

Reduced order modeling of parameter dependent nonlinear eigenvalue bifurcation problems

Volker Mehrmann

TU Berlin, Institut für Mathematik

with S. Quraishi, C. Schröder

Outline

(1) Sparsity in PDE solution

Industrial application
Model reduction/sparsification Eigenvalue Methods

Sparsity in PDE solutions

\triangleright Numerical solution of PDE $L u=f$, with differential operator L in a domain $\Omega \subset \mathbb{R}^{d}$ with boundary Γ and appropriate boundary conditions given on Γ.
\triangleright Let \mathcal{V} be an ansatz function space in which we know or expect the solution to be.
\triangleright Choose another (or the same) space \mathcal{W} as test space.
\triangleright Classical Galerkin or Petrov-Galerkin approach: Seek solution u in some finite dimensional ansatz space $\mathcal{V}_{n} \subset \mathcal{V}$ (spanned by a basis or frame) $\mathcal{B}=\left\{\phi_{1}, \ldots, \phi_{n}\right\}$, i.e. the solution is represented as $u=\sum_{i=1}^{n} u_{i} \phi_{i}$ and $(L u-f, w)=0$ of $|(L u-f, w)|<\epsilon$ for all $w \in W$, where ϵ is a given tolerance.

Questions

\triangleright Can u be sparsely represented in \mathcal{V} ? Sure if the solution lies in \mathcal{V}, just take $u \in \mathcal{B}$.
\triangleright Can u be sparsely represented in $\mathcal{V}_{n} \subset \mathcal{V}$.
\triangleright What is a good basis/frame of \mathcal{V}_{n} so that u can be sparsely represented.
\triangleright What are conditions for the basis/frame so that the finite dimensional version $L_{n} u_{n}=f_{n}$ has a sparse L_{h}, or a sparse inverse L_{h}^{-1}.
\triangleright Is there a cheap $(O(n))$ method to get a sparse solution?
\triangleright Can we have all this together?
\triangleright Is there a 'eierlegende Wollmilchsau', a swiss army knife for PDE solution?

Outline

(1) Sparsity in PDE solution
 (2) Industrial application
 Model reduction/sparsification Eigenvalue Methods

Disk brake squeal

Current project with Audi and Opel and several SMEs (2012-14) Joint with N. Gräbner, U. von Wagner, TU Berlin, Mechanics and N. Hoffmann, TU Hamburg-Harburg, Mechanics,
S. Quraishi, C. Schröder, TU Berlin Mathematics. Goals:
\triangleright Develop mechanics based discrete FE model of disk brake.
\triangleright Identification of energy dissipation effects.
\triangleright Model and simulate nonlinear effects in brake squeaking.
\triangleright Reduced order (compressed) model for a given range of disk speeds.
\triangleright Sparse representation of operator and solution.
\triangleright Finally, passive and active remedies to avoid squeaking.

Disk brake

View of the brake model

Finite element model

Dynamics of disc brake

Differential-algebraic equation (DAE)

$$
M \ddot{q}+\left(C_{1}+\frac{\omega_{\text {ref }}}{\omega} C_{r}+\frac{\omega}{\omega_{\text {ref }}} C_{g}\right) \dot{q}+\left(K_{1}+K_{r}+\left(\frac{\omega}{\omega_{\text {ref }}}\right)^{2} K_{g}\right) q=f .
$$

$\triangleright M$ is symmetric semi-definite mass matrix,
$\triangleright C=C_{1}+C_{g}+C_{r}$ is a 'damping matrix'

- C_{1} is symmetric,
- C_{g} (due to gyroscopic effects) is skew-symmetric,
- C_{r} is friction induced damping (symmetric),
- ω is the angular velocity, $\omega_{\text {ref }}$ reference.
$\triangleright K=K_{1}+K_{r}+K_{g}$ is a 'stiffness matrix'
- K_{1} is symmetric, dominant part,
- K_{r} describes circulatory effects (non symmetric),
- K_{g} is geometric stiffness matrix.

Complex eigenvalue analysis

\triangleright Setting $q(t)=e^{\lambda t} u$, we get a quadratic eigenvalue problem (QEP):

$$
P_{\omega}(\lambda) u=\left(\lambda^{2} M+\lambda C(\omega)+K(\omega)\right) u=0 .
$$

\triangleright Likelihood of brake to squeal is correlated with magnitude of positive real part of eigenvalue.
\triangleright Compute eigenvalues in right half plane for lots of parameter values e.g. $\omega \in(2 \pi, 2 \pi \times 20)$.

