Dimension reduction techniques for efficient subspace approximation

Felix Krahmer

Institute for Numerical and Applied Mathematics, University of Göttingen

12/12/2013

Joint work with Mark Iwen (Michigan State)

Outline

- 1 The Subspace Approximation Problem
- Results: Old and New
- 3 Dimensionality Reduction
- 4 Discussion

Outline

- 1 The Subspace Approximation Problem
- 2 Results: Old and New
- Oimensionality Reduction
- 4 Discussion

Subspace Approximation

• Set up: We have many data vectors

$$X = \{\mathbf{x}_1, \dots, \mathbf{x}_M\} \subset \mathbb{R}^N$$

Subspace Approximation

Set up: We have many data vectors

$$X = \{\mathbf{x}_1, \dots, \mathbf{x}_M\} \subset \mathbb{R}^N$$

- M and N are both large
- Want to fit X with an n-dimensional hyperplane, $\mathcal{P} \subset \mathbb{R}^N$.

Measuring the Fit

ullet We can define an error vector ${f e}_{\mathcal{P}} \in \mathbb{R}^M$ by

$$(e_{\mathcal{P}})_j := \|\mathbf{x}_j - \Pi_{\mathcal{P}}\mathbf{x}_j\|_2$$

Measuring the Fit

ullet We can define an error vector $\mathbf{e}_{\mathcal{P}} \in \mathbb{R}^{M}$ by

$$(e_{\mathcal{P}})_j := \|\mathbf{x}_j - \Pi_{\mathcal{P}}\mathbf{x}_j\|_2$$

Measuring the Fit

The *q*-distance from X to \mathcal{P} is

$$d^{(q)}(X,\mathcal{P}):=\|\mathbf{e}_{\mathcal{P}}\|_q.$$

The Best Fit

- Let $\Gamma_n(S)$ denote the set of all *n*-dimensional subspaces of a given higher dimensional subspace $S \subset \mathbb{R}^N$
- The best fit for $X \subset \mathbb{R}^N$ by an *n*-dimensional subspace is

$$d_n^{(q)}\left(X,\mathbb{R}^N\right):=\inf_{\mathcal{P}\in\Gamma_n(\mathbb{R}^N)}d^{(q)}(X,\mathcal{P})=\inf_{\mathcal{P}\in\Gamma_n(\mathbb{R}^N)}\|\mathbf{e}_{\mathcal{P}}\|_q.$$

• We want to find an optimal *n*-dimensional subspace, $\mathcal{P}_{\mathrm{opt}} \in \Gamma_n\left(\mathbb{R}^N\right)$, such that

$$d^{(q)}(X, \mathcal{P}_{\mathrm{opt}}) = d_n^{(q)}\left(X, \mathbb{R}^N\right).$$

• Note that at least one $\mathcal{P}_{\mathrm{opt}}$ exists (Stiefel manifolds are compact, and $d^{(q)}(X,\cdot)$ is continuous)

The Problem

Our Goal

Compute an *n*-dimensional subspace, $A \in \Gamma_n(\mathbb{R}^N)$, with

$$d^{(q)}(X,\mathcal{A}) \approx d_n^{(q)}\left(X,\mathbb{R}^N\right) := \inf_{\mathcal{P} \in \Gamma_n(\mathcal{S})} \|\mathbf{e}_{\mathcal{P}}\|_q.$$

- $\underline{q = 2}$: This case seeks to minimize least squares error, and can be solved by computing the top n eigenvectors of X^TX .
- Many computational methods solve q=2 case, including randomized methods that succeed with high probability, are stable, and use only O(MNn)-flops.
- Other cases have been studied less, although a lot is still known...

The Case $q = \infty$

• The ∞ -distance from X to $\mathcal P$ is defined by

$$d^{(\infty)}(X,\mathcal{P}) := \max_{\mathbf{x}_j \in X} \|\mathbf{x}_j - \Pi_{\mathcal{P}}\mathbf{x}_j\|_2.$$

ullet The best fit for $X\subset \mathbb{R}^N$ by an *n*-dimensional subspace is

$$d_n^{(\infty)}\left(X,\mathbb{R}^N\right):=\inf_{\mathcal{P}\in\Gamma_n(\mathbb{R}^N)}d^{(\infty)}(X,\mathcal{P})=\inf_{\mathcal{P}\in\Gamma_n(\mathbb{R}^N)}\max_{\mathbf{x}_j\in X}\|\mathbf{x}_j-\Pi_{\mathcal{P}}\mathbf{x}_j\|_2.$$

