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Sparsity in PDE solutions

. Numerical solution of PDE Lu = f , with differential operator L
in a domain Ω ⊂ Rd with boundary Γ and appropriate
boundary conditions given on Γ.

. Let V be an ansatz function space in which we know or expect
the solution to be.

. Choose another (or the same) spaceW as test space.

. Classical Galerkin or Petrov-Galerkin approach: Seek solution
u in some finite dimensional ansatz space Vn ⊂ V (spanned
by a basis or frame) B = {φ1, . . . , φn}, i.e. the solution is
represented as u =

∑n
i=1 ui φi and (Lu − f ,w) = 0 of

|(Lu − f ,w)| < ε for all w ∈W , where ε is a given tolerance.
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Questions

. Can u be sparsely represented in V? Sure if the solution lies
in V, just take u ∈ B.

. Can u be sparsely represented in Vn ⊂ V.

. What is a good basis/frame of Vn so that u can be sparsely
represented.

. What are conditions for the basis/frame so that the finite
dimensional version Lnun = fn has a sparse Lh, or a sparse
inverse L−1

h .
. Is there a cheap (O(n)) method to get a sparse solution?
. Can we have all this together?
. Is there a ’eierlegende Wollmilchsau’, a swiss army knife for

PDE solution?
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Disk brake squeal

Current project with Audi and Opel and several SMEs (2012-14)
Joint with N. Gräbner, U. von Wagner, TU Berlin, Mechanics and
N. Hoffmann, TU Hamburg-Harburg, Mechanics,
S. Quraishi, C. Schröder, TU Berlin Mathematics.
Goals:
. Develop mechanics based discrete FE model of disk brake.
. Identification of energy dissipation effects.
. Model and simulate nonlinear effects in brake squeaking.
. Reduced order (compressed) model for a given range of disk

speeds.
. Sparse representation of operator and solution.
. Finally, passive and active remedies to avoid squeaking.
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Disk brake

View of the brake model

MOR EVPs 7 / 35



Finite element model
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Dynamics of disc brake
Differential-algebraic equation (DAE)

Mq̈ + (C1 +
ωref

ω
Cr +

ω

ωref
Cg)q̇ + (K1 + Kr + (

ω

ωref
)2Kg)q = f .

. M is symmetric semi-definite mass matrix,

. C = C1 + Cg + Cr is a ’damping matrix’
I C1is symmetric,
I Cg (due to gyroscopic effects) is skew-symmetric,
I Cr is friction induced damping (symmetric),
I ω is the angular velocity, ωref reference.

. K = K1 + Kr + Kg is a ’stiffness matrix’
I K1 is symmetric, dominant part,
I Kr describes circulatory effects (non symmetric),
I Kg is geometric stiffness matrix.
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Complex eigenvalue analysis

. Setting q(t) = eλtu, we get a quadratic eigenvalue problem
(QEP):

Pω(λ)u = (λ2M + λC(ω) + K (ω))u = 0.

. Likelihood of brake to squeal is correlated with magnitude of
positive real part of eigenvalue.

. Compute eigenvalues in right half plane for lots of parameter
values e.g. ω ∈ (2π, 2π × 20).
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Nature of FE matrices

C = C1 + ωref
ω

Cr + ω
ωref

Cg,
K = K1 + Kr + ( ω

ωref
)2Kg

n = 842,638, ωref = 5, ω = 17× 2π
matrix pattern 2-norm structural

rank
M symm 5e-2 842,623
D1 symm 1e-19 160
DG skew 1.5e-1 217500
DR symm 7e-2 2120
K1 symm 2e13 full
KR - 3e4 2110
KGEO symm 40 842,623

MOR EVPs 11 / 35



Challenges

. The discrete modeling is done directly with matrices, so space
discretization cannot easily be done in an adaptive FEM way.

. The set of ansatz functions (dictionary) is fixed, not a choice.

. It is difficult to enrich the space with ’better functions’.

. We have to work in an algebraic framework.

