are also problems (such as low rank matrix recovery) where it is not
possible to enumerate all structured signals.
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LASSO

The LASSO algorithm was introduced by Tibshirani in 1996:

x̂ = arg min
x

1

2
‖y − Ax‖2

2 + λ‖x‖1,

where λ ≥ 0 is a regularization parameter.

λ = 0 yields the least-squares problem

λ→∞ yields `1 minimization
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Generalized LASSO

The generalized LASSO algorithm can be used to enforce other types of
structures

x̂ = arg min
x

1

2
‖y − Ax‖2

2 + λf (x),

where f (·) is a convex regularizer.

f (·) = ‖ · ‖1 encourages sparsity

f (·) = ‖ · ‖? encourages low rankness

f (·) = ‖ · ‖1,2 (the mixed `1/`2 norm) encourages block-sparsity

etc.

Often the value f (·) at the true x0 is known a priori. In this case, we can
alternatively solve

minx ‖y − Ax‖2
2

subject to f (x) ≤ f (x0)
.
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The Squared Error of Generalized LASSO

The LASSO algorithm has been extensively studied

However, most performance bounds are rather loose

Can we give performance bounds similar to those that we gave for
least-squares?

Turns out we can. But to do so, we need to tell an earlier story....
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Noiseless Compressed Sensing

Consider a “desired” signal x ∈ Rn, which is k-sparse, i.e., has only k < n
(often k � n) non-zero entries. Suppose we make m measurements of x
using the m × n measurement matrix A to obtain

y = Ax .

How many measurements m do we need to recover x?

.

Suppose each set of m columns of A are linearly independent. Then
we can always find x uniquely from y—via exhaustive search of(

n
k

)
systems of linear equations—if m > k

But can we do this more efficiently? And for what values of m?
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l1 Optimization

The seminal work of Candes, Tao and Donoho has shown that under
certain conditions the `1 optimization

min ‖x‖1 subject to y = Ax

where ‖x‖1 =
∑

i |xi |, can exactly recover the solution, thus avoiding an
exponential search.

Candes and Tao showed that if A satisfies certain restricted isometry
conditions, then `1 optimization works for small enough k

I gives ”order optimal”, but very loose bounds

Necessary and sufficient conditions can be developed to obtain sharp
bounds on k (Donoho-Tanner, Xu-H, Stojnic,
Chandrasekaran-Parrilo-Willsky, Oymak-H)

I we will get into this
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Phase Transitions for Convex Relaxation

How any measurements m do we need to efficiently recover a k-sparse x
from y = Ax?

First answered by Donoho and Tanner (2005) in the compressed
sensing context (using neighborly polytopes—very cumbersome
calculations)

Extended to robustness and weighted `1 by Xu-H in 2007 (using
Grassman angles)
New framework developed by Stojnic in 2009 (using
escape-through-mesh and Gaussian widths)

I rederived results for sparse vectors; new results for block-sparse vectors
I much simpler derivation

Allowed the development of a general framework
(Chandrasekaran-Parrilo-Willsky, 2010)

I relation to denoising (Oymak-H, 2013), nuclear norm (Oymak-H, 2010)
I tightness of Gaussian widths Stojnic, 2013 (for `1),

Amelunxen-McCoy-Tropp, 2013 (more generally)
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Phase Transitions for Convex Relaxation

We will consider a general framework.

Consider a structured signal x0, with a structure-capturing atomic norm
f (·) = ‖ · ‖. We have access to linear measurements y = A(x0) ∈ Rm, and
would like to know when we can recover the signal x0 from the convex
problem

min ‖x‖ subject to A(x) = A(x0)?

For sparse signals we have the `1 norm; for nonuniform sparse signals
the weighted `1 norm; for low rank matrices the nuclear norm

Let U(x0) = {z , ‖x0 + z‖ ≤ ‖x0‖}. Then x0 is the unique solution of the
above convex problem iff:

N (A) ∩ U(x0) = {0}.
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A Bit of Geometry: Subgradients and the Polar Cone

Note that N (A) is a linear subspace and that therefore the condition can
be rewritten as

N (A) ∩ cone(U(x0)) = {0}.