Essentially the (Euclidean) Kolmogorov n-width of X

The Case $q = \infty$

• The ∞ -distance from X to $\mathcal P$ is defined by

$$d^{(\infty)}(X,\mathcal{P}) := \max_{\mathbf{x}_j \in X} \|\mathbf{x}_j - \Pi_{\mathcal{P}}\mathbf{x}_j\|_2.$$

ullet The best fit for $X\subset \mathbb{R}^N$ by an *n*-dimensional subspace is

$$d_n^{(\infty)}\left(X,\mathbb{R}^N\right):=\inf_{\mathcal{P}\in\Gamma_n(\mathbb{R}^N)}d^{(\infty)}(X,\mathcal{P})=\inf_{\mathcal{P}\in\Gamma_n(\mathbb{R}^N)}\max_{\mathbf{x}_j\in X}\|\mathbf{x}_j-\Pi_{\mathcal{P}}\mathbf{x}_j\|_2.$$

Essentially the (Euclidean) Kolmogorov n-width of X

Our Goal When $q=\infty$

Compute an *n*-dimensional subspace, $A \in \Gamma_n(\mathbb{R}^N)$, with

$$d^{(\infty)}(X,\mathcal{A}) \approx d_n^{(\infty)}\left(X,\mathbb{R}^N\right) := \inf_{\mathcal{P} \in \Gamma_n(\mathcal{S})} \max_{\mathbf{x}_i \in X} \|\mathbf{x}_j - \Pi_{\mathcal{P}}\mathbf{x}_j\|_2.$$

Outline

- 1 The Subspace Approximation Problem
- Results: Old and New
- Oimensionality Reduction
- 4 Discussion

Previous Work: Slow and accurate

The Problem

Compute an *n*-dimensional subspace, $A \in \Gamma_n(\mathbb{R}^N)$, with

$$d^{(q)}(X,\mathcal{A}) \approx d_n^{(q)}\left(X,\mathbb{R}^N\right) := \inf_{\mathcal{P}\in\Gamma_n(\mathcal{S})} \|\mathbf{e}_{\mathcal{P}}\|_q.$$

- $2 < q < \infty$ [Deshpande et al. (2011)]: Approximate by relaxing to a convex program, and then "rounding" $\longrightarrow O\left(M^{>2}N^{>2}\right)$ -flops find $\mathcal{A} \in \Gamma_n\left(\mathbb{R}^N\right)$ with $d^{(q)}(X,\mathcal{A}) \leq C \cdot d_n^{(q)}\left(X,\mathbb{R}^N\right)$ w.h.p.
- $\underline{\mathbf{q}} = \underline{\infty}$ [Varadarajan et al. (2007)] Relax to a semidefinite program, then "round" its solution $\longrightarrow O\left(M^{>2}N^{>2}\right)$ -flops find $A \in \Gamma_n\left(\mathbb{R}^N\right)$ with $d^{(\infty)}(X,A) \leq C\sqrt{\log M} \cdot d_n^{(\infty)}\left(X,\mathbb{R}^N\right)$ w.h.p.

Previous Work: Fast for Small Subspace Dimensions

The Problem

Compute an *n*-dimensional subspace, $A \in \Gamma_n(\mathbb{R}^N)$, with

$$d^{(q)}(X,\mathcal{A}) \approx d_n^{(q)}\left(X,\mathbb{R}^N\right) := \inf_{\mathcal{P} \in \Gamma_n(\mathcal{S})} \|\mathbf{e}_{\mathcal{P}}\|_q.$$

• $\underline{\mathbf{q} = \infty}$ [Agarwal et al. (2005)] Can compute $\mathcal{A} \in \Gamma_n(\mathbb{R}^N)$ that has

$$d^{(\infty)}(X, A) \leq C\sqrt{\log M} \cdot d_n^{(\infty)}(X, \mathbb{R}^N)$$

w.h.p. Uses $MN \cdot 2^{\tilde{O}(n)}$ -flops. Based on finding "Core sets".

 $m{O}$ denotes that log-factors are dropped in the \emph{O} -notation.

