## Function interpolation and compressed sensing

Ben Adcock

Department of Mathematics Simon Fraser University

### Outline

Introduction

Infinite-dimensional framework

New recovery guarantees for weighted  $\ell^1$  minimization

References

### Outline

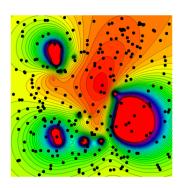
#### Introduction

### High-dimensional approximation

#### Let

- $D \subseteq \mathbb{R}^d$  be a domain,  $d \gg 1$
- $f: D \to \mathbb{C}$  be a (smooth) function
- $\{t_i\}_{i=1}^m$  be a set of sample points

Goal: Approximate f from  $\{f(t_i)\}_{i=1}^m$ .



Applications: Uncertainty Quantification (UQ), scattered data approximation, numerical PDEs,....

Main issue: curse of dimensionality (exponential blow-up with d).

### Quantifying uncertainty via polynomial chaos expansions

Uncertainty Quantification: Understand how output f (the quantity of interest) of a physical system behave as functions of the inputs t (the parameters).

Polynomial Chaos Expansions: (Xiu & Karniadakis, 2002). Expand f(t) using multivariate orthogonal polynomials

$$f(t) \approx \sum_{i=1}^{M} x_i \phi_i(t).$$

Non-intrusive methods: Recover  $\{x_i\}_{i=1}^M$  from samples  $\{f(t_i)\}_{i=1}^m$ .

#### Stochastic Collocation

Two widely-used approaches:

Structured meshes and interpolation (M = m): E.g. Sparse grids.

- Efficient interpolation schemes in moderate dimensions
- But may be too structured for very high dimensions, or miss certain features (e.g. anisotropic behaviour).

Unstructured meshes and regression (m > M): Random sampling combined with least-squares fitting.

- For the right distributions, can obtain stable approximation with d-independent scaling of m and M.
- But still inefficient, especially in high dimensions.

#### Stochastic Collocation

Two widely-used approaches:

Structured meshes and interpolation (M = m): E.g. Sparse grids.

- Efficient interpolation schemes in moderate dimensions
- But may be too structured for very high dimensions, or miss certain features (e.g. anisotropic behaviour).

Unstructured meshes and regression (m > M): Random sampling combined with least-squares fitting.

- For the right distributions, can obtain stable approximation with d-independent scaling of m and M.
- But still inefficient, especially in high dimensions.

#### Question

Can compressed sensing techniques be useful here?

## Compressed sensing in UQ

#### Theoretical work:

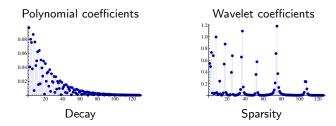
- Rauhut & Ward (2011), 1D Legendre polynomials
- Yan, Guo & Xiu (2012), dD Legendre polynomials
- Tang & laccarino (2014), randomized quadratures
- Hampton & Doostan (2014), coherence-optimized sampling
- Xu & Zhou (2014), deterministic sampling
- Rauhut & Ward (2014), weighted  $\ell^1$  minimization
- Chkifa, Dexter, Tran & Webster (2015), weighted  $\ell^1$  minimization

#### Applications to UQ:

 Doostan & Owhadi (2011), Mathelin & Gallivan (2012), Lei, Yang, Zheng, Lin & Baker (2014), Rauhut & Schwab (2015), Yang, Lei, Baker & Lin (2015), Jakeman, Eldred & Sargsyan (2015), Karagiannis, Konomi & Lin (2015), Guo, Narayan, Xiu & Zhou (2015) and others.

### Are polynomial coefficient sparse?

Low dimensions: polynomial coefficients exhibit decay, not sparsity:

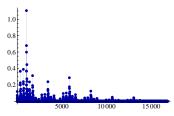


Nonlinear approximation error  $\approx$  Linear approximation error

We may as well use interpolation/least squares.

### Are polynomial coefficient sparse?

Higher dimensions: polynomial coefficients are increasingly sparse (Doostan et al., Schwab et al., Webster et al.,....).



Polynomial coefficients, d = 10

Nonlinear approximation error 

Linear approximation error

### Sparsity and lower sets

In high dimensions, polynomial coefficients concentrate on lower sets:

### Definition (Lower set)

A set  $\Delta \subseteq \mathbb{N}^d$  is lower if, for any  $i = (i_1, \dots, i_d)$  and  $j = (j_1, \dots, j_d)$  with  $j_k \leq i_k$ ,  $\forall k$ , we have  $i \in \Delta \quad \Rightarrow \quad j \in \Delta$ .

Note: The number of lower sets of size s is  $\mathcal{O}(s \log(s)^{d-1})$ .

### Outline

Infinite-dimensional framework

### Setup

#### Let

- $\nu$  be a measure on D with  $\int_D d\nu = 1$ ,
- $T = \{t_i\}_{i=1}^m \subseteq D, m \in \mathbb{N} \text{ be drawn independently from } \nu$ ,
- $\{\phi_i\}_{i\in\mathbb{N}}$  be an orthonormal system in  $L^2_{\nu}(D)\cap L^{\infty}(D)$  (typically, tensor algebraic polynomials).