We can characterize cone(U(x0)) through the subgradient of the convex
function ‖ · ‖:

∂‖x0‖ = {v |vT (x − x0) ≤ ‖x‖ − ‖x0‖,∀x}.
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A Bit of Geometry: Subgradients and the Polar Cone

It is now straightforward to see that

cone(U(x0)) = {z |vT z ≤ 0, ∀v ∈ ∂‖x0‖}.

But this is simply the polar cone of ∂‖x0‖.

Thus, we can recover x0 from the convex problem iff:

N (A) ∩ (∂‖x0‖)O = {0}.
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A Bit of Geometry: Subgradients and the Polar Cone

Thus, recovery depends on the null space of the measurement matrix
and the polar cone of the subgradient (at the point we want to
recover).

I computing the subgradient is often straightforward: for a k-sparse

x =

[
xS
0

]
it is

∂‖x0‖1 =

{[
sign(xS)

v

]
, ‖v‖∞ ≤ 1

}
.

However, checking the condition N (A) ∩ (∂‖x0‖)O = {0} for a
specific A is difficult.

Therefore the focus has been on checking whether the condition holds
for a family of random A’s with high probability.
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The Gaussian Measurement Ensemble

It is customary to assume that the measurement matrix A is
composed of iid zero-mean unit-variance entries

This makes the nullspace N (A) rotationally-invariant.

The thresholds obtained from the Gaussian matrix ensemble are often
universal and so determine the thresholds for other matrix ensembles.
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Escape Through a Mesh

Theorem (Escape Through a Mesh - Gordon 1988)

Let C be a subset of unit sphere Sn−1 in Rn and g be a vector with i.i.d.
standard normal entries. Further, let H be an n −m dimensional subspace
distributed uniformly over Grassmannian w.r.t Haar measure. Then,

P(H ∩ C = ∅) ≥ 1− 3.5 exp(−(
√

m − 1

4
√

m
− ω(C ))2)

where ω(C ) stands for the Gaussian width of C and is defined as:

ω(C ) = E[sup
v∈C
〈g, v〉]

Babak Hassibi (Caltech) Structured Signals in Noise Dec 3, 2013 22 / 64



Interpretation

Question: When A has i.i.d. Gaussian entries what is the chance of:

Null(A) ∩ (∂‖x0‖)O = {0}?

Answer
I Green ball: Unit sphere Sn−1.
I Blue plane: Random subspace Null(A).
I Red mesh: Undesired set C = (∂‖x0‖)O ∩ Sn−1.
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Gaussian Width Calculation

To ensure recovery: choose m ≥ ω((∂‖x0‖)O ∩ Sn−1)2

It is critical to estimate the GW accurately

Lemma

Let ∂‖x0‖ be the subdifferential of ‖ · ‖ at x0 and g be a vector with i.i.d.
standard normal entries. Then

ω((∂‖x0‖)O ∩ Sn−1) = E[dist(g, ∂‖x0‖)] ≈
√

E[dist(g, ∂‖x0‖)2]. (0.1)

Even though Gordon’s lemma is a sufficient condition, Stojnic and
Amelnuxen-McCoy-Tropp show that the squared Gaussian width is a tight
bound. AMT call the squared Gaussian width the statistical dimension of
the signal.
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Example: Nuclear Norm Minimization (NNM)

Nuclear norm: ‖X‖? =
∑

i σi (X )

Many applications: Netflix, minimal order controllers, graphical
models, etc.

Tightest convex relaxation to rank minimization problem

min ‖X‖? subject to A(X ) = y

Closely related to `1 minimization

Polynomial time algorithm (an SDP)

Known to have noise robustness

Unlike non-convex algorithms NNM can be made more complicated.
I coupling with `1: Robust PCA

min ‖L‖? + λ‖S‖1 subject to X = L + S
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Prior Work

Let y = A(X ) ∈ Rm, X ∈ Rn×n.

Number of samples for successful recovery is a useful measure of
performance

i.i.d. measurements

I Recht, Fazel, Parrilo “Guaranteed minimum rank ...” (2008):
m = O(rnlog(n))

I Candes, Plan “Tight oracle bounds ...” (2010): m = O(rn)
I First null space analysis: Recht, Xu, H “Null Space Conditions and ...”

