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High-dimensional approximation

Let
e D C R? be a domain, d > 1
e f: D — C be a (smooth) function

o {t;}™ . be a set of sample points

Goal: Approximate f from {f(t;)}7.

Applications: Uncertainty Quantification (UQ), scattered data
approximation, numerical PDEs,....

Main issue: curse of dimensionality (exponential blow-up with d).
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Quantifying uncertainty via polynomial chaos expansions

Uncertainty Quantification: Understand how output f (the quantity of
interest) of a physical system behave as functions of the inputs t (the
parameters).

Polynomial Chaos Expansions: (Xiu & Karniadakis, 2002). Expand f(t)
using multivariate orthogonal polynomials

M
f(t) ~ Z X,'d),‘(t).
i=1

Non-intrusive methods: Recover {x;}, from samples {f(t;)}™;.
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Stochastic Collocation

Two widely-used approaches:

Structured meshes and interpolation (M = m): E.g. Sparse grids.

o Efficient interpolation schemes in moderate dimensions

e But may be too structured for very high dimensions, or miss certain
features (e.g. anisotropic behaviour).

Unstructured meshes and regression (m > M): Random sampling
combined with least-squares fitting.

e For the right distributions, can obtain stable approximation with
d-independent scaling of m and M.

e But still inefficient, especially in high dimensions.
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Stochastic Collocation

Two widely-used approaches:

Structured meshes and interpolation (M = m): E.g. Sparse grids.

o Efficient interpolation schemes in moderate dimensions

e But may be too structured for very high dimensions, or miss certain
features (e.g. anisotropic behaviour).

Unstructured meshes and regression (m > M): Random sampling
combined with least-squares fitting.

e For the right distributions, can obtain stable approximation with
d-independent scaling of m and M.

e But still inefficient, especially in high dimensions.

Question
Can compressed sensing techniques be useful here?
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Compressed sensing in UQ

Theoretical work:

Rauhut & Ward (2011), 1D Legendre polynomials

Yan, Guo & Xiu (2012), dD Legendre polynomials

Tang & laccarino (2014), randomized quadratures

Hampton & Doostan (2014), coherence-optimized sampling

Xu & Zhou (2014), deterministic sampling

Rauhut & Ward (2014), weighted ¢* minimization

Chkifa, Dexter, Tran & Webster (2015), weighted ! minimization

Applications to UQ:

Doostan & Owhadi (2011), Mathelin & Gallivan (2012), Lei, Yang,
Zheng, Lin & Baker (2014), Rauhut & Schwab (2015), Yang, Lei, Baker
& Lin (2015), Jakeman, Eldred & Sargsyan (2015), Karagiannis, Konomi
& Lin (2015), Guo, Narayan, Xiu & Zhou (2015) and others.
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Are polynomial coefficient sparse?

Low dimensions: polynomial coefficients exhibit decay, not sparsity:

Polynomial coefficients Wavelet coefficients

Sparsity

Nonlinear approximation error &~ Linear approximation error

We may as well use interpolation/least squares.
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Are polynomial coefficient sparse?

Higher dimensions: polynomial coefficients are increasingly sparse
(Doostan et al., Schwab et al., Webster et al.,....).

5000 10000 15000

Polynomial coefficients, d = 10

Nonlinear approximation error < Linear approximation error
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Sparsity and lower sets

In high dimensions, polynomial coefficients concentrate on lower sets:

Definition (Lower set)

A set A C N9 is lower if, for any i = (i1, ...,i4) and j = (ji,...,jq) with
Jk < ik, Vk, we have
ieA = jeA.

Note: The number of lower sets of size s is O (s Iog(s)d’l).
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Infinite-dimensional framework

Setup

Let
e v be a measure on D with fD dv =1,
o T={t;}", CD, meN be drawn independently from v,

o {¢;}jen be an orthonormal system in L2(D) N L>(D) (typically,
tensor algebraic polynomials).

Suppose that

JEN

where {x;};cn are the coefficients of f in the system {¢;};en.
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Current approaches — discretize first

Most existing approaches follow a ‘discretize first’ approach.
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Current approaches — discretize first

Most existing approaches follow a ‘discretize first’ approach.

Choose M > m and solve the finite-dimensional problem
min ||z||1,w subject to ||Az — y|l» <4, (*)
zeCM

for some 6 > 0, where ||z||1,w = Z,Ail wi|zi|, {w;}¥, are weights and

A={gm .y ={F(t)}.

