
Compressed Sensing and High-Resolution
Image Inversion

Ali Pezeshki
ECE and Mathematics

Colorado State University

Matheon Workshop 2013
Compressed Sensing and Its Applications

TU Berlin, Berlin, Germany

December 9, 2013



Acknowledgements

Pooria Pakrooh Wenbing Dang Yuejie Chi

Louis Scharf Robert Calderbank Edwin Chong

Supported by NSF under grants CCF-1018472 and CCF-1017431



Image Inversion

y(t) =
kX

i=1

 (⌫i )✓i �! {y(ti )}mi=1

�! {⌫̂i , ✓̂i}ki=1



Classical Inversion vs Compressed Sesning

I Classical: Matched filtering

I Sequence of rank-one subspaces, or one-dimensional test
images, is matched to the measured image by filtering or
correlating or phasing.

I Test images is generated by scanning a prototype image (e.g.,
a waveform or a steering vector) through frequency,
wavenumber, doppler, and/or delay.

I Extends to subspace matching for those cases in which the
model for the image is comprised of several dominant modes.

I Extends to whitened matched filter, or minimum variance
unbiased (MVUB) filter, or generalized sidelobe canceller.
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Classical Inversion vs Compressed Sesning

I Classical: Estimation in Separable Model

I Low-order separable modal representation for the field.

I Estimates of linear parameters (complex amplitudes of modes)
and nonlinear mode parameters (frequency, wavenumber,
delay, and/or doppler) are extracted, usually based on
maximum likelihood, or some variation on linear prediction,
using l2 minimization.

I SNR, Fisher Information, Cramer-Rao Bound (CRB),
Kullback-Leibler divergence, Bayesian CRB, Threshold E↵ects.

I Sampling: Any subsampling of the measured image has
consequences for resolution (or bias) and for variability (or
variance).
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Classical Inversion vs Compressed Sesning

I Compressed Sensing:

I Subsampling has manageable consequences for image inversion
provided we have known sparsity structure.

I Typically employs randomly drawn linear combinations.



Agenda

1. Fisher Information: What is the impact of compressive
sampling on Fisher information and Cramer-Rao bound (CRB)
for estimating nonlinear parameters?

2. Breakdown Thresholds: What is the impact of compressive
sampling on SNR thresholds at which mean-squared error in
estimating parameters deviate sharply from the CRB?

3. Model mismatch: What is the sensitivity of compressed
sensing to model mismatch? Can these sensitivities be
mitigated?
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Fisher Information and Cramer-Rao Bound

I Fisher Information:

J(✓) = E [(
@ log f (y;✓)

@✓
)(
@ log f (y;✓)

@✓
)H ].

I Cramer-Rao Bound: The inverse J�1(✓) lower bounds the
error covariance matrix for any unbiased estimator of ✓.



CS, Fisher Information, and CRB

I Complex Normal model:

y = s(✓)+n 2 Cn; y = CN n[s(✓),R]

I Fisher information matrix:

J(✓) = GH(✓)R�1G(✓)

=
1

�2

GH(✓)G(✓), when R = �2I

G(✓) = [g
1

(✓), . . . , gk(✓)]; gi (✓) =
@s(✓)

@✓i

I Cramer-Rao lower bound:

(J�1(✓))ii = �2(gT
i (✓)(I�PGi(✓))gi (✓))

�1

When one sensitivity looks

likes a linear combination of

others, performance is poor.



CS, Fisher Information, and CRB

I Compressive measurement:

z = �y = �[s(✓) + n] 2 Cm;

I Fisher information matrix

Ĵ(✓) =
1

�2

GH(✓)P�HG(⌫) = ĜH(✓)Ĝ(✓)

Ĝ(✓) = [ĝ
1

(✓), . . . , ĝk(✓)]; ĝi (✓) = P�H

@s(✓)

@✓i

I Cramer-Rao lower bound:

(Ĵ�1(✓))ii = �2(ĝT
i (✓)(I�PĜi(✓)

)ĝi (✓))
�1

Compressive measurement

reduces the distance between

subspaces: loss of

information.



CS, Fisher Information, and CRB

I Question: What is the impact of compressive sampling on
the Fisher information matrix, Cramer-Rao bound (CRB), and
Kullback-Leibler divergence for estimating parameters?



