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Inverse Problems Regularized by Sparsity

Martin Vetterli



“Far better an approximate answer to the right question, which is often vague,

than an exact answer to the wrong question, which can always be made precise.”

— John Tukey



Overview:

◮ Introduction: Sparsity is good for you!

◮ Can one hear the shape of a room?

◮ Can one localize inside a room?

◮ Can one put sensors optimally?

◮ Can one know the nuclear fallout of Fukushima?

◮ Conclusions

◮ Acknowledgements
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Introduction: Sparsity is good for you!



Inverse problems

Have a long history.... Hadamard 1915!

The inverse problem y = Ax

◮ is well posed when

• Existence: ∀y , ∃x s.t. y = Ax .

• Uniqueness: Ax1 = Ax2 ⇒ x1 = x2

• Stability: A−1 is continuous.

◮ otherwise... ill posed!

Finite dimensional, linear case

◮ Existence: Least squares

◮ Uniqueness: Minimum norm solution

◮ Stability: Condition number reasonable
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Inverse problems: The tomography example

◮ Forward model

y(α0, θ0) =

∫ ∞

−∞
x(α+ α0, α tan θ0) dα

◮ Inverse
x̂(α, β) s.t. ŷ(α, β) ≃ y(α, β)

◮ Usually discretized, for some set {αn, θm}

y = Ax

◮ Noise, condition number, complexity etc

◮ Priors.... Sparsity!

Tomography

4



Sparsity is good for you!

A bit of history on the topic

◮ Occam’s razor

◮ Parametric signal processing

• Sinusoidal retrieval

◮ Regularizations

• Tikhonov: ‖Ax − y‖22 + λ‖Ox‖22

• ℓ1 regularization

◮ Uncertainty principles:
Sparse in one world, not in the other! Pedro The Voder, 1939
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Modeling: Two views of the world

Discrete/digital Analog/continuous
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A sparse discrete-time signal
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The world looks different using different norms!

Unit balls in different norms: quasinorm ℓ1/2, norms ℓ1, ℓ2, ℓ4, ℓ∞
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Solution of linear systems using different norms 1/2

◮ Consider an under-determined system of equations

x = Aα

where x is N × 1, A is N ×M, α is M × 1 and N < M.

◮ Expansion with respect to an overcomplete set of vectors is not unique.

◮ Example:

x =
1

5
· [1 2] ·

[
α0

α1

]

α′ = α+ α⊥ =

[
1
2

]
x +

[
2

−1

]
γ,

This is a line with slope −1/2 in the [α0, α1] plane.
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Solution of linear systems using different norms 2/2

Different norm minimizations ‖α‖p , p ∈ {0, 1, 2} give different solutions (Ex: x = 3/5)

1

2

−1

1 2 3−1−2

and one of them is sparse!
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There is ℓ1 magic!

Many ways to skin that cat

◮ Classic solution: Tikhonov regularization ‖Ax − y‖22 + λ‖x‖22

◮ Modern solutions: ℓ1 regularization and convex optimization

• Linear program: min‖x‖1 s.t. Ax = y

• Lasso: min(‖Ax − y‖22 + λ‖x‖1)

• Equivalence of ℓ0 and ℓ1: Restricted isometry property, spark, µ(A)

◮ Geometry: Norm conservation under K -sparsity

(1− δ)‖x‖22 ≤ ‖Ax‖22 ≤ (1 + δ)‖x‖22 for ‖x‖0 ≤ K

◮ Efficient, N3 algorithm

◮ Performance guarantees, also in the presence of noise
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A sparse continuous-time signal

−15 −10 −5 0 5 10 15
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Finite rate of innovation (FRI) sampling

◮ Nyquist sufficient but not necessary!

◮ Sinusoidal retrieval ideas can be used for
sampling sparse CT signals

◮ Sharp sampling results for FRI signals

◮ Efficient algorithms Gaspard de Prony (1755 - 1839)

ϕ(t) yn

sampling kernel Ts

x(t) y(t)
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Finite rate of innovation (FRI) sampling

For a sparse input, e.g. weighted sum of Diracs

◮ One-to-one map yn ⇐⇒ x(t)

◮ Efficient, complexity O(K 3) algorithms,
where K is sparsity

◮ Stable reconstruction

◮ Some robustness to noise

◮ Optimality of recovery (CRB)
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An example: Fourier’s original problem, the copper ring!

◮ 3 heat sources

◮ 7 measurement points

Temperature evolves according to the heat equation
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The forward problem

◮ A space-time evolution of the temperature field.

