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Motivation: Face Recognition

source: yale face database b



Motivation: Face Recognition

- fixed pose, varying illumination
- images lie in near 9-dimensional subspaces



Questions

 Q1: What is the relation between
performance and geometry — a “beyond
phase transitions” characterization of the

misclassification probability

e Q2:What is the number of faces that

we can distinguish with arbitrarily low

misclassification probability?

e Q3: What is the tradeoff between the

number of faces can we distinguish and the

misclassification probability?

Answers provided for a stylized model that captures the fact that
data lives in a union of subspaces (or a union of affine spaces)
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Machine learning
Feature extraction or supervised dimensionality reduction



Model

Measurement model

Standard measurement model:
y=Dx+w, W~ W(O,GZI)

where ® € R"*" is the measurement matrix, y ER" is the measurement vector,

x € R is the signal vector,and w ER" is standard Gaussian noise.
A Im(Z,)
Z’Im(23)|m(z4)

Signal model (Gaussian mixture model)
Im(Z,)

The signal belongs to one out of Cclasses,
wherePr(c)=p, and p(xlc)=N(u.,Z,).

Objective
The objective is to determine the

. . .. Signal lives on
signal class ¢ from the signal projections y. union of subspaces or more generally

union of affine spaces



Unveiling Dualities

Consider that
x~N(0,2,)
Then, the compressive classification model

y=®Z"h+w, h~(0I), w~ﬂ/(0,021)
reduces to the non-coherent multiple-antenna communications model
yt _ htzi/zq)t + Wt’ h ~ W(O,I), W ~ W(O,O.ZI)

(a model where transmitter and receiver do not know the channel realization,
only the channel statistics)



Unveiling Dualities

Consider that
x~N(0,2,)
Then, the compressive classification model
y=0%’h+w, h~n(0,I), w~n(0,07)
reduces to the non-coherent multiple-antenna communications model
y =hZl 0 +w, h~a(0,I), w~(0,07)

(a model where transmitter and receiver do not know the channel realization,
only the channel statistics)

Correspondences Between the Communications and the Classification Problem

Classification Model Communications Model

N Signal Dimension Number of Transmit Antennas
M Signal Measurements Channel Coherence Time

T=1 Class Coherence Time Number of Receive Antennas



Communications-Theoretic Inspired

Performance Characterization
A more refined characterization of the behavior of the misclassification probability

\ Diversity gain
Determines the slope of the misclassification

probability (in the log (1/02) scale) at low

log(P.(0?)) A

noise levels

>

log(1/02)
log(P.(0?)) A

Measurement gain
Determines the offset of the misclassification
probability (in the log (1/0?%) scale) at low
noise levels

>

log(1/0?)



Information-Theoretic Inspired Performance

Characterization

Characterization of the “data volume” that can be handled by the classifier with
arbitrarily low misclassification probability

Classification Capacity

1/Mlog, C A e Defines the number of unique classes that can
be discerned by the classifier with arbitrarily
low misclassification probability in the limit of
high dimension

* Defines phase transitions in the
misclassification probability in terms of the
(logarithm of the) number of classes
normalized by signal dimension in the limit of
high dimension

e Akin to channel capacity in communications

>
log(1/0?)




Information-Theoretic Inspired Performance

Characterization

Characterization of tradeoffs between the “data volume” that can be handled by the
classifier and its performance

Diversity-Discrimination Tradeoff (DDT)

diversity A
gain, d

>

multiplexing gain, r

Characterizes the relationship between the
number of classes that can be discerned by
the classifier and the associated
misclassification probability in the limit of
low noise

Characterizes a region of achievable
exponent pairs for the number of classes
and the misclassification probability in the
limit of low noise

Akin to the diversity-multiplexing tradeoff
in wireless communications



Characterizations in the Compressive Classification
Domain and the Wireless Communications Domain

Compressive Classification | Wireless Communications References
Domain Domain

Diversity Gain and Diversity Gain and [Tarokh, Seshadri and
Measurement Gain Coding Gain Calderbank’ 98]
Classification Capacity Channel Capacity [Zheng and Tse’2002]
Diversity-Discrimination Diversity-Multiplexing [Zheng and Tse’2003]
Tradeoff Tradeoff

[Tarokh, Seshadri and Calderbank’98] V. Tarokh, N. Seshadri and A. R. Calderbank. Space-time codes for high
data rate wireless communication: performance criterion and code construction. IEEE Transactions on
Information Theory, 1998.