Johnson-Lindenstrauss Lemma

I JL Lemma: For any ✏ 2 (0, 1), a random linear
transformation � : Rn ! Rm is said to satisfy an ✏�JL type
Lemma over a set of vectors Q ⇢ Rn with probability at least
1� � if

Pr

�8q 2 Q : (1� ✏)kqk2
2

 k�qk2
2

 (1 + ✏)kqk2
2

� � 1� �.

I For random matrices with i.i.d. N (0, 1/m) entries �ij , we
have �  2|Q|e�mc

0

(✏) where c

0

(✏) = ✏2/4� ✏3/6 [Baraniuk,
Davenport, Devore, and Wakin ’08; Dasgupta and Gupta ’02].



Subspace Johnson-Lindenstrauss Lemma

I Subspace JL Lemma: [Sarlos ’06] Let � : Rn ! Rm,
m < n, and ✏ 2 (0, 1). Then � satisfies the ✏�JL type
Lemma over any arbitrary p-dimensional subspace hVi of Rn

with probability at least 1� �, provided that it satisfies the
✏0�JL type Lemma over any set Q ⇢ Rn of d(2pp/✏0)pe
vectors with probability at least 1� �, where ✏0 satisfies

(
3✏0

1� ✏0
)2 + 2(

3✏0

1� ✏0
) = ✏.



CS, Fisher Information, and CRB

Theorem: [Pakrooh, P., Scharf, Chi ’13]

(a) For any compression matrix, we have

(J�1(✓))ii  (Ĵ�1(✓))ii  1/�min(G
T (✓)P�TG(✓))

(b) For a random compression matrix, we have

(Ĵ�1(✓))ii  �max(J�1(✓))

C (1� ✏)

with probability at least 1� � � �0, where
I 1� � is the lower bound on the probability that � satisfies the
✏�JL type lemma for any p-dimensional subspace, and

I 1� �0 is the probability that �min((��T )�1) is larger than C .



CS, Fisher Information, and CRB

I For tr (Ĵ�1(✓)) we have

tr(J�1(✓))  tr(Ĵ�1(✓))  p�max(J�1(✓))

C (1� ✏)

where again the upper bound holds with probability at least
1� � � �0.

I We can also bound det(Ĵ�1(✓)).



CRB after Compression

Bounds on the CRB for

�2⇡/n  ✓
2

 2⇡/n,
m = 3000, n = 8192

Upper bounds on � versus the number

of measurements m for n = 8192 and

✏ = 0.66 (red) and ✏ = 0.33 (green)



CS and Kullback-Leibler Divergence

KL divergence between N (x(✓),R) and N (x(✓0),R):

D(✓,✓0) =
1

2
[(x(✓)� x(✓0))TR�1(x(✓)� x(✓0))].

I After compression with �:

D̂(✓,✓0) =
1

2
[(x(✓)� x(✓0))T�T (�R�T )�1�(x(✓)� x(✓0))].

I With white noise R = �2I:

D̂(✓,✓0) =
1

2�2
[(x(✓)� x(✓0))TP�T (x(✓)� x(✓0))].

Theorem: [Pakrooh, P., Scharf, and Chi (ICASSP’13)]

C (1� ✏)D(✓,✓0)  D̂(✓,✓0)  D(✓,✓0)

with probability at least 1� � � �0, where �, �0.



References on CS, Fisher Infromation, and CRB
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Work by Others

I Nielsen, Christensen, and Jensen (ICASSP’12): Bounds on
mean value of Fisher Information after random compression.

I Ramasamy, Venkateswaran, and Madhow (Asilomar’12):
Bounds on Fisher information after compression in a di↵erent
noisy model.

I Babadi, Kalouptsidis, and Tarokh (TSP 2009): Existence of
an estimator (“Joint Typicality Estimator”) that
asymptotically achieves the CRB in linear parameter
estimation with random Gaussian compression matrices.



Breakdown Threshold and Subspace Swaps



Breakdown Threshold and Subspace Swaps

I Threshold e↵ect: Sharp
deviation of Mean
Squared Error (MSE)
performance from
Cramer-Rao Bound
(CRB).

I Breakdown threshold:
SNR at which a threshold
e↵ect occurs with
non-negligible probability. Donald W. Tufts (1933-2012)



Breakdown Threshold and Subspace Swaps

I Subspace Swap: Event in which
measured data is more accurately
resolved by one or more modes of
an orthogonal subspace to the
signal subspace.

I Cares only about what the data
itself is saying.

I Bound probability of a subspace
swap to predict breakdown SNRs.