. How to bring in sparsity?
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Projection approach

. Project QEP: Pω(λ)x = (λ2M + λC(ω) + K (ω))x = 0 into a
small d-dimension subspace Q independent of ω.

. Projected QEP
I P̃ω(λ) = QT Pω(λ)Q = (λ2QT MQ + λQT C(ω)Q + QT K (ω)Q)

. How to choose Q to get sufficiently accurate approximation of
eigenvalues with positive real part;

. How to choose Q to capture the important (to analyze and
modify the squeaking) dynamics of the system;

. Ideally Q should contain good approximations to the wanted
eigenvectors for all parameter values;

. We should be able to construct Q in a reasonable amount of
time.
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Model reduction approaches

1. Traditional approach, often with Algebraic Multi Level
Sub-structuring (AMLS).

2. New proper orthogonal decomposition (POD) based
approach.
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Traditional approach

. Traditional approach to get a subspace Q:
I QTRAD matrix of dominant eigenvectors.
I Select dominant eigenvectors by solving the GEVP K1v = −λ2Mv

. Advantages:
I Only need to solve a large sparse, symmetric and definite GEVP.

. Disadvantages:
I Subspace does not take into account damping and parameter

dependence.
I The reduced model often does not capture the important

dynamics.
I Poor approximation of true eigenpairs.
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Real eigenforms
Undamped model without circulatory and gyroscopic forces:
(λ2M + K + Kg)x = 0.

Figure: Trad. eigenmode at 1859 Hz

Eigenmodes at 1859 Hz.
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Complex eigenforms

Figure: Eigenform at 1873 Hz with positive real part and a phase of 0,
45, 90, and 135.
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Measurement of brake vibrations

Measurements indicate subcritical Hopf bifurcations, i.e.
eigenvalues crossing imaginary axis for certain disk frequencies.
Traditional approach deals only with purely imaginary evs.
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Stability regions, linear vs. nonlinear

Bifurcation diagram linear analysis (blue), nonlinear analysis
(red). Coefficient of friction µ via disk frequency Ω.
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Linearization

We use the classical companion linearization to turn the
quadratic into a linear generalized eigenvalue problem

Aτ (ω)x(ω) = λτBτ (ω)x(ω)

with[
Kτ (ω) 0

0 In

] [
x(ω)

λτ (ω)x(ω)

]
= λτ (ω)

[
−Cτ (ω) −Mτ

In 0

] [
x(ω)
λτx(ω)

]
.
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Shift and invert Arnoldi
. Compute eigenvalue and eigenvector approximations near a

given shift point τ via the Shift-and-invert Arnoldi method.
. Given v0 ∈ Cn and A ∈ Cn×n, the Krylov subspace of Cn of

order k associated with A is

Kk (A, v0) = span{v0,Av0,A2v0...,Ak−1v0}.
. Arnoldi obtains an orthonormal basis of this space and an

Arnoldi relation
AVk = VkHk + fe∗k ,

. The columns of Vk are approximation of k -dimensional
invariant subspace of A.

. Hk is upper Hessenberg, its evs are Ritz approximations to
evs of A associated to Vk .

. We apply Arnoldi with shift τ and frequency ω to the matrix
A = Bτ (ω)−1Aτ (ω). In every step we have to multiply with
Aτ (ω) and to solve a linear system with the matrix Bτ (ω).
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SVD projection

. We construct a measurement matrix X ∈ Rn,km containing the
’unstable’ eigenvectors for a sequence of angular velocities,

X = [X (ω1),X (ω2),X (ω3), ...X (ωk )]

. Perform a singular value decomposition (SVD) of X

X = [u1,u2,u3, ...ukm]


σ1

σ2

σ3
. . .

σkm

 [v1, v2, v3, ...vkm]T
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Compression

. We use approximation

X ≈ [u1,u2,u3, ...ud ]


σ1

σ2

σ3
. . .