(2009)

Observe entries at random (matrix completion)

I Candes, Recht “Exact matrix completion via ...” (2009):
m = O(rn5/4log(n)).

I Best known: m = nrlog 2(n).
F Recht “A simpler approach ...” (2009)
F Gross “Recovering low rank matrices ...” (2011)
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Strong and Weak Robustness

Let M∗ denote optimal sol’n of “min ‖X‖? subject to A(X ) = A(M)”.

Definition (Strong robustness)

A(·) is strongly robust with ε0, r if the following holds for all M:

‖M −M∗‖? <
2‖M −M r‖?

ε0

M −M r is basically the tail of M.

Definition (Weak robustness)

Given a fixed M, A(·) is weakly robust with ε0, r if the following holds:

‖M −M∗‖? <
2‖M −M r‖?

ε0
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Results

Weak recovery curves

Oversampling: How much measurement per degrees of freedom?

Required measurements
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Results

Strong recovery curves
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Results

Closed Form Results

Theorem (Closed Form Bounds)

Let dimensions be n1 × n2, maximum rank be r (no tail). Then

for strong recovery: m ≥ 4(
√

n1 +
√

n2)2r

for weak recovery: m ≥ 2(n1 +
√

n1n2 + n2)r

is sufficient.

Theorem (Closed Form Bounds)

In the square case:

for strong recovery: m ≥ 16nr

for weak recovery: m ≥ 6nr
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Results

Recent and Simultaneous Work

Chandrasekaran, Recht, Parrilo, and Willsky “The convex geometry of
linear inverse problems” (2010)

Candes, Recht “Simple bounds for low complexity model
construction” (2011)
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Results

Some Other Examples

n dimensional vectors that are k-sparse:

f (x) = ‖x‖1 and ω2 ≤ 2k log
2k

n

n × n matrices that are rank r :

f (x) = ‖x‖? and ω2 ≤ 3r(2n − r)

qb dimensional vectors that have k non-zero blocks of size b:

f (x) = ‖x‖1,2 and ω2 ≤ 4k
(

b + log
q

k

)
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Results

Relation Between Compressed Recovery and Denoising

CS problem: Recover a signal from underdetermined linear
observations.

y = Ax0 ∈ Rm, x0 ∈ Rn, A ∼ i.i.d. N (0, 1)

Aim: Recover structured x0 when m� n.

Recovery method:

min
x

f (x) subject to Ax = Ax0 (BP)

Choose f (·) to exploit the structure. Eg: x0 is sparse vector and
f (·) = ‖ · ‖`1

y" L1"Minimiza+on" x"^"=" x0"A"y"

Compression" Recovery"

We will focus on convex f (·)
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Results

Denoising Problem

Denoising problem: Estimate a signal corrupted by additive noise.

y = x0 + z, x0 ∈ Rn, z ∼ i.i.d. N (0, σ2)

Aim: Estimate structured x0

Denoising method: proximity operator

min
x
λf (x) +

1

2
‖y − x‖2

2 (LASSO)

Choose f (·) to induce the structure. Eg: x0 is sparse vector and
f (·) = ‖ · ‖`1 .

x0#

z#

y#+# y# so)#thresholding# x#^#
Denoising#

Addi6ve#noise#
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Results

Performance Criteria

CS problem: The smallest number ηBP(x0) s.t. m = ηBP(x0)
measurements are sufficient for recovery of x0 via (BP) w.h.p. where
y = Ax0 ∈ Rm.

Denoising problem: Tune λ optimally to minimize normalized
estimation error.