#### Suppose that

$$f = \sum_{j \in \mathbb{N}} x_j \phi_j, \qquad x_j = \langle f, \phi_j \rangle_{L^2_{\nu}},$$

where  $\{x_i\}_{i\in\mathbb{N}}$  are the coefficients of f in the system  $\{\phi_i\}_{i\in\mathbb{N}}$ .

### Current approaches – discretize first

#### Most existing approaches follow a 'discretize first' approach.

Choose  $M \ge m$  and solve the finite-dimensional problem

$$\min_{z \in \mathbb{C}^M} \|z\|_{1,w} \text{ subject to } \|Az - y\|_2 \le \delta, \tag{*}$$

for some  $\delta \geq$  0, where  $\|z\|_{1,w} = \sum_{i=1}^M w_i |z_i|, \ \{w_i\}_{i=1}^M$  are weights and

$$A = {\phi_j(t_i)}_{i=1,j=1}^{m,M}, \quad y = {f(t_i)}_{i=1}^m$$

If  $\hat{x} \in \mathbb{C}^M$  is a minimizer, set  $f \approx \tilde{f} = \sum_{i=1}^M \hat{x}_i \phi_i$ 

### Current approaches – discretize first

Most existing approaches follow a 'discretize first' approach.

Choose  $M \ge m$  and solve the finite-dimensional problem

$$\min_{z \in \mathbb{C}^M} \|z\|_{1,w} \text{ subject to } \|Az - y\|_2 \le \delta, \tag{\star}$$

for some  $\delta \geq 0$ , where  $||z||_{1,w} = \sum_{i=1}^{M} w_i |z_i|$ ,  $\{w_i\}_{i=1}^{M}$  are weights and

$$A = \{\phi_j(t_i)\}_{i=1,j=1}^{m,M}, \quad y = \{f(t_i)\}_{i=1}^m.$$

If  $\hat{x} \in \mathbb{C}^M$  is a minimizer, set  $f \approx \tilde{f} = \sum_{i=1}^M \hat{x}_i \phi_i$ .

#### The choice of $\delta$

The parameter  $\delta$  is chosen so that the best approximation  $\sum_{i=1}^{M} x_i \phi_i$  to ffrom span $\{\phi_i\}_{i=1}^M$  is feasible for  $(\star)$ .

In other words, we require

$$\delta \geq \left\| f - \sum_{i=1}^{M} x_i \phi_i \right\|_{L^{\infty}} = \left\| \sum_{i>M} x_i \phi_i \right\|_{L^{\infty}}.$$

Equivalently, we treat the expansion tail as noise in the data.

#### The choice of $\delta$

The parameter  $\delta$  is chosen so that the best approximation  $\sum_{i=1}^{M} x_i \phi_i$  to ffrom span $\{\phi_i\}_{i=1}^M$  is feasible for  $(\star)$ .

In other words, we require

$$\delta \ge \left\| f - \sum_{i=1}^{M} x_i \phi_i \right\|_{L^{\infty}} = \left\| \sum_{i>M} x_i \phi_i \right\|_{L^{\infty}}.$$

Equivalently, we treat the expansion tail as noise in the data.

#### **Problems**

- This tail error is unknown in general.
- A good estimation is necessary in order to get good accuracy.
- Empirical estimation via cross validation is tricky and wasteful.
- Solutions of (\*) do not interpolate the data.

### New approach

We propose the infinite-dimensional  $\ell^1$  minimization

$$\inf_{z\in \ell^1_w(\mathbb{N})}\|z\|_{1,w} \text{ subject to } Uz=y,$$

where  $y = \{f(t_i)\}_{i=1}^m$ ,  $\{w_i\}_{i \in \mathbb{N}}$  are weights and

$$U = \{\phi_j(t_i)\}_{i=1,j=1}^{m,\infty} \in \mathbb{C}^{m \times \infty},$$

is an infinitely fat matrix.

### New approach

We propose the infinite-dimensional  $\ell^1$  minimization

$$\inf_{z\in \ell^1_w(\mathbb{N})}\|z\|_{1,w} \text{ subject to } Uz=y,$$

where  $y = \{f(t_i)\}_{i=1}^m$ ,  $\{w_i\}_{i \in \mathbb{N}}$  are weights and

$$U = \{\phi_j(t_i)\}_{i=1,j=1}^{m,\infty} \in \mathbb{C}^{m \times \infty},$$

is an infinitely fat matrix.

#### Advantages

- Solutions are interpolatory.
- No need to know the expansion tail.
- Agnostic to the ordering of the functions  $\{\phi_i\}_{i\in\mathbb{N}}$ .

Note: a similar setup can also handle noisy data.