◮ The 7 sensor measuring the field at fixed locations.
16



The forward problem
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The measurements: Continuous time
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The measurements: Discrete time
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The compressed sensing approach

◮ Source locations are discretized

◮ Time is discretized

◮ Sources are sparse in time and space

◮ Recovery by ℓ1 minimization

min ‖x‖1 s.t. y = Ax

◮ A has a high coherence: no guarantees

◮ In practice, the quality depends on the resolution
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The parametric (FRI) approach
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◮ K unknown sources induce a field f (x , t): s(x , t) =
∑K

k=1 ckδ(x − xk)δ(t − tk)

◮ L sensors sample the diffusive field f (x , t)

◮ We locate the sources on R
2 by FRI reconstruction
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Comparison

Compressed sensing

◮ Sources on discrete domain

S
p

a
c
e

Time

◮ Solution by convex programming

◮ Resolution is computationally expensive

◮ When are we guaranteed to have a correct
solution?

Parametric (FRI) approach

◮ Sources on continuous domain

S
p

a
c
e

Time

◮ Solution by annihilation filter

◮ Numerical stability can be an issue

◮ How can we find reliably the time of
appearance?
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Our various problems involve different PDEs

The four questions have different forward models

◮ Can one hear the shape of a room?

• Location of acoustic sources in 3D space: Wave equation

◮ Can one locate a source on a graph?

• Location of sources in graphs: Diffusion equation on graphs

◮ Can one put sensors optimally?

• Sensors in space: Diffusion equation

◮ Can one know the nuclear fallout of Fukushima?

• Sources of pollution: Transport equation

But the principles of sparsity apply to all of them!
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Some problems are discrete, and some are not!

Question Problem Model Algorithm

Shape of a room Virtual sources Continuous Continuous

Source in a graph Vertices Discrete Discrete

Sensor placement Location in space Discretized Discrete

Pollution diffusion Emission Continuous/Discrete Discrete
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Can one hear the shape of a room?

Ivan Dokmanic



Play Play Play



Can one hear the shape of a drum?

The question...

Kac, 1966: “Can one hear the shape of a drum? ”

...and the answer
Gordon, Webb & Wolpert, 1992: “One cannot hear the shape of a drum ”
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Can one hear the shape of a drum?
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Can one hear the shape of a drum?

Nodal line: a drum hit here 

will not ring this mode

Anti-node: a drum hit here 

will ring strongly with 
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Image source model
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Image source model
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Image source model

Wall i 

Wall j 
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Image source model
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Echo sorting problem

◮ Echoes arrive at walls in different orders

◮ Need to label echoes: Echo sorting

Microphone 1

Microphone 2

1
2

A

B
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Actual measurements
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Rank testing of Euclidean distance matrix (EDM)

◮ What can we say about
(dij)

k
i , j=1 when x ∈ R

n?
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k
i , j=1 when x ∈ R

n?

d2
ij = 〈xi − xj , xi − xj 〉

= 〈xi , xi 〉+ 〈xj , xj 〉 − 2〈xi , xj 〉

gij
def
= 〈xi , xj 〉, G

def
= (gij)

D = −2G+1diag(G)T+diag(G)1T

⇒ rank(D) ≤ rank(G) + 1 + 1

= n+ 2
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Echo sorting
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Theorem

Theorem
Consider a room with a loudspeaker and

M ≥ 4 microphones placed uniformly at

random inside the feasible region. Then

almost surely exactly one assignment of

first-order echoes to walls describes a room.

The correct one!
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Practical algorithm
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◮ Imperfect estimation of echo
times

◮ Denoise using multidimensional
scaling (MDS)

◮ Room from image sources?

◮ Use structure: Higher-order IS
combinations of lower-order IS
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Experiments
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Experiments
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Can one hear the shape of a room: Recap

◮ Continuous problem, continuous formulation

◮ Model: Convex polyhedron

◮ Result: Sparsity—(Virtual) sources sparse in space domain

◮ Key step—”Transformation” of the polyhedron (description using image sources)
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2. Can one hear the shape of a room?

Publication:

◮ Ivan Dokmanic, Reza Parhizkar, Yue Lu, Andreas Walther, MV

◮ Acoustic echoes reveal room shape

◮ PNAS, June 17 2013, open access

◮ Data online http://lcav.epfl.ch/eCathedral

Ivan Dokmanic Reza Parhizkar Yue Lu Andreas Walther36
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Can one localize inside a room?