[Zheng and Tse’03] L. Zheng and D. Tse. Diversity and mutiplexing: A fundamental tradeoff in multiple-antenna
channels. IEEE Transactions on Information Theory, 2003.

[Zheng and Tse’02] L. Zheng and D. Tse. Communication on the Grassmann manifold: A geometric approach to
the noncoherent multiple-antenna channel. IEEE Transactions on Information Theory, 2002.



Communications-Theoretic Inspired

Characterization of Fundamental Limits

Enter “Phase Transitions”,
Diversity Gain and Measurement Gain



Model

Measurement model
Recall the measurement model:
y=Dx+w, W~W(0,O’21)
where ® € """ is the measurement matrix, y ER" is the measurement vector,

x € R is the signal vector,and w ER" is standard Gaussian noise.

Signal model

The signal belongs to one out of

two classes where
Pr(c=1)=PF,

Pr(c = 2) =P,
p(xle=1)=#(0,%))
p(xlc = 2) = W(O,ZZ)



Model

Measurement model
Recall the measurement model:
y=Dx+w, W~W(O,O’21)
where ® € """ is the measurement matrix, y ER" is the measurement vector,

x € R is the signal vector,and w ER" is standard Gaussian noise.

Signal model

Quantity Interpretation

r. =rank (3. Dimension of
2 ( ’) subspace i

The signal belongs to one out of

two classes where

r. = rank(Z. +3 Dimension of direct sum of
PI‘(C = 1) = Pl % ! J) subspaces iand j

Pr(c=2)=F, v = pdet(@2,0') oot mspace
p(X lc = 1) = W(O,Zl) v, = pdet(q)(zi + Zj)q)f) “Volume” of direct sum of

projected subspaces iand j
p(xlc=2)=4(0,%,)

> ij

NO,,, = (r -1 ) _|_(’,2 _ rzj) Number of non-overlapping

% i dimensions



Performance Metrics
Misclassification probability: Two-Class Case

P = fmin(Pl -p(y lc = 1),P2 -p(y lc = 2))dy
Upper Bound to Misclassification Probability: Two-Classes

P = [JR B \p(yle=1) p(ylc=2)dy

(the two-class bound generalizes to multiple classes by using a combination
of the union bound together with the Bhattacharya bound)

Diversity gain:

logPeUB (02)

d = lim >

o’==  logo

Measurement gain

g, = lim o’ !




Random Measurements:
Two Zero-Mean Gaussian Classes

Theorem:
Consider the measurement model:

y=Dx+w, W~W(0,O'ZI)
where X~W(0,21) with probability P and X~W(0,22) with probability P,

—When =T
12 Subspaces

PeUB (02) - 0(1)’ 0" =0 overlap

Vo +7
> >
~When = 2

— if Msmin(rzl,rzz) then
P*(0*)=0(1), o>—0

— if M>min(r21,r22) then

o)) (7)) oo

Subspaces do not
overlap



Measurement gain

1

1\ 4
min(M s, 2) \/ ; -
gm= 2 2 })IPZ 12
VV1iY2

Diversity gain

Number of Measurements Diversity Gain

min(l‘21 ,rzz) <M= max(r21 ,r22) d= % (mln(l’z1 ,21”22) M)
1 -2M
max(r21 Ty, ) <M=<r, g ! (7’21 + r222 )




Measurements Design:
Framework

Optimization Framework

maxd(®) subjectto rank(®)=M

P

Other Optimization Frameworks

1.Determine the class of measurement matrices that maximize diversity

2.Determine the measurement matrix that maximize measurement gain

(this alternative framework would target both the decay and power offset of
the misclassification probability)




Measurements Design:
Two Zero-Mean Gaussian Classes

Theorem:
Consider the measurement model:
y =Dx+w, W~W(0,O’21)

where X~W(0,21) with probability £ and X~W(0,22) with probability P,
— When M =NO,,,