Nature of FE matrices

$C=C_{1}+\frac{\omega_{\text {ref }}}{\omega} C_{r}+\frac{\omega}{\omega_{r e t}} C_{g}$,					
$\begin{aligned} & K=K_{1}+K_{r}+\left(\frac{\omega}{\omega_{\text {ref }}}\right)^{2} K_{g} \\ & n=842,638, \omega=17 \times 2 \pi \end{aligned}$					$\begin{gathered} C_{1} \\ \square \\ \substack{n z=3 e+02 \\ C_{R}} \end{gathered}$
matrix	pattern	2-norm	structural rank		
M	symm	5e-2	842,623	$\stackrel{\circ}{\circ}$	
D_{1}	symm	1e-19	160	$n z=3 e+0$	$n z=4 e+0$
D_{G}	skew	1.5e-1	217500	K_{1}	K_{R}
D_{R}	symm	7e-2	2120		
K_{1}	symm	2e13	full	$n z=4 e+07$	$n z=1 e+05$
K_{R}	-	3 C 4	2110	${ }_{6}$	
$K_{G E O}$	symm	40	842,623		

Challenges

\triangleright The discrete modeling is done directly with matrices, so space discretization cannot easily be done in an adaptive FEM way.
\triangleright The set of ansatz functions (dictionary) is fixed, not a choice.
\triangleright It is difficult to enrich the space with 'better functions'.
\triangleright We have to work in an algebraic framework.
\triangleright How to bring in sparsity?

Outline

(1) Sparsity in PDE solution Eigenvalue Methods

Projection approach

\triangleright Project QEP: $P_{\omega}(\lambda) x=\left(\lambda^{2} M+\lambda C(\omega)+K(\omega)\right) x=0$ into a small d-dimension subspace Q independent of ω.
\triangleright Projected QEP

- $\tilde{P}_{\omega}(\lambda)=Q^{T} P_{\omega}(\lambda) Q=\left(\lambda^{2} Q^{T} M Q+\lambda Q^{T} C(\omega) Q+Q^{T} K(\omega) Q\right)$
\triangleright How to choose Q to get sufficiently accurate approximation of eigenvalues with positive real part;
\triangleright How to choose Q to capture the important (to analyze and modify the squeaking) dynamics of the system;
\triangleright Ideally Q should contain good approximations to the wanted eigenvectors for all parameter values;
\triangleright We should be able to construct Q in a reasonable amount of time.

Model reduction approaches

1. Traditional approach, often with Algebraic Multi Level Sub-structuring (AMLS).
2. New proper orthogonal decomposition (POD) based approach.

Traditional approach

\triangleright Traditional approach to get a subspace Q :

- $Q_{T R A D}$ matrix of dominant eigenvectors.
- Select dominant eigenvectors by solving the GEVP $K_{1} v=-\lambda^{2} M v$
\triangleright Advantages:
- Only need to solve a large sparse, symmetric and definite GEVP.
\triangleright Disadvantages:
- Subspace does not take into account damping and parameter dependence.
- The reduced model often does not capture the important dynamics.
- Poor approximation of true eigenpairs.

Real eigenforms

Undamped model without circulatory and gyroscopic forces: $\left(\lambda^{2} M+K+K_{g}\right) x=0$.

Figure: Trad. eigenmode at 1859 Hz

Complex eigenforms

Figure: Eigenform at 1873 Hz with positive real part and a phase of 0, 45, 90, and 135.

Measurement of brake vibrations

Gitter der Messpunkte

Betriebsschwingform $(1750 \mathrm{~Hz})$

Measurements indicate subcritical Hopf bifurcations, i.e. eigenvalues crossing imaginary axis for certain disk frequencies. Traditional approach deals only with purely imaginary evs.

Stability regions, linear vs. nonlinear

Bifurcation diagram linear analysis (blue), nonlinear analysis (red). Coefficient of friction μ via disk frequency Ω.

