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Subspace Approximation

Set up: We have many data vectors

X = {x
1

, . . . , xM} ⇢ N
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Subspace Approximation

Set up: We have many data vectors

X = {x
1

, . . . , xM} ⇢ N

M and N are both large

Want to fit X with an n-dimensional hyperplane, P ⇢ N .
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Measuring the Fit

We can define an error vector eP 2 M by

(eP)j := kxj � ⇧Pxjk2

Measuring the Fit

The q-distance from X to P is

d (q)(X ,P) := kePkq.
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The Best Fit

Let �n(S) denote the set of all n-dimensional subspaces of a given
higher dimensional subspace S ⇢ N

The best fit for X ⇢ N by an n-dimensional subspace is

d
(q)
n

⇣
X , N

⌘
:= inf

P2�n( N
)

d (q)(X ,P) = inf
P2�n( N

)

kePkq.

We want to find an optimal n-dimensional subspace, P
opt

2 �n
�

N
�
,

such that
d (q)(X ,P

opt

) = d
(q)
n

⇣
X , N

⌘
.

Note that at least one P
opt

exists (Stiefel manifolds are compact, and
d (q)(X , ·) is continuous)
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The Problem

Our Goal

Compute an n-dimensional subspace, A 2 �n
�

N
�
, with

d (q)(X ,A) ⇡ d
(q)
n

⇣
X , N

⌘
:= inf

P2�n(S)
kePkq.

q = 2: This case seeks to minimize least squares error, and can be

solved by computing the top n eigenvectors of XTX .

Many computational methods solve q = 2 case, including randomized
methods that succeed with high probability, are stable, and use only
O(MNn)-flops.

Other cases have been studied less, although a lot is still known...
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The Case q = 1

The 1-distance from X to P is defined by

d (1)(X ,P) := max
xj2X

kxj � ⇧Pxjk2.

The best fit for X ⇢ N by an n-dimensional subspace is

d
(1)

n

⇣
X , N

⌘
:= inf

P2�n( N
)

d (1)(X ,P) = inf
P2�n( N

)

max
xj2X

kxj �⇧Pxjk2.

Essentially the (Euclidean) Kolmogorov n-width of X

Our Goal When q = 1
Compute an n-dimensional subspace, A 2 �n

�
N
�
, with

d (1)(X ,A) ⇡ d
(1)

n

⇣
X , N

⌘
:= inf

P2�n(S)
max
xj2X

kxj � ⇧Pxjk2.
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Previous Work: Slow and accurate

The Problem

Compute an n-dimensional subspace, A 2 �n
�

N
�
, with

d (q)(X ,A) ⇡ d
(q)
n

⇣
X , N

⌘
:= inf

P2�n(S)
kePkq.

2 < q < 1 [Deshpande et al. (2011)]:
Approximate by relaxing to a convex program, and then “rounding”
�! O

�
M>2N>2

�
-flops find A 2 �n

�
N
�
with

d (q)(X ,A)  C · d (q)
n

�
X , N

�
w.h.p.

q = 1 [Varadarajan et al. (2007)]
Relax to a semidefinite program, then “round” its solution
�! O

�
M>2N>2

�
-flops find A 2 �n

�
N
�
with

d (1)(X ,A)  C
p
logM · d (1)

n

�
X , N

�
w.h.p.
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Previous Work: Fast for Small Subspace Dimensions

The Problem

Compute an n-dimensional subspace, A 2 �n
�

N
�
, with

d (q)(X ,A) ⇡ d
(q)
n

⇣
X , N

⌘
:= inf

P2�n(S)
kePkq.

q = 1 [Agarwal et al. (2005)]

Can compute A 2 �n
�

N
�
that has

d (1)(X ,A)  C
p
logM · d (1)

n

⇣
X , N

⌘

w.h.p. Uses MN · 2 ˜O(n)-flops. Based on finding “Core sets”.

Õ denotes that log-factors are dropped in the O-notation.
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New Result: Approximate Solutions for q = 1

Previous Results

M small:

d (1)(X ,A)  C
p
logM · d (1)

n

�
X , N

�
using O(M>2N>2)-flops.

M Large, n Small:

d (1)(X ,A)  C
p
logM · d (1)

n

�
X , N

�
using O(MN) · 2 ˜O(n)-flops.

Theorem (Iwen, FK (2013))

Let P = {p
1

, . . . ,pM} ⇢ N be symmetric, and n 2 {1, . . . ,N}. Then,
one can calculate an A 2 �n

�
N
�
with

d (1) (P ,A)  C
p

n · logM · d (1)

n

⇣
P , N

⌘

in O
�
MN2 +Mn2 · log2M · log(n logM)

�
-time.
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Greedy Least squares

Consider the n-dimensional least squares approximation A
1

of P .
Is it a good approximation in the sense of d (q)?

Compared to d (2), points with large distance from A
1

have a larger
impact in d (q), points with a small distance have less of an impact.

A
1

is a good d (q)-approximation to the 90% closest points.

Remove those 90% points, find the n-dimensional least-squares
approximation A

2

of the remaining points. Again this is a good
d (q)-approximation to 90% of the points.

Iterate, O(logM) iterations cover the whole set P .
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Example
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Example
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Reducing the problem dimension

A :=
logMS
`=1

A` is an n logM-dimensional subspace that provides a

good approximation in the sense of d (q).

d
(p)
n (P ,S)  d (p)(P ,S) + d

(p)
n

⇣
P , N

⌘
. (1)

implies that A contains a near-optimal n-dimensional subspace
approximation.
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New Results: Dimensionality Reduction

Previous Result [Deshpande and Varadarajan (2007)]:
Finds O

�
(n + 1/✏)q+3

�
-dimensional subspace, S ⇢ N , with

d
(q)
n (X ,S)  (1 + ✏) · d (q)

n

⇣
X , N

⌘

w.h.p.. Uses O(MN(n + 1/✏)q+3)-flops for 1  q < 1, ✏ > 0.

Theorem (Iwen, FK (2013))

For P = {p
1

, . . . ,pM} ⇢ N symmetric, one can find a subspace S ⇢ N

with dimS = O(n · logM) in O
�
MN2 + N · n2 log2M

�
-time such that

d
(p)
n (P ,S) 

⇣
1 + C (logm)1/p

⌘
· d (p)

n

⇣
P , N

⌘

and, for p = 1,

d
(1)

n (P ,S)  C · d (1)

n

⇣
P , N

⌘
.
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Increasing Algorithm E�ciencies

Apply the dimension reduction technique to find a near-equivalent
low-dimensional subproblem

Solve the low-dimensional problem using existing algorithms

The problem is smaller size, thus faster to solve.

For p = 1, use new recovery result based on John’s ellipsoid:

Accuracy loss of O(
p
N) not competitive in full-dimensional space

In reduced dimension, only loss of O(
p
n logM).
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Summary and Outlook

Dimension reduction based on greedy least squares

New suboptimal algorithm using John’s ellipsoid

Together yield fast algorithm for subspace approximation

log-factor does not seem necessary if p ! 2. Can it be removed?

Preprint available on arxiv 1312.1413
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