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Subspace Approximation

@ Set up: We have many data vectors

X =1{x1,...,xy} C RN
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Subspace Approximation

@ Set up: We have many data vectors
X:{Xl,...,X/\/]} CRN

@ M and N are both large
e Want to fit X with an n-dimensional hyperplane, P ¢ RV.
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Measuring the Fit

e We can define an error vector ep € RM by

(ep); := lIx; — Mpx;l2
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e We can define an error vector ep € RM by

(ep); := lIx; — Mpx;l2

Measuring the Fit
The g-distance from X to P is

d (X, P) := |lep|q-
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The Best Fit

o Let [,(S) denote the set of all n-dimensional subspaces of a given
higher dimensional subspace S ¢ RN

@ The best fit for X € RN by an n-dimensional subspace is

dD (X RV) = inf dOX.P)= inf .
(x.’Y) i OXCP) = inf | fleplq

@ We want to find an optimal n-dimensional subspace, Pyt € 'y (IRN),
such that
dD(X, Popi) = di? (X, RY).

o Note that at least one Py exists (Stiefel manifolds are compact, and
d(9)(X,-) is continuous)
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The Problem

Compute an n-dimensional subspace, A € I, (RV), with

dD(X, A) ~ dh? (X RY) = inf  lleplo
eln

@ g = 2: This case seeks to minimize least squares error, and can be
solved by computing the top n eigenvectors of X X.

@ Many computational methods solve g = 2 case, including randomized

methods that succeed with high probability, are stable, and use only
O(MNn)-flops.

@ Other cases have been studied less, although a lot is still known...
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@ The oo-distance from X to P is defined by

d) (X, P) = max [ — e

@ The best fit for X ¢ RN by an n-dimensional subspace is

(00) NY . (0) - o .
dn (X’R > Per”:(f]RN)d (X.7) Perl?{RN)gg}(fo Mpx;l2.

o Essentially the (Euclidean) Kolmogorov n-width of X
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@ The oo-distance from X to P is defined by

d) (X, P) = max [ — e

@ The best fit for X ¢ RN by an n-dimensional subspace is

(00) NY . (0) - o .
dn (X’R>' Pe;?(f]RN)d (X.7) Pellrn](fRN)L?g))((ij Mpx;l2.

o Essentially the (Euclidean) Kolmogorov n-width of X

Our Goal When g =

Compute an n-dimensional subspace, A € I, (RV), with

d)(X, A) ~ d{™ (x,RN) — Peipf(s) max [x; — Mpxj|2
n j
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Previous Work: Slow and accurate

The Problem

Compute an n-dimensional subspace, A € I, (RV), with

dD(X, A) ~ df? (X, RY) = inf  lleplo
eln

@ 2 < g < oo [Deshpande et al. (2011)]:
Approximate by relaxing to a convex program, and then “rounding”

— O (M>2N>2?)-flops find A € [, (RV) with
d@(X, A) < C-d\? (X,RN) w.h.p.
@ q = oo [Varadarajan et al. (2007)]

Relax to a semidefinite program, then “round” its solution
— 0 (M>2N>2)—f|ops find Ael, (]RN) with

d)(X, A) < Cv/logM - d° (X, RN) w.h.p.
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Previous Work: Fast for Small Subspace Dimensions

The Problem
Compute an n-dimensional subspace, A € ', (IRN), with

dD(X, A) ~ di? (X, RY) = inf  llepla
(S

@ q = oo [Agarwal et al. (2005)]

Can compute A €T, (lRN) that has
d®)(X, A) < C/log M - d{> (X,IRN)
w.h.p. Uses MN - 26(”)-ﬂops. Based on finding “Core sets”.

o O denotes that log-factors are dropped in the O-notation.
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New Result: Approximate Solutions for g = oo

Previous Results
@ M small:
d)(X, A) < Cv/log M - d° (X, RN) using O(M>2N>2)-flops.
e M Large, n Small:
d)(X, A) < Cy/log M - d°) (X, RN) using O(MN) - 20("flops.

Theorem (lwen, FK (2013))

Let P = {p1,...,pm} C RN be symmetric, and n € {1,...,N}. Then,
one can calculate an A € I, (]RN) with

d) (P, A) < C\/n-log M - d™ (P,]RN)

in O (MN2 + Mn? - log? M - log(nlog M))-time.
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Greedy Least squares

@ Consider the n-dimensional least squares approximation A; of P.
Is it a good approximation in the sense of d(9)?

o Compared to d(®, points with large distance from A; have a larger
impact in d(9), points with a small distance have less of an impact.

o A is a good d(9)-approximation to the 90% closest points.

@ Remove those 90% points, find the n-dimensional least-squares
approximation A5 of the remaining points. Again this is a good
d(@-approximation to 90% of the points.

o lterate, O(log M) iterations cover the whole set P.
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Example
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Example
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Reducing the problem dimension

log M
o A:= [J Ayisan nlog M-dimensional subspace that provides a
(=1
good approximation in the sense of d(@).

dP(P,s) < dP)(P,S) + dP (P.RY). (1)

implies that A contains a near-optimal n-dimensional subspace
approximation.
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New Results: Dimensionality Reduction

@ Previous Result [Deshpande and Varadarajan (2007)]:
Finds O ((n + 1/€)9"3)-dimensional subspace, S C RV, with

dD(X,8) < (1 +¢)-d?P (X,R’V)

w.h.p.. Uses O(MN(n+ 1/¢)9+3)-flops for 1 < g < oo, € > 0.
Theorem (lwen, FK (2013))

For P = {p1,...,pm} C RN symmetric, one can find a subspace S ¢ RN

with diimS = O(n - log M) in O (MN? + N - n? log® M)-time such that

dP\(P,8) < (1 + C(log m)l/p> - dP (P,]R’V)

and, for p = oo,

d(P,S) < C - df™ (P,]RN> .
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Increasing Algorithm Efficiencies

@ Apply the dimension reduction technique to find a near-equivalent
low-dimensional subproblem

@ Solve the low-dimensional problem using existing algorithms

@ The problem is smaller size, thus faster to solve.

@ For p = o0, use new recovery result based on John's ellipsoid:

o Accuracy loss of O(v/N) not competitive in full-dimensional space
o In reduced dimension, only loss of O(v/nlog M).
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@ Discussion
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Summary and Outlook

Dimension reduction based on greedy least squares

New suboptimal algorithm using John's ellipsoid

Together yield fast algorithm for subspace approximation

log-factor does not seem necessary if p — 2. Can it be removed?

Preprint available on arxiv 1312.1413
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