Outline

(1) Sparsity in PDE solution Industrial application Model reduction/sparsification

(4) Eigenvalue Methods

Linearization

We use the classical companion linearization to turn the quadratic into a linear generalized eigenvalue problem

$$
\boldsymbol{A}_{\tau}(\omega) x(\omega)=\lambda_{\tau} B_{\tau}(\omega) x(\omega)
$$

with

$$
\left[\begin{array}{cc}
K_{\tau}(\omega) & 0 \\
0 & I_{n}
\end{array}\right]\left[\begin{array}{c}
x(\omega) \\
\lambda_{\tau}(\omega) x(\omega)
\end{array}\right]=\lambda_{\tau}(\omega)\left[\begin{array}{cc}
-C_{\tau}(\omega) & -M_{\tau} \\
I_{n} & 0
\end{array}\right]\left[\begin{array}{c}
x(\omega) \\
\lambda_{\tau} x(\omega)
\end{array}\right] .
$$

Shift and invert Arnoldi

\triangleright Compute eigenvalue and eigenvector approximations near a given shift point τ via the Shift-and-invert Arnoldi method.
\triangleright Given $v_{0} \in \mathbb{C}^{n}$ and $A \in \mathbb{C}^{n \times n}$, the Krylov subspace of \mathbb{C}^{n} of order k associated with A is

$$
\mathcal{K}_{k}\left(A, v_{0}\right)=\operatorname{span}\left\{v_{0}, A v_{0}, A^{2} v_{0} \ldots, A^{k-1} v_{0}\right\} .
$$

\triangleright Arnoldi obtains an orthonormal basis of this space and an Arnoldi relation

$$
A V_{k}=V_{k} H_{k}+f e_{k}^{*},
$$

\triangleright The columns of V_{k} are approximation of k-dimensional invariant subspace of A.
$\triangleright H_{k}$ is upper Hessenberg, its evs are Ritz approximations to evs of A associated to V_{k}.
\triangleright We apply Arnoldi with shift τ and frequency ω to the matrix $A=B_{\tau}(\omega)^{-1} A_{\tau}(\omega)$. In every step we have to multiply with $A_{\tau}(\omega)$ and to solve a linear system with the matrix $B_{\tau}(\omega)$.
\triangleright We construct a measurement matrix $X \in \mathbb{R}^{n, k m}$ containing the 'unstable' eigenvectors for a sequence of angular velocities,

$$
X=\left[X\left(\omega_{1}\right), X\left(\omega_{2}\right), X\left(\omega_{3}\right), \ldots X\left(\omega_{k}\right)\right]
$$

\triangleright Perform a singular value decomposition (SVD) of X

$$
X=\left[u_{1}, u_{2}, u_{3}, \ldots u_{k m}\right]\left[\begin{array}{ccccc}
\sigma_{1} & & & & \\
& \sigma_{2} & & & \\
& & \sigma_{3} & & \\
& & & \ddots & \\
& & & & \sigma_{k m}
\end{array}\right]\left[v_{1}, v_{2}, v_{3}, \ldots v_{k m}\right]^{T}
$$

Compression

\triangleright We use approximation

provided $\sigma_{d+1}, \sigma_{d+2}, \ldots \sigma_{k m}$ are small.
\triangleright We choose $Q=\left[u_{1}, u_{2}, u_{3}, \ldots u_{d}\right]$ to project $P_{\omega}(\lambda)$.

Some results on small $n \approx 5000$ matrices

\triangleright POD for uniformly spaced p parameters

$$
p=2^{j}+1, j=0,1,2,3
$$

\triangleright Increasing dimension does not improve TRAD approach

Realistic $n \approx 800,000$ matrices

\triangleright The evp is completely singular M, D have a 12 dimensional common nullspace and K has relative size 10^{-14} in that nullspace.
\triangleright Shifted matrix $\widetilde{K_{\tau}}=\tau^{2} \widetilde{M}+\tau \widetilde{C}+\widetilde{K}$ has condition number $\sim 10^{14}$ for a range of target points. Most likely due to bad FEM model.
\triangleright Need to solve many large scale evps to get measurement matrix $\widetilde{X}=\left[X\left(\omega_{1}\right), X\left(\omega_{2}\right), X\left(\omega_{3}\right) \cdots X\left(\omega_{p}\right)\right]$.
\triangleright It is not clear which parameter values ω_{i} are important.
\triangleright Where to look for eigenvalues in the right half plane.
\triangleright Scaling of matrices with scalar parameters to make them comparable in norm.
\triangleright Diagonal scaling of matrices to improve conditioning.