New Result: Approximate Solutions for $q = \infty$

Previous Results

- $\underline{M \text{ small:}}$ $d^{(\infty)}(X, A) \leq C\sqrt{\log M} \cdot d_n^{(\infty)}(X, \mathbb{R}^N)$ using $O(M^{>2}N^{>2})$ -flops.
- <u>M Large, n Small:</u> $d^{(\infty)}(X, A) \leq C\sqrt{\log M} \cdot d_n^{(\infty)}(X, \mathbb{R}^N) \text{ using } O(MN) \cdot 2^{\tilde{O}(n)}\text{-flops.}$

Theorem (Iwen, FK (2013))

Let $P = \{\mathbf{p}_1, \dots, \mathbf{p}_M\} \subset \mathbb{R}^N$ be symmetric, and $n \in \{1, \dots, N\}$. Then, one can calculate an $A \in \Gamma_n(\mathbb{R}^N)$ with

$$d^{(\infty)}(P, A) \leq C\sqrt{n \cdot \log M} \cdot d_n^{(\infty)}(P, \mathbb{R}^N)$$

in $O(MN^2 + Mn^2 \cdot \log^2 M \cdot \log(n \log M))$ -time.

Outline

- 1 The Subspace Approximation Problem
- Results: Old and New
- 3 Dimensionality Reduction
- 4 Discussion

Greedy Least squares

- Consider the *n*-dimensional least squares approximation A_1 of P. Is it a good approximation in the sense of $d^{(q)}$?
- Compared to $d^{(2)}$, points with large distance from A_1 have a larger impact in $d^{(q)}$, points with a small distance have less of an impact.
- A_1 is a good $d^{(q)}$ -approximation to the 90% closest points.
- Remove those 90% points, find the *n*-dimensional least-squares approximation \mathcal{A}_2 of the remaining points. Again this is a good $d^{(q)}$ -approximation to 90% of the points.
- Iterate, $O(\log M)$ iterations cover the whole set P.

Reducing the problem dimension

• $\mathcal{A}:=igcup_{\ell=1}^{\log M}\mathcal{A}_{\ell}$ is an $n\log M$ -dimensional subspace that provides a good approximation in the sense of $d^{(q)}$.

$$d_n^{(p)}(P,\mathcal{S}) \leq d^{(p)}(P,\mathcal{S}) + d_n^{(p)}\left(P,\mathbb{R}^N\right). \tag{1}$$

implies that ${\mathcal A}$ contains a near-optimal n-dimensional subspace approximation.

•

New Results: Dimensionality Reduction

• Previous Result [Deshpande and Varadarajan (2007)]: Finds $O((n+1/\epsilon)^{q+3})$ -dimensional subspace, $S \subset \mathbb{R}^N$, with

$$d_n^{(q)}(X, S) \leq (1 + \epsilon) \cdot d_n^{(q)}(X, \mathbb{R}^N)$$

w.h.p.. Uses $O(MN(n+1/\epsilon)^{q+3})$ -flops for $1 \le q < \infty$, $\epsilon > 0$.

Theorem (Iwen, FK (2013))

For $P = \{\mathbf{p}_1, \dots, \mathbf{p}_M\} \subset \mathbb{R}^N$ symmetric, one can find a subspace $S \subset \mathbb{R}^N$ with $\dim S = O(n \cdot \log M)$ in $O\left(MN^2 + N \cdot n^2 \log^2 M\right)$ -time such that

$$d_n^{(p)}(P,\mathcal{S}) \leq \left(1 + C(\log m)^{1/p}\right) \cdot d_n^{(p)}\left(P,\mathbb{R}^N\right)$$

and, for $p = \infty$,

$$d_n^{(\infty)}(P,\mathcal{S}) \leq C \cdot d_n^{(\infty)}\left(P,\mathbb{R}^N\right).$$

Increasing Algorithm Efficiencies

- Apply the dimension reduction technique to find a near-equivalent low-dimensional subproblem
- Solve the low-dimensional problem using existing algorithms
- The problem is smaller size, thus faster to solve.
- For $p = \infty$, use new recovery result based on John's ellipsoid:
 - Accuracy loss of $O(\sqrt{N})$ not competitive in full-dimensional space
 - In reduced dimension, only loss of $O(\sqrt{n \log M})$.

Outline

- 1 The Subspace Approximation Problem
- 2 Results: Old and New
- 3 Dimensionality Reduction
- 4 Discussion

Summary and Outlook

- Dimension reduction based on greedy least squares
- New suboptimal algorithm using John's ellipsoid
- Together yield fast algorithm for subspace approximation
- log-factor does not seem necessary if $p \rightarrow 2$. Can it be removed?
- Preprint available on arxiv 1312.1413