ηDN(x0) = lim
σ→0

inf
λ≥0

E[‖x0 − x∗(λ, z)‖2
2]

σ2
(1.1)

where x∗(λ, z) is the minimizer of LASSO:

x∗(λ, z) = arg min
x
λf (x) +

1

2
‖y − x‖2

2 (1.2)
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Results

`1 Phase Transitions
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Results

A General Relation

Bayati, Donoho and Montanari have proven ηBP = ηDN for `1

optimization

Recently, based on extensive empirical evidence, Donoho, Montanari
and Johnstone have proposed that

ηBP = ηDN

for a general convex f (·).
I “Accurate Prediction of Phase Transitions in Compressed Sensing . . . ”

(2011)

In Oymak-H using the escape-through-mesh framework we show that
ηBP = ηDN = ω2, the statistical dimension, for a general convex f (·).
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Results

Low Rank plus Sparse Signals

X is LPS and f (X) = min
L
‖L‖? + Θ‖X− L‖1

sparsity: 0→ 60, rank: 1→ 2
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d’DN (Rank 1)

Observation: ηDN ≈ ηETM .
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Results

Noiseless CS – Simple Denoising – LASSO

x0 ∈ Rn: structured signal of interest (sparse, low-rank, etc.)

A ∈ Rm×n: measurement matrix , z ∈ Rm: noise
f (·): structure inducing convex function (‖ · ‖1, ‖ · ‖∗, etc.)

1 Noiseless Compressed Sensing,
Ax0 y

min
x

f (x) s.t. y = Ax

2 Simple Denoising:

+

z

yx0

min
x

{
1

2
‖y − x‖2

2 + λf (x)

}
3 Noisy CS (LASSO) can be seen as a ”merger” of 1 and 2:

Ax0 +

z

y

min
x

{
1

2
‖y − Ax‖2

2 + λf (x)

}
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Results

The Generalized LASSO

x0 yObserve' A +'
z

Solve' minx �f(x) + 1
2ky � Axk2

f (x) = ‖x‖1: R. Tibshirani “Regression shrinkage and selection via
the lasso”, ’96., Chen, Donoho, Saunders’98

f (X) = ‖X‖∗: Koltchinskii’10, Negahban’12, Candes’11 and more.

X f (x) = any convex function of x: “Generalized LASSO”
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Results

The Squared Error of Generalized LASSO

Consider the generalized LASSO:

min
x

{
1

2
‖y − Ax‖2

2 + λf (x)

}
,

then we have been able to show:

for z iid N(0, 1
m ) Gaussian

min
λ

‖x0 − x̂‖2
2

‖z‖2
2

→ ω2

m − ω2

for z arbitrary, but independent of A:

min
λ

‖x0 − x̂‖2
2

‖z‖2
2

→≤
(

ω√
m − ω

)2

for the worst-case z , chosen with knowledge of A:

min
λ

‖x0 − x̂‖2
2

‖z‖2
2

→
( √

m√
m − ω

)2
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Results

The Squared Error of Generalized LASSO

These are the same formulae obtained for standard least-squares, except
that the ambient dimension , n, has been replaced by the statistical
dimension, ω2.

These results are also true for the constrained LASSO

min
x
‖y − Ax‖2

2 subject to f (x) ≤ f (x0).

For example,

for n-dimensional k-sparse signals and `1 minimization, we have the
bounds

2k log 2n
k

m − 2k log 2n
k

,


√

2k log 2n
k

√
m −

√
2k log 2n

k

2

,

 √
m

√
m −

√
2k log 2n

k

2
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Results

The Squared Error of Generalized LASSO

for n × n-dimensional rank r matrices and nuclear norm minimization,
we have the bounds

3r(2n − r)

m − 3r(2n − r)
,

( √
3r(2n − r)

√
m −

√
3r(2n − r)

)2

,

( √
m√

m −
√

3r(2n − r)

)2

for qb-dimensional k-block sparse vectors and mixed `1/`2

minimization we have the bounds

4k(b + log q
k )

m − 4k(b + log q
k )
,

( √
4k(b + log q

k )
√

m −
√

4k(b + log q
k )

)2

,

( √
m√

m −
√

4k(b + log q
k )

)2
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Results

The Squared Error of Generalized LASSO

These results required either knowledge of the optimal λ, or of f (x0).

But what if we do not have these?

