Dimension reduction techniques for efficient subspace approximation

Felix Krahmer

Institute for Numerical and Applied Mathematics, University of Göttingen

$$
12 / 12 / 2013
$$

Joint work with Mark Iwen (Michigan State)

Outline

(1) The Subspace Approximation Problem
(2) Results: Old and New
(3) Dimensionality Reduction

4 Discussion

Outline

(1) The Subspace Approximation Problem

(2) Results: Old and New

(3) Dimensionality Reduction

4 Discussion

Subspace Approximation

- Set up: We have many data vectors

$$
X=\left\{\mathbf{x}_{1}, \ldots, \mathbf{x}_{M}\right\} \subset \mathbb{R}^{N}
$$

Subspace Approximation

- Set up: We have many data vectors

$$
X=\left\{\mathbf{x}_{1}, \ldots, \mathbf{x}_{M}\right\} \subset \mathbb{R}^{N}
$$

- M and N are both large
- Want to fit X with an n-dimensional hyperplane, $\mathcal{P} \subset \mathbb{R}^{N}$.

Measuring the Fit

- We can define an error vector $\mathbf{e}_{\mathcal{P}} \in \mathbb{R}^{M}$ by

$$
\left(e_{\mathcal{P}}\right)_{j}:=\left\|\mathbf{x}_{j}-\Pi_{\mathcal{P}} \mathbf{x}_{j}\right\|_{2}
$$

Measuring the Fit

- We can define an error vector $\mathbf{e}_{\mathcal{P}} \in \mathbb{R}^{M}$ by

$$
\left(e_{\mathcal{P}}\right)_{j}:=\left\|\mathbf{x}_{j}-\Pi_{\mathcal{P}} \mathbf{x}_{j}\right\|_{2}
$$

Measuring the Fit

The q-distance from X to \mathcal{P} is

$$
d^{(q)}(X, \mathcal{P}):=\left\|\mathbf{e}_{\mathcal{P}}\right\|_{q} .
$$

The Best Fit

- Let $\Gamma_{n}(\mathcal{S})$ denote the set of all n-dimensional subspaces of a given higher dimensional subspace $\mathcal{S} \subset \mathbb{R}^{N}$
- The best fit for $X \subset \mathbb{R}^{N}$ by an n-dimensional subspace is

$$
d_{n}^{(q)}\left(X, \mathbb{R}^{N}\right):=\inf _{\mathcal{P} \in \Gamma_{n}\left(\mathbb{R}^{N}\right)} d^{(q)}(X, \mathcal{P})=\inf _{\mathcal{P} \in \Gamma_{n}\left(\mathbb{R}^{N}\right)}\left\|\mathbf{e}_{\mathcal{P}}\right\|_{q}
$$

- We want to find an optimal n-dimensional subspace, $\mathcal{P}_{\text {opt }} \in \Gamma_{n}\left(\mathbb{R}^{N}\right)$, such that

$$
d^{(q)}\left(X, \mathcal{P}_{\mathrm{opt}}\right)=d_{n}^{(q)}\left(X, \mathbb{R}^{N}\right)
$$

- Note that at least one $\mathcal{P}_{\text {opt }}$ exists (Stiefel manifolds are compact, and $d^{(q)}(X, \cdot)$ is continuous)

The Problem

Our Goal

Compute an n-dimensional subspace, $\mathcal{A} \in \Gamma_{n}\left(\mathbb{R}^{N}\right)$, with

$$
d^{(q)}(X, \mathcal{A}) \approx d_{n}^{(q)}\left(X, \mathbb{R}^{N}\right):=\inf _{\mathcal{P} \in \Gamma_{n}(\mathcal{S})}\left\|\mathbf{e}_{\mathcal{P}}\right\|_{q} .
$$

- $q=2$: This case seeks to minimize least squares error, and can be solved by computing the top n eigenvectors of $X^{\mathrm{T}} X$.
- Many computational methods solve $q=2$ case, including randomized methods that succeed with high probability, are stable, and use only $O(M N n)$-flops.
- Other cases have been studied less, although a lot is still known...

The Case $q=\infty$

- The ∞-distance from X to \mathcal{P} is defined by

$$
d^{(\infty)}(X, \mathcal{P}):=\max _{\mathrm{x}_{j} \in X}\left\|\mathbf{x}_{j}-\Pi_{\mathcal{P}} \mathrm{x}_{j}\right\|_{2}
$$

- The best fit for $X \subset \mathbb{R}^{N}$ by an n-dimensional subspace is

$$
d_{n}^{(\infty)}\left(X, \mathbb{R}^{N}\right):=\inf _{\mathcal{P} \in \Gamma_{n}\left(\mathbb{R}^{N}\right)} d^{(\infty)}(X, \mathcal{P})=\inf _{\mathcal{P} \in \Gamma_{n}\left(\mathbb{R}^{N}\right)} \max _{\mathrm{x}_{j} \in X}\left\|\mathbf{x}_{j}-\Pi_{\mathcal{P}} \mathbf{x}_{j}\right\|_{2}
$$