Ivan Dokmanic, Orhan Ocal, Reza Parhizkar



Can one localize inside a room?

◮ Echoes arrive at walls in different orders

◮ Need to label echoes: Echo sorting
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Localization 1: Single Channel

Known room, known source location

An exercise in echo sorting
◮ Image sources = free multilateration measurements (after labeling!)
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Localization 2: Nonconvex Rooms
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Localization 2: Nonconvex Rooms
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Human Echolocator: Daniel Kish

Blind man who taught himself to see
I Senses distance, shape and density of objects

Active sonar
I Insonifies surroundings by palatal clicks
I Sees and navigates by echoes

www.worldaccessfortheblind.org
I Facilitate self-directed achievement of the blind
I Increase public awareness
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Can one localize in a room: Recap

◮ Continuous problem, continuous formulation

◮ Model: Image sources, images microphones

◮ Surprising results!
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2. Can one localize in a room?

Publications:

◮ Reza Parhizkar, Ivan Dokmanic, MV

◮ Single-Channel Indoor Microphone Localization

◮ submitted, ICASSP 2014

and

◮ and

◮ Orhan Ocal, Ivan Dokmanic and MV

◮ Source Localization and Tracking in Non-convex Rooms

◮ submitted, ICASSP 2014
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Can one put sensors optimally?

Juri Ranieri



A sensor deployment in the swiss alps

SensorScope: a sensor network to study micro-climates

43



Sensing the temperature of a microprocessor

A modern 8 cores processor

◮ Thermal stress induces: failures, reduced performance, increased power consumption

◮ Temperature information is necessary to optimize the workload
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Linear inverse problems of physical fields

◮ N: resolution of the physical field.

◮ K : number of parameters to estimate.

◮ L: number of sensors.

f = Ψα

L<N sensors placed in L
−−−−−−−−−−−−−−−−−→

fL = ΨLα
45



Least square solution

◮ Given L and ΨL, least square estimate of α:

α̂ = (ΨL
∗ΨL)

−1ΨL
∗

︸ ︷︷ ︸
Pseudoinverse

fL.

◮ Assume i.i.d. gaussian noise, the mean square error (MSE) is

E
[
‖α̂−α‖2

]
∝

K∑

i=1

1

λi

where {λi}
K
i=1 are the eigenvalues of TL = ΨL

∗ΨL.
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Sensor placement problem

◮ Given a linear inverse problem defined by a matrix Ψ and number of sensors L.
Find the sensor allocation OPT that minimizes the MSE:

OPT = arg min
|L|=L

K∑

i=1

1

λi

.

◮ Challenge 1: combinatorial problem!

◮ Challenge 2: MSE hard to minimize, many local minima!
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What if we can design completely ΨL?

◮ ΨOPT are minimizers of the Frame Potential (FP),

FP(ΨL) =
∑

i ,j∈L

|〈ψi ,ψj〉|
2 =

K∑

i=1

|λi |
2,

where ψi is the i -th row of Ψ.

◮ Fix the sensing power: P =
∑L

i=1 ‖ψi‖
2 =

∑K
i=1 λi

◮ If L = K : orthonormal matrix

◮ If L > K : tight frame [Goyal et al.]
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Frame Potential
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FrameSense

◮ Greedy worst out sensor selection

◮ At k-th iteration, we remove the row that maximizes the FP of ΨSk .

◮ After N − L iteration, we obtain the sensor placement as L = SN−L
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FrameSense is near-optimal w.r.t. MSE

Theorem
Assume the spectrum of Ψ satisfies some mild

conditions and define the optimal allocation as

OPT = argmin|A|=LMSE(ΨA). Then the solution

L of FrameSense is near-optimal w.r.t. MSE,

MSE(ΨL) ≤ βMSE(ΨOPT)

where β is constant depending on the spectrum of

Ψ and the norm of its rows.

FP(ΨL)

MSE(ΨL)
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Performance vs Computational Time

b
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◮ Random Tight Frames

◮ Locations N = 100, Parameters K = 30, Sensors L = 50.

◮ Mutual Information [Krause 2008], Entropy [Wang 2004], Determinant [Shamaiah 2010].
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Sensor placement on multicore processors

FP(ΨL)

Cochran et al.

4 8 12 16 20 24 28 32
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◮ Case study: Niagara 8 core under typical workload

◮ Ψ learnt by PCA

◮ Cochran et al.: Sensor placed according to energy density.
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Can one put sensors optimally: Recap

◮ Combinatorial problem

◮ Greedy algorithm

◮ Guaranteed performance with respect to optimal problem

◮ Potential of frame potential!
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4. Can one put sensors optimally?