Can we still give formulae for an arbitrary λ ≥ 0?
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Results

Three Versions of the LASSO Problem

Observe y = Ax0 + z, where A ∼ N (0, 1
m Im×n) z ∼ N (0, σ2Im)

1 Constrained LASSO

x∗c = arg min
x
‖y − Ax‖2 subject to f (x) ≤ f (x0)

2 `2-LASSO
x∗`2

= arg min
x
{‖y − Ax‖2 + λf (x)}

3 `2
2-LASSO

x∗`2
2

= arg min
x

{
1

2
‖y − Ax‖2

2 + στ f (x)

}
Quantity of Interest:

Normalized Squared Error :=
‖x∗LASSO − x0‖2

2

‖z‖2
2
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Results

Relevant Literature

Bayati & Montanari, ’11: Exact Characterization of the squared error
of `2

2-LASSO for f (x) = ‖x‖1

I for z iid N(0, σ2)
I through equivalence to “Approximate Message Passing” (AMP)

algorithm

Stojnic, ’13:
I for z iid N(0, σ2)
I precise bounds for the `1-constrained LASSO
I developed framework for analysis based on Gordon’s lemma that

compares Gaussian processes [’88]
I we rely on this framework
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Results

What’s New?

Simplify the powerful framework proposed by Stojnic ’13

Generalize results on the constrained LASSO for arbitrary convex
functions

Extend analysis to the `2-LASSO; precise bounds as functions of the
regularizer parameter λ

Establish connection of the `2-LASSO to the `2
2-LASSO; propose a

formula for calculating the squared estimation error of the latter

Simple recipe for optimal tuning of the regularization parameter λ

Converse results: When does robust estimation of x0 fail?
Connection to phase transitions of noiseless CS, to statistical
dimension, and to similar formulae in standard least-squares.

Extend the results from z iid N(0, σ2) to arbitrary z and worst-case
z .
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Results

First-Order Approximation

min
x
{‖y − Ax‖2 + λf (x)}

y = Ax0 + z, z ∼ N (0, σIm)

f (x0 + w) & f (x0) + sups∈∂f (x0) sTw

Lower bound becomes tight when σ → 0, since ‖w∗‖2 becomes small

Approximated LASSO Problem:

min
w

{
‖Aw − z‖2 + sup

s∈λ∂f (x0)
sTw

}

For the Constrained Problem, just replace λ∂f (x0) with cone(∂f (x0)).
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Results

Why σ → 0?

Precise Formulas
I First-order approximation is tight =⇒ Perform the analysis on the

more tractable Approximate LASSO, instead.
I Precise analysis for arbitrary σ impossible with f.o. approximation.

Worst-case error scenario
I Worst case NSE of the LASSO is achieved for σ → 0.
I Our formulae upper bound the NSE for arbitrary values of the noise

variance.
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Results

Gordon’s Lemma

Introduced by Gordon in ’88. Compares two centered Gaussian processes:

Lemma (Gordon)

Let G ∈ Rm×n, g ∈ R, g ∈ Rm,h ∈ Rn, all having entries i.i.d. N (0, 1) and
being independent of each other. Also, let S ⊂ Rn be arbitrary set and
ψ : S → R be arbitrary function. Then, for all choices of c ∈ R,

P
(

min
x∈S
{‖Gx‖2 + ‖x‖2g − ψ(x)} ≥ c

)
≥ P

(
min
x∈S

{
‖x‖2‖g‖2 − hTx− ψ(x)

}
≥ c

)

“Escape through mesh” is a Corollary of this Lemma.

Apply (a slight modification) to Approximated LASSO:

P

(
min

w

{
‖Aw − z‖2 + sup

s∈λ∂f (x0)

sTw

}
≥ c

)

≥ 2 P

(
min

w

{√
‖w‖2

2 + σ2‖g‖2 − hTw + sup
s∈λ∂f (x0)

sTw

}
≥ c

)
− 1
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Results

After Gordon’s Lemma: Deterministic Analysis

Key Optimization

L(g,h) = min
w

{√
‖w‖2

2 + σ2‖g‖2 − hTw + sup
s∈λ∂f (x0)

sTw

}

Reduce to scalar optimization:

L(g, h) = min
α


√
α2 + σ2‖g‖2 − max

‖w‖2=α
min

s∈λ∂f (x0)
(h− s)T w︸ ︷︷ ︸

=α·dist(h,λ∂f (x0))


Solve:

‖w∗‖2
2 = (α∗)2 = σ2 dist2(h, λ∂f (x0))

‖g‖2
2 − dist2(h, λ∂f (x0))