- Essentially the (Euclidean) Kolmogorov n-width of X

The Case $q=\infty$

- The ∞-distance from X to \mathcal{P} is defined by

$$
d^{(\infty)}(X, \mathcal{P}):=\max _{\mathbf{x}_{j} \in X}\left\|\mathbf{x}_{j}-\Pi_{\mathcal{P}} \mathbf{x}_{j}\right\|_{2}
$$

- The best fit for $X \subset \mathbb{R}^{N}$ by an n-dimensional subspace is

$$
d_{n}^{(\infty)}\left(X, \mathbb{R}^{N}\right):=\inf _{\mathcal{P} \in \Gamma_{n}\left(\mathbb{R}^{N}\right)} d^{(\infty)}(X, \mathcal{P})=\inf _{\mathcal{P} \in \Gamma_{n}\left(\mathbb{R}^{N}\right)} \max _{\mathrm{x}_{j} \in X}\left\|\mathbf{x}_{j}-\Pi_{\mathcal{P}} \mathbf{x}_{j}\right\|_{2}
$$

- Essentially the (Euclidean) Kolmogorov n-width of X

Our Goal When $q=\infty$

Compute an n-dimensional subspace, $\mathcal{A} \in \Gamma_{n}\left(\mathbb{R}^{N}\right)$, with

$$
d^{(\infty)}(X, \mathcal{A}) \approx d_{n}^{(\infty)}\left(X, \mathbb{R}^{N}\right):=\inf _{\mathcal{P} \in \Gamma_{n}(\mathcal{S})} \max _{\mathbf{x}_{j} \in X}\left\|\mathbf{x}_{j}-\Pi_{\mathcal{P}} \mathbf{x}_{j}\right\|_{2}
$$

Outline

(1) The Subspace Approximation Problem

(2) Results: Old and New

(3) Dimensionality Reduction

4 Discussion

Previous Work: Slow and accurate

The Problem

Compute an n-dimensional subspace, $\mathcal{A} \in \Gamma_{n}\left(\mathbb{R}^{N}\right)$, with

$$
d^{(q)}(X, \mathcal{A}) \approx d_{n}^{(q)}\left(X, \mathbb{R}^{N}\right):=\inf _{\mathcal{P} \in \Gamma_{n}(\mathcal{S})}\left\|\mathbf{e}_{\mathcal{P}}\right\|_{q}
$$

- $2<q<\infty$ [Deshpande et al. (2011)]:

Approximate by relaxing to a convex program, and then "rounding" $\longrightarrow O\left(M^{>2} N^{>2}\right)$-flops find $\mathcal{A} \in \Gamma_{n}\left(\mathbb{R}^{N}\right)$ with $d^{(q)}(X, \mathcal{A}) \leq C \cdot d_{n}^{(q)}\left(X, \mathbb{R}^{N}\right)$ w.h.p.

- $\mathrm{q}=\infty$ [Varadarajan et al. (2007)]

Relax to a semidefinite program, then "round" its solution $\longrightarrow O\left(M^{>2} N^{>2}\right)$-flops find $\mathcal{A} \in \Gamma_{n}\left(\mathbb{R}^{N}\right)$ with $d^{(\infty)}(X, \mathcal{A}) \leq C \sqrt{\log M} \cdot d_{n}^{(\infty)}\left(X, \mathbb{R}^{N}\right)$ w.h.p.

Previous Work: Fast for Small Subspace Dimensions

The Problem

Compute an n-dimensional subspace, $\mathcal{A} \in \Gamma_{n}\left(\mathbb{R}^{N}\right)$, with

$$
d^{(q)}(X, \mathcal{A}) \approx d_{n}^{(q)}\left(X, \mathbb{R}^{N}\right):=\inf _{\mathcal{P} \in \Gamma_{n}(\mathcal{S})}\left\|\mathbf{e}_{\mathcal{P}}\right\|_{q} .
$$

- $\mathrm{q}=\infty$ [Agarwal et al. (2005)]

Can compute $\mathcal{A} \in \Gamma_{n}\left(\mathbb{R}^{N}\right)$ that has

$$
d^{(\infty)}(X, \mathcal{A}) \leq C \sqrt{\log M} \cdot d_{n}^{(\infty)}\left(X, \mathbb{R}^{N}\right)
$$

w.h.p. Uses $M N \cdot 2^{\tilde{O}(n) \text {-flops. Based on finding "Core sets". }}$

- \tilde{O} denotes that log-factors are dropped in the O-notation.