-d 1 —-d # measurements sufficient to
P’ (02) = (g—";) + 0((—2) , 0°—0 capture all discriminative
o o features
where d=1/4-NO,,,

— When M <NO,,,

~d 1\ # measurements not sufficient

PeUB (02) = (g—";) +0 (—2) , o’ —0 to capture all discriminative
o o features

where d=1/4-M



Measurements Design:
Two Zero-Mean Gaussian Classes

Basis for Linear Spaces:

| trewrspce ] s

Null(Z,) " Null(Z, ) WhoWasoooo iy,
Nu]](zl) wl,wz,...,w,,ln,ull,u;,...,urll1
Null(%,) Wi Waseo s W o Ul

Optimum Measurement Design

— When M = NO,,,

t
1t 1t _ 2t 2t
¢=[ul,...,unl,ul,...,u ]

m

— When M <NO,,,

® canbe constituted by usingany M vectors from u,....,u" ,u....

n



Interpretation

Im(Z,)

NO,,, =2-dim(Im(Z, +%,))-dim(Im(Z, )) - dim(Im(Z,)) =2x3-2-2=2



Interpretation

Im(Z,) Null(Z,)

Null(z,) ANull(z,)

NO,,, =2-dim(Im(Z, +%,))-dim(Im(Z, )) - dim(Im(Z,)) =2x3-2-2=2



Interpretation

d={V41)/4=2/4 Im(z)

NO,,, =2-dim(Im(Z, +%,))-dim(Im(Z, )) - dim(Im(Z,)) =2x3-2-2=2



Representative Results:
Two Zero-Mean Gaussian Classes

Realizations from the
original classes

Realizations from the
projected classes
Designed Random

Projections Projections




Representative Results:
Two zero-Mean Gaussian Classes

Misclassification Probability Upper Bound

10 T T T T T T

P =Random Measurement Matrix (M=1)
=== Designed Measurement Matrix (M=1)
Random Measurement Matrix (M=2)
~#-Designed Measurement Matrix (M=2)
-+-Random Measurement Matrix (M=3)
Designed Measurement Matrix

Upper Bound to Misclassification Probability
=
T

Misclassification Probability

-h
(=]

Exact Misclassification Probability

]
s

——

-d=

Random Measurement Matrix (M=1)
Designed Measurement Matrix (M=1)
Random Measurement Matrix (M=2)

Designed Measurement Matrix (M=2)
Random Measurement Matrix (M=3)
Designed Measurement Matrix (M=3

10



Information-Theoretic Inspired

Characterization of Fundamental Limits
Classification Capacity
and
Diversity-Discrimination Tradeoff



Model

Measurement model
Recall the measurement model:
y=Dx+w, W~W(O,O’21)
where ® € """ is the measurement matrix, y ER" is the measurement vector,

x € R is the signal vector,and w ER" is standard Gaussian noise.

Signal model

The signal belongs to one out of Cclasses, where Pr(c)=1/C and p(xlc)=4 (0, )
and rank(Zc)=k, c=1,...,C.
Measurement and signal constraints
2
L ol <1

, Signal-to-noise ratio is meaningful: snr=1/0?
2. E{N[ } M



Definitions: Classification Capacity

Definitions:
(M) (M) (M)
imY oy lmA— g lim 08¢ _
M —>00 M M—x M M —o0 M

Definition (Achievable Classification Rate)
A classification rate p is said to be achievable if there exists a sequence of

classification problems such that Allim p(M) =0 and A/4im Pe(M) =0.

Definition (Classification Capacity)
The classification capacity C (U,K,l/ 02) is defined to be the supremum over

achievable rates p.