If 2 € CM is a minimizer, set f ~ f = SV %¢;.
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The choice of §

The parameter § is chosen so that the best approximation Z,All x;¢; to f
from span{¢;} M, is feasible for (x).

In other words, we require

M
0> f—zxi<l5i = ZX,'¢/
i=1 [oe i>M IS

Equivalently, we treat the expansion tail as noise in the data.
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The choice of §

The parameter § is chosen so that the best approximation Z,Ail x;¢; to f
from span{¢;} M, is feasible for (x).
In other words, we require

M

f— ZX@;

i=1

6> Z Xi®j

i>M

Lo Lo

Equivalently, we treat the expansion tail as noise in the data.

Problems
e This tail error is unknown in general.
e A good estimation is necessary in order to get good accuracy.
e Empirical estimation via cross validation is tricky and wasteful.
e Solutions of (x) do not interpolate the data.
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New approach

We propose the infinite-dimensional /! minimization

inf ||z subject to Uz =y,
2l subi v,

where y = {f(t;)}7,, {wi}ien are weights and
U= {(]Sj(t,)}’niszl S (meoo’

is an infinitely fat matrix.

15/28



Infinite-dimensional framework

New approach

We propose the infinite-dimensional /! minimization

inf ||z subject to Uz =y,
2l subi v,

where y = {f(t;)}7,, {wi}ien are weights and

U={gj(ti)}75_, € T,

i=1,j=1

is an infinitely fat matrix.

Advantages
e Solutions are interpolatory.
e No need to know the expansion tail.
e Agnostic to the ordering of the functions {¢;};cn.

Note: a similar setup can also handle noisy data.
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Discretization

We cannot numerically solve the problem

Zeiergi(N) |z|l1,w subject to Uz = y. (1)

Discretization strategy: Introduce a parameter K € N and solve the
finite-dimensional problem

min Z||1.w subject to UPkz =y, 2
pmin Izl sub Kz =y 2)

where P is defined by Pxz = {z,...,2x,0,0,...}.

e Note: UPk is equivalent to a fat m x K matrix.

Main Idea

Choose K suitably large, and independent of f, so that solutions of (2)
are close to solutions of (1).
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How to choose K

Let Tk(x) be the additional error introduced by this discretization.

Theorem (BA)

Let x € ¢} (N), where w; > \/iw?, Vi. Suppose that K is sufficiently
large so that o, = o.(PxU*) > 0, where r = rank(U). Then

Tk (x) < ||x = Pxxl|li,w + 1/o||Ix — Pxx|l1,w-

The truncation condition o, =~ 1 depends only on T and {¢;}en and is
independent of the function f to recover.

Example: Let D = (—1,1)9 with tensor Jacobi polynomials or the Fourier
basis and equispaced data. Then K = O (m**), € > 0, suffices.

Rule-of-thumb

Letting K ~ 4m works fine in most settings.
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Outline

New recovery guarantees for weighted ¢! minimization
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Background

Unweighted ¢! minimization:
® Recovery guarantees: Rauhut & Ward (2011), Yan, Guo & Xiu (2012).

e Applications to UQ: Doostan & Owhadi (2011), Mathelin & Gallivan
(2012), Hampton & Doostan (2014), Tang & laccarino (2014), Guo,
Narayan, Xiu & Zhou (2015).

Weighted ¢ minimization: Observed empirically to give superior results.

Ll ‘e
ERERY] EEE
100 200 300 400 100 200 300 400 100 200 300 200
t+tott3+t,
f(t) = e cos(3t) £(t) = sin(e2 /2) F(t) = LR St

Plot of error versus m with algebraic weights: w; = (i - - iy)*, « > 0.
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Standard weighting strategies

Non-adapted weights: Slowly-growing (e.g. algebraic) weights used to
alleviate aliasing/overfitting.

e Rauhut & Ward (2014), Rauhut & Schwab (2015), BA (2015).

Adapted weights: Weights chosen according to support estimates.
e A priori estimates: Peng, Hampton & Doostan (2014).
e lterative re-weighting: Yang & Karniadakis (2014).
e See also: Bah & Ward (2015).