New Result: Approximate Solutions for $q=\infty$

Previous Results

- M small:

$$
d^{(\infty)}(X, \mathcal{A}) \leq C \sqrt{\log M} \cdot d_{n}^{(\infty)}\left(X, \mathbb{R}^{N}\right) \text { using } O\left(M^{>2} N^{>2}\right) \text {-flops. }
$$

- M Large, n Small:

$$
d^{(\infty)}(X, \mathcal{A}) \leq C \sqrt{\log M} \cdot d_{n}^{(\infty)}\left(X, \mathbb{R}^{N}\right) \text { using } O(M N) \cdot 2^{\tilde{O}(n)} \text { _flops. }
$$

Theorem (Iwen, FK (2013))

Let $P=\left\{\mathbf{p}_{1}, \ldots, \mathbf{p}_{M}\right\} \subset \mathbb{R}^{N}$ be symmetric, and $n \in\{1, \ldots, N\}$. Then, one can calculate an $\mathcal{A} \in \Gamma_{n}\left(\mathbb{R}^{N}\right)$ with

$$
d^{(\infty)}(P, \mathcal{A}) \leq C \sqrt{n \cdot \log M} \cdot d_{n}^{(\infty)}\left(P, \mathbb{R}^{N}\right)
$$

in $O\left(M N^{2}+M n^{2} \cdot \log ^{2} M \cdot \log (n \log M)\right)$-time.

Outline

(1) The Subspace Approximation Problem

(2) Results: Old and New

(3) Dimensionality Reduction

4 Discussion

Greedy Least squares

- Consider the n-dimensional least squares approximation \mathcal{A}_{1} of P. Is it a good approximation in the sense of $d^{(q)}$?
- Compared to $d^{(2)}$, points with large distance from \mathcal{A}_{1} have a larger impact in $d^{(q)}$, points with a small distance have less of an impact.
- \mathcal{A}_{1} is a good $d^{(q)}$-approximation to the 90% closest points.
- Remove those 90% points, find the n-dimensional least-squares approximation \mathcal{A}_{2} of the remaining points. Again this is a good $d^{(q)}$-approximation to 90% of the points.
- Iterate, $O(\log M)$ iterations cover the whole set P.

Example

Example

Example

Example

Example

Example

Reducing the problem dimension

- $\mathcal{A}:=\bigcup_{\ell=1}^{\log M} \mathcal{A}_{\ell}$ is an $n \log M$-dimensional subspace that provides a good approximation in the sense of $d^{(q)}$.

$$
\begin{equation*}
d_{n}^{(p)}(P, \mathcal{S}) \leq d^{(p)}(P, \mathcal{S})+d_{n}^{(p)}\left(P, \mathbb{R}^{N}\right) \tag{1}
\end{equation*}
$$

implies that \mathcal{A} contains a near-optimal n-dimensional subspace approximation.

New Results: Dimensionality Reduction

- Previous Result [Deshpande and Varadarajan (2007)]:

Finds $O\left((n+1 / \epsilon)^{q+3}\right)$-dimensional subspace, $\mathcal{S} \subset \mathbb{R}^{N}$, with

$$
d_{n}^{(q)}(X, \mathcal{S}) \leq(1+\epsilon) \cdot d_{n}^{(q)}\left(X, \mathbb{R}^{N}\right)
$$

w.h.p.. Uses $O\left(M N(n+1 / \epsilon)^{q+3}\right)$-flops for $1 \leq q<\infty, \epsilon>0$.

Theorem (Iwen, FK (2013))

For $P=\left\{\mathbf{p}_{1}, \ldots, \mathbf{p}_{M}\right\} \subset \mathbb{R}^{N}$ symmetric, one can find a subspace $\mathcal{S} \subset \mathbb{R}^{N}$ with $\operatorname{dim} \mathcal{S}=O(n \cdot \log M)$ in $O\left(M N^{2}+N \cdot n^{2} \log ^{2} M\right)$-time such that

$$
d_{n}^{(p)}(P, \mathcal{S}) \leq\left(1+C(\log m)^{1 / p}\right) \cdot d_{n}^{(p)}\left(P, \mathbb{R}^{N}\right)
$$

and, for $p=\infty$,

$$
d_{n}^{(\infty)}(P, \mathcal{S}) \leq C \cdot d_{n}^{(\infty)}\left(P, \mathbb{R}^{N}\right)
$$

Increasing Algorithm Efficiencies

- Apply the dimension reduction technique to find a near-equivalent low-dimensional subproblem
- Solve the low-dimensional problem using existing algorithms
- The problem is smaller size, thus faster to solve.
- For $p=\infty$, use new recovery result based on John's ellipsoid:
- Accuracy loss of $O(\sqrt{N})$ not competitive in full-dimensional space
- In reduced dimension, only loss of $O(\sqrt{n \log M})$.

Outline

(1) The Subspace Approximation Problem

(2) Results: Old and New

(3) Dimensionality Reduction

4 Discussion

Summary and Outlook

- Dimension reduction based on greedy least squares
- New suboptimal algorithm using John's ellipsoid
- Together yield fast algorithm for subspace approximation
- log-factor does not seem necessary if $p \rightarrow 2$. Can it be removed?
- Preprint available on arxiv 1312.1413