Publication:

◮ Juri Ranieri, Amina Chebira, MV

◮ Near-Optimal Sensor Placement for Linear Inverse Problems

◮ IEEE Tr. on Signal Processing, under revision, online at
http://arxiv.org/abs/1305.6292,

Juri Ranieri Amina Chebira
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Can one know the nuclear fallout of Fukushima?

Marta Martinez-Camara



Nuclear fall out

state release half life deposition measurements

Xe-133 gas ventings, explosions 5.24 days dry air concentration

Cs-137 particle leak,explosions 30 years dry + wet air conc. + soil deposition

Cs-134 particle leak,explosions 2 years dry + wet air conc. + soil deposition

I-131 particle leak,explosions 8.01 days dry + wet air conc. + soil deposition
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Lagrangian dispersion models
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Lagrangian dispersion models

y(ξ, t) =

∫
t

0

A(ξ, τ)x(τ)dτ

Measurements

Weather

Emissions

y = AxKnown

Estimated

Unknown
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Sensors locations
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Matrix describing the transport of Xenon
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The Inverse problem

y = Ax

◮ What we know a priori:

• Condition number very large

• Most of the unknowns are equal to zero

• Positive solution

◮ Possible regularizations:

• Pseudoinverse solution: minx ‖Ax− y‖22

• Tikhonov regularization: minx ‖Ax− y‖22 + λ‖x‖22

• A priori solution: minx ‖Ax− y‖22 + λ‖x− xa‖
2
2

• Sparse regularization: minx ‖Ax− y‖22 + λ‖x‖1
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Pseudo-inverse solution

minx ‖Ax− y‖22

cond(A) large → solution very sensitive to noise
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Tikhonov solution

minx ‖Ax− y‖22 + λ‖x‖22

Non-sparse and non-positive...
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Tikhonov with a priori solution - State of the Art

minx ‖Ax− y‖22 + λ‖x− xa‖
2
2

Solution overly biased by prior → disregards measurements
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Sparse solution

minx ‖Ax− y‖22 + λ‖x‖1

Sparse, non-biased → we still need positivity
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Our proposed solution: Sparse with positivity constraint

minx ‖Ax− y‖22 + λ‖x‖1 s.t x ≥ 0

◮ The solution will be sparse, unbiased and positive

◮ The problem is more complicated - we have three heights that play into the dispersion

}

}

}

t=0

t=1

t=2

✵ �

✶✵✵✵ �

✸✵✵ �

✺✵ �
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Results
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Can one know the nuclear fallout of Fukushima: Recap

◮ We have a solution which achieves the a priori constraints:

• Sparse, positive

• Robust against noise

◮ We recover a realistic source:

• The total emitted quantity matches the inventory

• The emissions can be related with the known events (venting, explosions)

◮ Difficult inverse problem

• Gives a verifiable solution for Xenon

• Cesium an open problem
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5. Can one know the nuclear fallout of Fukushima?

Publication:

◮ Marta Martinez-Camara, Ivan Dokmanic, Juri Ranieri, Robin Scheibler, MV
and Andreas Stohl,

◮ The Fukushima Inverse Problem, ICASSP 2013

◮ Data online http://rr.epfl.ch/44/

Marta Martinez-Camara Ivan Dokmanic Juri Ranieri Robin Scheibler Andreas Stohl
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Conclusions



Four exemplary inverse problems

Question Solution Quality Complexity

Shape of room Image sources Exact O(NK (M−1))

Source in graph Source vertex Approximate O(N3)

Sensor placement Subset selection Approximate (bd error) O(KN2)

Pollution Source characterization Approximate O(N3)
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Are these problems important?

Problems can be cute, relevant, hard etc

◮ Hearing the shape of a room has many implications

• Indoor localization

◮ Finding a source quickly helps

• Spending on eradication of polio: 1 B $ per year

◮ Placing sensors smartly

• Size of carbon market: 142 B $ (2011)

◮ Knowing pollution or radioactivity

• Will make the difference if people can return to their villages...
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On problems and tools

Sophisticated tools abound....

◮ Pick your tool given the problem, not the other way around!

Nature versus methods

◮ Nature picks A, and it is not always well conditioned...

Sparse signal processing and applications

◮ Sparsity is a basic principle of modeling

◮ Efficient algorithms and approximations

◮ Connection to some fundamental theory questions
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