Signal Model: Mean Case

I Before compression:

y : CN n[Hu,�2I]

I After compression with left-orthogonal � 2 Cm⇥n,m < n:

y : CNm[Gu,�
2I], G = �H



Signal Model: Covariance Case

I Before compression:

y : CN n[0,HRuuH
H + �2I]

I After compression with left-orthogonal � 2 Cm⇥n,m < n:

y : CNm[0,GRuuG
H + �2I], G = �H

Assume data consists of L iid realizations of y arranged as
Y = [y

1

, y
2

, · · · , yL].



Subspace Swap Events

I Subspace Swap Event E : One or more modes of the
orthogonal subspace hAi resolves more energy than one or
more modes of the noise-free signal subspace hHi.



Subspace Swap Events

I Subevent F : Average energy resolved in the orthogonal
subspace hAi is greater than the average energy resolved in
the noise-free signal subspace hHi.

min
i

|hHi y|2 
1

p

yHPHy <
1

n � p

yHPAy max
i

|aHi y|2

I Subevent G : Energy resolved in the apriori minimum mode
hmin of the noise-free signal subspace hHi is smaller than the
average energy resolved in the orthogonal subspace hAi.

|hHminy|2 <
1

n � p

yHPAy max
i

|aHi y|2.



Probability of Subspace Swap: Mean Case

Theorem: [Pakrooh, P., Scharf (GlobalSIP’13)]

I (a) Before compression:

Pss � 1� P[
yHPHy/p

yHPAy/(n � p)
> 1]

= 1� P[F
2p,2(n�p)(kHuk2

2

/�2) > 1]

kHuk2
2

/�2 is the SNR before compression.

I (b) After compression:

Pss � 1� P[F
2p,2(m�p)(kGuk2

2

/�2) > 1]

kGuk2
2

/�2 is the SNR after compression, G = �H.



Probablity of Subspace Swap: Covariance Case

Theorem: [Pakrooh, P., Scharf (GlobalSIP’13)]

I (a) Before compression:

Pss � 1� P[
tr(YHPHY/pL)

tr(YHPAY/(n � p)L)
> 1]

= 1� P[F
2pL,2(n�p)L >

1

1 + �p/�2
].

�p = evmin(HRuuHH)

�p/�2: E↵ective SNR before compression

I (b) After compression:

Pss � 1� P[F
2pL,2(m�p)L >

1

1 + �0p/�
2

].

�0p = evmin(GRuuGH)

�0p/�
2: E↵ective SNR after compression



Sensor Array Processing: Dense, Gaussian, and Co-prime

I Dense array

I Guassian compression

I Co-prime compression [Pal and Vaidyanathan (2011)]

At N = 11 and M = 9, (2M � 1)N�/2 = 187�/2.



Sensor Array Processing–Mean Case
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Sensor Array Processing–Covariance Case
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References on Breakdown Thresholds

I P. Pakrooh, A. Pezeshki, and L. L. Scharf, “Threshold e↵ects in
parameter estimation from compressed data,” Proc. 1st IEEE

Global Conference on Signal and Information Processing, Austin,
TX, Dec. 2013.

I D. Tufts, A. Kot, and R. Vaccaro, The threshold e↵ect in signal
processing algorithms which use an estimated subspace, SVD and

Signal Processing II: Algorithms, Analysis and Applications, New
York: Elsevier, 1991, pp. 301320.

I J. K. Thomas, L. L. Scharf, and D. W. Tufts, The probability of a
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Intermediate Recap

I Compression, whether by linear maps (eg, Gaussian or
Bernoulli) or by subsampling (eg, co-prime) has performance
consequences.

I The CR bound increases and the onset of threshold SNR
increases. These increases may be quantified to determine
where compressive sampling is viable.



Model Mismatch



From Over-determined to Under-determined

y =
KX

i=1

 (⌫i )✓i y ⇡ [ (!
1

), · · · , (!n)]

2

64
x

1

...
xn

3

75



Model Mismatch

Mathematical (CS) model:

s =  
0

x

The basis (or frame)  
0

is
assumed, typically a gridded
imaging matrix (e.g., n point
DFT matrix or identity
matrix), and x is presumed to
be k-sparse.

Physical (true) model:

s =  
1

✓

The basis  
1

is unknown,
and is determined by a point
spread function, a Green’s
function, or an impulse
response, and ✓ is a k-sparse
and unknown.