σd

 [v1, v2, v3, ...vd ]T

provided σd+1, σd+2, ...σkm are small.
. We choose Q = [u1,u2,u3, ...ud ] to project Pω(λ).
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Some results on small n ≈ 5000 matrices
. POD for uniformly spaced p parameters

p = 2j + 1, j = 0,1,2,3

. Increasing dimension does not improve TRAD approach
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Realistic n ≈ 800,000 matrices

. The evp is completely singular M,D have a 12 dimensional
common nullspace and K has relative size 10−14 in that
nullspace.

. Shifted matrix K̃τ = τ 2M̃ + τ C̃ + K̃ has condition number
∼ 1014 for a range of target points. Most likely due to bad FEM
model.

. Need to solve many large scale evps to get measurement
matrix X̃ = [X (ω1), X (ω2), X (ω3) · · · X (ωp)].

. It is not clear which parameter values ωi are important.

. Where to look for eigenvalues in the right half plane.

. Scaling of matrices with scalar parameters to make them
comparable in norm.

. Diagonal scaling of matrices to improve conditioning.
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Which shifts to trust?

. Different shift gives different evs in the overlapping region.
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Some CPU timings

. Construction of subspace (One time investment)
I Each shift of eigs (Arnoldi method) ∼ 20 min
I Eigenpairs for each parameter value ∼ 3 targets ∼ 1 hour
I POD measurement vectors for 2 parameters ∼ 2 hours (or just 20

min on 6 processors)
I Constructing POD subspace (SVD) ∼ 1 min
I Constructing 300 dimensional TRAD subspace ∼ 45 min

. Solution for every ω
I Solution with 300 dimensional TRAD subspace ∼ 30 sec
I Solution with 100 dimensional POD subspace ∼ 10 sec
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Evs for ω = 17× 2π
. POD model for ω = [1,20]× 2π
. Color coded with residual R =

‖(λ2
i M+λi C+K )ui‖∞

‖(|λi |2|M|+|λi ||C|+|K |)|ui |‖∞
. UPOD: 100, UTRAD: 300 (Industry Recommendation)

. all +’s are red (TRAD approach has very high residual)
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TRAD misses important eigenvalue

. Place shift point
τ = 7.5 + 16500i near
an eigenvalue found
from POD

. Running eigs with this
shift result in an exact
eigenvalue
λ = 7.5414 + 16508i
very close to POD result

. TRAD misses it
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What did we learn?

. POD is better than traditional approach but not satisfactory.

. Discrete FE and quasi-uniform grids followed by expensive
model reduction is really a waste.

. Numerical linear algebra methods that we currently use are
not efficient (in particular those in commercially available
codes).

. For evp everything is partially heuristic.

. Can we get error estimates? Can we bring in adaptivity?
Dictionary learning?

. Can we disprove the engineers that say that uniform mesh
and brute force linear algebra is best.
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A compressed sensing point of view
. The vectors q(t) represent coefficient vectors for the infinite

dimensional solution represented in an FEM basis
φ1(x , t), . . . , φN(x , t) in space-time.

. The eigenvectors xi(ω) also represent coefficient vectors in
this FEM basis to synthesize the fundamental solution matrix
of the DAE.

. Every eigenvector xi(ω) is the coefficient vector of a
non-sparse function ξi(x , ω, t), because it typically linearly
combines many FEM basis functions.

. The POD basis represents a small set of linear combinations
of the ξi(ω), given by functions ψj(x , t) j = 1, . . . ,d which are
independent of ω.

. Consider the dictionary
D = {φ1(x , ω, t), . . . , φN(x , ω, t)} ∪ {ξ1(x , ω, t), . . . , ξ`(x , ω, t)}.

. Choosing the POD basis is selecting a small ’sparse’ set of
linear combinations from D.
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Conclusions and Questions.

. Real world industrial problems as motivation for studying,
functions spaces, dictionaries, . . .

. Can we use this analogy to get convergence proofs, error
bounds, complexity analysis?

. What kind of sparsity should we go for?

. How should we construct FE dictionaries?

. Can we convince the engineers?

. Can we make this practical?

. Can we remove the brake squeal?
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Thank you very much
for your attention.
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