, L(g, h) = σ
√
‖g‖2

2 − dist2(h, λ∂f (x0))
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Results

After Gordon’s Lemma: Probabilistic Analysis

Key Optimization

L(g,h) = min
w

{√
‖w‖2

2 + σ2‖g‖2 − hTw + sup
s∈λ∂f (x0)

sTw

}

Easy: h ∼ N (0, In), g ∼ N (0, Im) and independent!
Basic Concentration Arguments:

dist2(h, λ∂f (x0)) ≈ Eh

[
dist2(h, λ∂f (x0))

]
:= Df (x0, λ)︸ ︷︷ ︸

“Gaussian Squared Distance”

Apply to Deterministic results:

L(g, h) = σ
√
‖g‖2

2 − dist2(h, λ∂f (x0)) ≈ σ
√

m −Df (x0, λ) =⇒
High-Probability
Lower Bound
for LASSO cost!

‖w∗‖2
2

‖z‖2
2

=
dist2(h, λ∂f (x0))

‖g‖2
2 − dist2(h, λ∂f (x0))

≈
Df (x0, λ)

m −Df (x0, λ)

???−−→ Normalized Square Error
of the LASSO !
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Results

Synopsis of the Technical Framework

F`2(A, z) = min
w

{
‖Aw − z‖2 + sup

s∈λ∂f (x0)
sTw

}

1 Gordon’s Lemma to F`2(A, z) to find a high-probability lower bound
for it. We showed that!

2 Gordon’s Lemma to the dual of F`2(A, z) to find a high-probability
upper bound for it

3 Lower and Upper Bounds match =⇒ F`2(A, z) ≈ σ
√

m −Df (x0, λ)

4 Assume ‖w∗`2
‖2

2 deviates from σ2 Df (x0,λ)
m−Df (x0,λ) . Then, Gordon’s Lemma

shows that optimization cost is strictly larger than σ
√

m −Df (x0, λ).

5 Conclude
‖w∗`2
‖2

2

‖z‖2
2

≈ Df (x0, λ)

m −Df (x0, λ)
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Results

Gaussian Squared Distance and Related Quantities

dist(h, λ∂f (x0)) := ‖Π(h, λ∂f (x0))‖2

Df (x0, λ) := Eh

[
dist2(h, λ∂f (x0))

]
∆f (x0) = ω2 := Eh

[
dist2(h, cone(∂f (x0)))

]
Cf (x0, λ) := Eh [〈Proj(h, λ∂f (x0)),Π(h, λ∂f (x0))〉]

∂f(x0)

λ∂f(x0)

cone(∂f(x0))

h

Π(h,λ∂f(x0))

Proj(h,λ∂f(x0))

0

∆f (x0) = ω2 : minimum number of measurements required to
success of the Noiseless CS (Gaussian width or statistical dimension)

Df (x0, λ) : upper bounds the normalized squared error of the simple
denoiser

minλ≥0 Df (x0, λ) = ∆f (x0)

Cf (x0, λ) : Appears when upper bounding LASSO cost in Step 2
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Results

`2-LASSO: Regions of Operation
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ROFF

m−Df (x0, λ) ≤ Cf (x0, λ)

Ax∗ = y

RON

m ≥ Df (x0, λ)

m−Df (x0, λ) ≥ Cf (x0, λ)

Precise Bounds!

R∞

m ≤ Df (x0, λ)

Not Robust
Recovery
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Results

`2-LASSO: RON

Theorem (`2-LASSO)

Assume,
Df (x0,λ)

εL
> m > (1 + εL)Df (x0, λ), for some constant εL,

m is sufficiently large,

λ ∈ RON.