Goal

Find recovery guarantees that explain the effectiveness of both strategies.
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Existing recovery guarantees

Rauhut & Ward (2014):
o Weights: w; > ||¢i|| 1~
* Weighted sparsity: s = |A],, = >, ., w?, where A = supp(x).
e Recovery guarantee: m 2 s X log factors.
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Existing recovery guarantees
Rauhut & Ward (2014):
o Weights: w; > ||¢i|| 1~
* Weighted sparsity: s = |A],, = >, ., w?, where A = supp(x).
e Recovery guarantee: m 2 s X log factors.
Problem: This is not sharp. Let w; = i and suppose that f is such that
xi#0, 1<j<k, xj~0, j>k
This is reasonable for oscillatory functions, for example. Then
m > k?**1 x log factors.

This estimate deteriorates with increasing a.

e Note: The same argument generalizes to any dimension when the
coefficients lie on a hyperbolic cross, BA (2015).
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Example

Take f(t) = cos(45v/2t + 1/3) and consider Chebyshev polynomials with
random samples drawn from the Chebyshev measure.

Coefficients x;

50 100 150 200 250

Error versus m
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A new recovery guarantee
Theorem (BA)

Let w = {w;};en be weights, x € (1 (N) and A C {1,..., K} be such
that minjc1 . kpaiwi} > 1. Let t1,. .., t, be drawn independently
from v. Then

lIx = Xll2 S lIx = Paxlliw + Tk(x),

with probability at least 1 — €, provided
mz (18l+_ max (/) maxAla 1) L ()
where u; = max{||¢;||.~,1} and L = log(e~1) - log(2N+/max{|A|,,1}).

Remarks:
e The weights u; are intrinsic to the problem.
e This is a nonuniform guarantee — (x) relies heavily on this approach.
e As is typical, the error bound is weaker (£2//).
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Consequence |: Sharpness for linear models

Consider the main estimate:

> (A, + 2/ w? AW,1>-L.
mz (1l max (2w} max(|al.1)

Sharpness for linear models: Let A = {1,..., k}. Suppose that
u =0 (") and w; = O (i*) for a« > v > 0. Then

m > k*¥*1 x log factors.

e This is independent of the weights and optimal, up to log factors.
e Extends to any dimension for coefficients lying on a hyperbolic cross.
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Consequence Il: Optimal non-adapted weights

For non-adapted weights, the estimate

> (A, + a 2 /w2y max{|Al|,, 1} ) - L.
mz (180 mex (8 /w2) max(|Al.1)

is minimized by setting w; = u;.
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Consequence Il: Optimal non-adapted weights

For non-adapted weights, the estimate

> (A, + a 2 /w2y max{|Al|,, 1} ) - L.
mz (180 mex (8 /w2) max(|Al.1)

is minimized by setting w; = u;.

Example 1: Legendre polynomials, uniform measure.
e w; =1 m2>3% s.L, where s = |A].
e w; =u;: m2=>s%- L provided A is a lower set.

o Note that s? is sharp and avoids the curse of dimensionality.
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Consequence Il: Optimal non-adapted weights

For non-adapted weights, the estimate

> (A, + a 2 /w2y max{|Al|,, 1} ) - L.
mz (180 mex (8 /w2) max(|Al.1)

is minimized by setting w; = u;.

Example 1: Legendre polynomials, uniform measure.
e w; =1 m2>3% s.L, where s = |A].
e w; =u;: m2=>s%- L provided A is a lower set.

o Note that s? is sharp and avoids the curse of dimensionality.

Example 2: Chebyshev polynomials, Chebyshev measure.
ew=1:m>2%.5.L,

o w; = u;: m> s'983)/106(2) . | provided A is a lower set.

References
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Consequence IlI: The benefits of adapted weights
Corollary (BA)

Assume u; = 1 for simplicity. Let x be s-sparse with support A. Let

FC{1,...,K} and suppose that w; = o <1, i €T, and w; =1, ¢T.

Then we require

mZ (2(1 = pa)+ (1+7)p)-s- L,
measurements, where

a=I[ANT/|F],  [Tl/|A] = p.

e Recall that m = 2-s- L in the unweighted case.
e Hence we see an improvement whenever o > %(1 +7).
e That is, we estimate ~ 50% of the support correctly, for small ~.

Related work:

e Friedlander, Mansour, Saab & Yilmaz (2012), Yu & Baek (2013) (random

Gaussian measurements).
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Thanks!

For more info, see:

B. Adcock, Infinite-dimensional weighted Y minimization and function
approximation from pointwise data, arXiv:1503.02352 (2015).

B. Adcock, Infinite-dimensional compressed sensing and function
interpolation, arXiv:1509.06073 (2015).
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