Which shifts to trust?

\triangleright Different shift gives different evs in the overlapping region.

Some CPU timings

\triangleright Construction of subspace (One time investment)

- Each shift of eigs (Arnoldi method) ~ 20 min
- Eigenpairs for each parameter value ~ 3 targets ~ 1 hour
- POD measurement vectors for 2 parameters ~ 2 hours (or just 20 min on 6 processors)
- Constructing POD subspace (SVD) ~ 1 min
- Constructing 300 dimensional TRAD subspace $\sim 45 \mathrm{~min}$
\triangleright Solution for every ω
- Solution with 300 dimensional TRAD subspace ~ 30 sec
- Solution with 100 dimensional POD subspace $\sim 10 \mathrm{sec}$

Evs for $\omega=17 \times 2 \pi$

\triangleright POD model for $\omega=[1,20] \times 2 \pi$
\triangleright Color coded with residual $\mathcal{R}=\frac{\left\|\left(\lambda_{i}^{2} M+\lambda_{i} C+K\right) u_{i}\right\|_{\infty}}{\left\|\left(1 \lambda_{i}{ }^{2}|M|+\left|\lambda_{i} \| C\right|+|K|\right) \mid u_{i}\right\|_{\infty}}$
$\triangleright U_{P O D}$: 100, $U_{\text {TRAD }}: 300$ (Industry Recommendation)

\triangleright all +'s are red (TRAD approach has very high residual)

TRAD misses important eigenvalue

TRAD misses important eigenvalue

\triangleright Place shift point

$\tau=7.5+16500 i$ near an eigenvalue found from POD
Running eigs with this shift result in an exact eigenvalue
$\lambda=7.5414+16508 i$ very close to POD result

TRAD misses important eigenvalue

\triangleright Place shift point

$\tau=7.5+16500 i$ near an eigenvalue found from POD
Running eigs with this shift result in an exact eigenvalue
$\lambda=7.5414+16508 i$
${ }^{11}$ very close to POD result
111.5
\triangleright TRAD misses it

What did we learn?

\triangleright POD is better than traditional approach but not satisfactory.
\triangleright Discrete FE and quasi-uniform grids followed by expensive model reduction is really a waste.
\triangleright Numerical linear algebra methods that we currently use are not efficient (in particular those in commercially available codes).
\triangleright For evp everything is partially heuristic.
\triangleright Can we get error estimates? Can we bring in adaptivity? Dictionary learning?
\triangleright Can we disprove the engineers that say that uniform mesh and brute force linear algebra is best.

A compressed sensing point of view

\triangleright The vectors $q(t)$ represent coefficient vectors for the infinite dimensional solution represented in an FEM basis $\phi_{1}(x, t), \ldots, \phi_{N}(x, t)$ in space-time.
\triangleright The eigenvectors $x_{i}(\omega)$ also represent coefficient vectors in this FEM basis to synthesize the fundamental solution matrix of the DAE.
\triangleright Every eigenvector $x_{i}(\omega)$ is the coefficient vector of a non-sparse function $\xi_{i}(x, \omega, t)$, because it typically linearly combines many FEM basis functions.
\triangleright The POD basis represents a small set of linear combinations of the $\xi_{i}(\omega)$, given by functions $\psi_{j}(x, t) j=1, \ldots, d$ which are independent of ω.
\triangleright Consider the dictionary
$\mathcal{D}=\left\{\phi_{1}(x, \omega, t), \ldots, \phi_{N}(x, \omega, t)\right\} \cup\left\{\xi_{1}(x, \omega, t), \ldots, \xi_{\ell}(x, \omega, t)\right\}$.
\triangleright Choosing the POD basis is selecting a small 'sparse' set of linear combinations from \mathcal{D}.

Conclusions and Questions.

\triangleright Real world industrial problems as motivation for studying, functions spaces, dictionaries, ...
\triangleright Can we use this analogy to get convergence proofs, error bounds, complexity analysis?
\triangleright What kind of sparsity should we go for?
\triangleright How should we construct FE dictionaries?
\triangleright Can we convince the engineers?
\triangleright Can we make this practical?
\triangleright Can we remove the brake squeal?

Thank you very much for your attention.