Remarks

1. Number of classes cannot be greater than C =2"* for successful classification

2. Notion asymptotic in problem dimensionalities



Definitions: Diversity-Discrimination Tradeoff

Definition (DDT Function)
A sequence of classification problems is said to have diversity - discrimination
function d(r) if

log, C(I/GZ)

: log, P(I/OZ)
lim
fo'>=1/2-log, (1/02)

e

1/Ezriloo 1/2-log, (1/(72)

Definition (DDT Tradeoff)

The diversity - discrimination tradeoff is defined as the supremum over all

diversity - discrimination functions :
d (r) = supd(r)
Remarks:

1. Aclassification problem with snr""? classes cannot have misclassification probability

decaying faster than snr™ ")

2. Notion asymptotic in the signal-to-noise ratio rather than signal dimensionalities



Classification Capacity

Theorem:

Consider the classification of zero-mean Gaussian signals. Then, the
classification capacity is bounded as follows:

l-x | \ 1-K 1 1 2 |
—log,| —|-1+xk=<C|(k,v,0" |s——log, | — |[+—"10 +
2 gz(az) | ) 2 gz(az) 2 gz(ﬂze) 21og(2)
Interpretation Spirit of the Proof:
C(k,v,0%)4

1. Inspired by the dualities between the
classification problem and the non-coherent
multiple-antenna communications problem,
together with converse and achievability
arguments.

slope: 1-%, 2. Subtleties: signal dimensions rather than some
sort of block length approaches infinity prevents
the use of random code construction via i.i.d.
sequences and the use of standard typical

> sequence decoding arguments.
% log(1/0?)




Proof Qutline:

Converse

The follows from the fact that the classification capacity of any
classification problem is upper bounded by:

C(K,U,O’2) < lim supﬁ-l(c;y)

M —x
and from upper bounds to the mutual information in non-coherent multiple-
antenna fading channels.

Achievability

The follows a random coding argument, where one constructs

random classes inspired by training schemes over non-coherent multiple-
antenna fading channels:

o_| Lt O g _| Tou

0
0 & i 0 UU
where U € RY™* contains Gaussian i.i.d. entriesand ®' € R”*"* contains

orthonormal rows

Direct analysis of the error probability using a “channel estimation” and
“outage” type of argument leads to the lower bound.



Diversity-Discrimination Tradeoff

Theorem:

Consider the classification of zero-mean Gaussian signals. Then, the diversity-
discrimination tradeoff is bounded as follows:

k<2M/3: k'[l— ! ]sd(r)sk-[l— ! ]

M-k M-k
k>2M/3: k—r2-(M-k-r)\| =d(r)=k-|1-—_ +
/3 [max{k-r2-(M—k=r)}] sd(r)sk-|1-——
Interpretation Spirit of the Proof:

1. Inspired by the dualities between the
classification problem and the non-
coherent multiple-antenna
communications problem, together
with converse and achievability
arguments.

2(M-k) 2. Outer bound based on the analysis of
the outage probability.

3. Inner bound based on the analysis of
the error probability of a “training”
scheme.

da k2M/3 da k>2M/3

v
=V



Theory meets Practice: Face Recognition

38 cropped faces from the extended
Yale Face Database B

Database contains a few dozen
greyscale pthotographs for each face
(under a variety of illuminations)
Measurement matrix design chosen to
maximize signal power

Face classification via a compressive
variation of nine points of light (9PL)
algorithm — involves both training and

classification

S 10 15 20 25 30 35 40 15 S0
Number of measurements m

C= argmin”y — Hq,UCyH= argminH(I)X — Hq)UC(I)XH



Theory meets Practice: Face Recognition

Number of discernible classes

(Theoretical Prediction) e
B
m__9 §20
max l,min{snr 2 ,38} i

10F

S 10 15 20 25 30 35 40 45 S0
Number of measurerments m



Concluding Remarks

* Dualities between the classification and communications problem
lead to new characterizations of the performance of compressive
classifiers:

— Phase transitions, diversity gain and measurement gain

— Classification capacity and diversity-discrimination tradeoff

 These characterizations determine the interplay between
performance and geometry, as well as tradeoffs between “volume
of data” and “performance”.

 Theory with reasonable agreement with practice in a face
recognition application —



Concluding Remarks

* A final remark:

— In communications nature designs the channel and the engineer designs the
input (codewords)

— In classification nature determines the input (subspaces) and the engineer

determines the channel (measurement system)

* The characterizations, which unveil optimal geometries, can
provide guidelines to