Key transformation:

x =  ✓ =  �1

0

 
1

✓

x is sparse in the unknown  
basis, not in the identity basis.



Model Mismatch: From Sparse to Incompressible

DFT Grid Mismatch:

 =  �1

0

 
1

=

2

666664

L(�✓
0

� 0) L(�✓
1

� 2⇡(n�1)

n
) · · · L(�✓n�1

� 2⇡
n

)

L(�✓
0

� 2⇡
n

) L(�✓
1

� 0) · · · L(�✓n�1

� 2⇡·2
n

)

.

.

.

.

.

.

.

.

.

.

.

.

L(�✓
0

� 2⇡(n�1)

n
) L(�✓

1

� 2⇡(n�2)

n
) · · · L(�✓n�1

� 0)

3

777775

where L(✓) is the Dirichlet kernel:

L(✓) =
1

n

n�1X

`=0

e

j`✓ =
1

n

e

j ✓(n�1)

2

sin(✓n/2)

sin(✓/2)
.

−10 −5 0 5 10
−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

✓/(2⇡/N)

si
n
(N

✓
/
2
)

N
si
n
(✓
/
2
)

Slow decay of the
Dirichlet kernel means
that the presumably
sparse vector x =  ✓
is in fact
incompressible.



Sensitivity to Model Mismatch

I Question: What is the consequence of assuming that x is
k-sparse in I, when in fact it is only k-sparse in an unknown

basis  , which is determined by the mismatch between  
0

and  
1

?

I CS Inverter: Basis pursuit solution satisfies

Noise-free: kx⇤ � xk
1

 C

0

kx� xkk1
Noisy: kx⇤ � xk

2

 C

0

k

�1/2kx� xkk1 + C

1

✏

where xk is the best k-term approximation to x.

I Key: Analyze the sensitivity of kx� xkk1 to basis mismatch.



Sensitivity to Model Mismatch

Theorem: [Chi, Scharf, P., Calderbank (TSP 2011)] Let
 =  �1

0

 
1

= I+ E, where x =  ✓. Let 1  p, q  1 and
1/p + 1/q = 1.

I If the rows eT` 2 C1⇥n of E are bounded as ke`kp  �, then

kx� xkk1  k✓ � ✓kk1 + (n � k)�k✓kq.

The bound is achieved when the entries of E satisfy

emn = ±� · e j(arg(✓m)�arg(✓n)) · (|✓n|/k✓kq)q/p.

Message: In the presence of basis mismatch, exact or near-exact sparse

recovery cannot be guaranteed. Recovery may su↵er large errors.



Mismatch in Modal Analysis
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Mismatch in Modal Analysis
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Mismatch in Modal Analysis
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Noise Limited, Quantization Limited, or Null Space Limited
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Noise Limited, Quantization Limited, or Null Space Limited
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Misfocus in Optical Imaging
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Misfocus in Optical Imaging
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Compressed Sensing O↵ The Grid



Atomic Norm Decomposition

I Model:

y =
kX

i=1

 k✓k ; { k} : Atoms

I Atomic norm [Chandrasekaran, Recht, Parrilo, and Willsky
(Allerton 2010)]:

kykA = inf
(✓, )

kX

i=1

|✓k |

I Atomic norm decomposition:
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⌦
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Atomic Norm Decomposition

Line spectra resolution:

I Theorem: [Candes and Fernandez-Granda 2012] A line
spectrum with minimum frequency separation �f > 4/k can
be recovered from the first 2k Fourier coe�cients via atomic
norm minimization.

I Theorem: [Tang, Bhaskar, Shah, and Recht 2012] A line
spectrum with minimum frequency separation �f > 4/n can
be recovered from most subsets of the first n Fourier
coe�cients of size at least m = O(k log(k)log(n)).

I Theorem: [Chi and Chen 2013] A 2D line spectrum with
minimum frequency separation �f > 4/(

p
n

1

n

2

) can be
recovered from most subsets of the first n Fourier coe�cients
of size at least m = O(k log(k)log(n)).
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Concluding Remarks

I Compression, whether by linear maps (eg, Gaussian or
Bernoulli) or by subsampling (eg, co-prime) has performance
consequences. The CR bound increases and the onset of
breakdown threshold increases.

I Model mismatch is inevitable and sensitivities of CS to model
mismatch need to be fully understood. Atomic norm
decomposition provides a way forward for a class of problems.
But sub-Rayleigh resolution still eludes us!