For any ε > 0, there exists a constant C = C (ε, εL) and σ0 = σ0(ε, εL, n)

such that, whenever σ ≤ σ0, with probability 1− exp(−C 2 min{m, m2

n }),
we have, ∣∣∣∣∣‖x∗`2

− x0‖2
2

‖z‖2
2

− Df (x0, λ)

m −Df (x0, λ)

∣∣∣∣∣ < ε

Optimal Regularizer Parameter:

λbest = arg min
λ≥0

Df (x0, λ)

.
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Results

Example

X0 ∈ Rn×n is rank r . Observe, y = A(X0) + z, solve the Matrix LASSO,

min
X
{‖y −A(X)‖2 + λ‖X‖?}

0 1 2 3 4 5 6 7 8 9 10
2
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6

8

10

12
Low rank matrix

λ

ℓ 2
p
en

a
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ze

d
er

ro
r

 

 

Analytic curve

Simulation

Figure : n = 45, r = 6, measurements m = 0.6n2.
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Results

`2
2-LASSO: Connection to `2-LASSO

x∗`2
= arg minx {‖y − Ax‖2 + λf (x)} x∗

`2
2

= arg minx

{
1
2‖y − Ax‖2

2 + στ f (x)
}

AT (y − Ax∗`2
)

‖y − Ax∗`2
‖2
∈ λ∂f (x∗`2

) AT (y − Ax∗`2
2
) ∈ στ∂f (x∗`2

2
)

Connection

Fix any λ ≥ 0. Suppose x∗`2
is optimal for `2-LASSO for that λ and

‖y − Ax∗`2
‖2 6= 0. Then, it is also optimal for the `2

2-LASSO for

στ = ‖y − Ax∗`2
‖λ.
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Results

`2-`2
2 calibration

Formula

Define,

calib(λ) =
m −Df (x0, λ)− Cf (x0, λ)√

m −Df (x0, λ)
, map(λ) = λ · calib(λ)

Then, choosing,
τ = map(λ)

connects `2 to `2
2 LASSO.

Intuition
Recall:

{
‖Aw∗`2

− z‖2 + maxs∈λ∂f (x0) sTw∗`2

}
≈ σ

√
m −Df (x0, λ).

Conjecture: maxs∈λ∂f (x0) sTw∗`2
≈ σ Cf (x0,λ)√

m−Df (x0,λ)
.

Proof based on

same Framework?
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Results

Properties of the mapping

map(λ) takes RON to R+

I map(λ) is bijective and strictly increasing.
I map(λcrit) = 0, map(λmax) =∞.
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=⇒ RON is indeed the most important region of `2-LASSO.
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Results

Main Result on `2
2-LASSO

Formula (`2
2-LASSO error)

‖x∗
`2

2
− x0‖
‖z‖2

2

≈ Df (x0,map−1(τ))

m −Df (x0,map−1(τ))
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Simulation

map(�crit)

map(�best)

map(�max) = 1⌧
k
n

= 0.1. m
n

= 0.3, n = 1000, σ2 = 10−5.
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Results

Long Story Short

Normalized Squared Error Optimal Tuning

C-LASSO
∆f (x0)

m−∆f (x0)

`2-LASSO
Df (x0,λ)

m−Df (x0,λ) for λ ∈ RON λ∗ = arg min Df (x0, λ)

`2
2-LASSO

Df (x0,map−1(τ))
m−Df (x0,map−1(τ)) for τ ∈ R+ τ∗ = λ∗

√
m −Df (x0, λ∗)

Our expressions are precise for sufficiently small noise level σ.

They are upper bounds for arbitrary values of σ. Worst case error
happens as σ → 0.

Converse results: When m < ∆f (x0), not robust recovery.

Similar formulae for z arbitrary and z worst-case.
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Results

Example: Combining `2
2 and variance predictions
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Results

Summary and Conclusion

Studied the recovery of a structured signal from noisy measurements
using generalized LASSO

Found formulae for the squared error that are counterparts of those
encountered in standard least-squares

I formulae hold for arbitrary convex regularizer f (·) and arbitrary
regularization parameter λ ≥ 0

I obtained formulae for z iid N(0, σ2), z arbitrary, and z worst-case
I three different versions: constrained LASSO, `2 LASSO, `2

2 LASSO
Ambient dimension of the signal is replaced by its statistical dimension

I for the optimal λ this is the expected squared distance of a Gaussian
vector to the subgradient cone

I for an arbitrary λ, it is the expected squared distance of a Gaussian
vector to the scaled subgradient set

Results allow one to compute the optimal value of λ and predict the
error behavior of generalized LASSO
All results in noiseless structured signal recovery (compressed sensing,
etc.) follow as special cases
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