#### Discretization

We cannot numerically solve the problem

$$\inf_{z \in \ell_w^1(\mathbb{N})} \|z\|_{1,w} \text{ subject to } Uz = y. \tag{1}$$

Discretization strategy: Introduce a parameter  $K \in \mathbb{N}$  and solve the finite-dimensional problem

$$\min_{z \in P_K(\ell_w^1(\mathbb{N}))} \|z\|_{1,w} \text{ subject to } UP_K z = y, \tag{2}$$

where  $P_K$  is defined by  $P_K z = \{z_1, \ldots, z_K, 0, 0, \ldots\}$ .

• Note:  $UP_K$  is equivalent to a fat  $m \times K$  matrix.

#### Main Idea

Choose K suitably large, and independent of f, so that solutions of (2) are close to solutions of (1).

#### How to choose K

Let  $T_K(x)$  be the additional error introduced by this discretization.

### Theorem (BA)

Let  $x \in \ell^1_{\tilde{w}}(\mathbb{N})$ , where  $\tilde{w}_i \geq \sqrt{i}w_i^2$ ,  $\forall i$ . Suppose that K is sufficiently large so that  $\sigma_r = \sigma_r(P_KU^*) > 0$ , where  $r = \operatorname{rank}(U)$ . Then

$$T_K(x) \le ||x - P_K x||_{1,w} + 1/\sigma_r ||x - P_K x||_{1,\tilde{w}}.$$

The truncation condition  $\sigma_r \approx 1$  depends only on T and  $\{\phi_i\}_{i\in\mathbb{N}}$  and is independent of the function f to recover.

Example: Let  $D=(-1,1)^d$  with tensor Jacobi polynomials or the Fourier basis and equispaced data. Then  $K=\mathcal{O}\left(m^{1+\epsilon}\right)$ ,  $\epsilon>0$ , suffices.

#### Rule-of-thumb

Letting  $K \approx 4m$  works fine in most settings.

### Outline

Introduction

Infinite-dimensional framework

New recovery guarantees for weighted  $\ell^1$  minimization

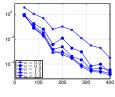
References

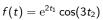
### Background

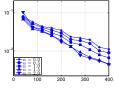
#### Unweighted $\ell^1$ minimization:

- Recovery guarantees: Rauhut & Ward (2011), Yan, Guo & Xiu (2012).
- Applications to UQ: Doostan & Owhadi (2011), Mathelin & Gallivan (2012), Hampton & Doostan (2014), Tang & Iaccarino (2014), Guo, Narayan, Xiu & Zhou (2015).

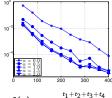
Weighted  $\ell^1$  minimization: Observed empirically to give superior results.







$$f(t) = \sin(e^{t_1 t_2 t_3}/2)$$



$$f(t) = e^{-\frac{t_1 + t_2 + t_3 + t_4}{6}}$$

Plot of error versus m with algebraic weights:  $w_i = (i_1 \cdots i_d)^{\alpha}$ ,  $\alpha \ge 0$ .

### Standard weighting strategies

Non-adapted weights: Slowly-growing (e.g. algebraic) weights used to alleviate aliasing/overfitting.

Rauhut & Ward (2014), Rauhut & Schwab (2015), BA (2015).

Adapted weights: Weights chosen according to support estimates.

- A priori estimates: Peng, Hampton & Doostan (2014).
- Iterative re-weighting: Yang & Karniadakis (2014).
- See also: Bah & Ward (2015).

#### Goal

Find recovery guarantees that explain the effectiveness of both strategies.

## Existing recovery guarantees

#### Rauhut & Ward (2014):

- Weights:  $w_i \ge \|\phi_i\|_{L^{\infty}}$
- Weighted sparsity:  $s = |\Delta|_w = \sum_{i \in \Delta} w_i^2$ , where  $\Delta = \operatorname{supp}(x)$ .
- Recovery guarantee:  $m \gtrsim s \times \log$  factors.

Problem: This is not sharp. Let  $w_i=i^lpha$  and suppose that f is such that

$$x_i \neq 0, \quad 1 \leq j \leq k, \qquad x_i \approx 0, \quad j > k.$$

This is reasonable for oscillatory functions, for example. Then

$$m \gtrsim k^{2\alpha+1} \times \log \text{ factors}$$

This estimate deteriorates with increasing  $\alpha$ 

• Note: The same argument generalizes to any dimension when the coefficients lie on a hyperbolic cross, BA (2015).

### Existing recovery guarantees

#### Rauhut & Ward (2014):

- Weights:  $w_i > ||\phi_i||_{I^{\infty}}$
- Weighted sparsity:  $s = |\Delta|_w = \sum_{i \in \Delta} w_i^2$ , where  $\Delta = \text{supp}(x)$ .
- Recovery guarantee:  $m \gtrsim s \times \log$  factors.

Problem: This is not sharp. Let  $w_i = i^{\alpha}$  and suppose that f is such that

$$x_i \neq 0$$
,  $1 \leq j \leq k$ ,  $x_i \approx 0$ ,  $j > k$ .

This is reasonable for oscillatory functions, for example. Then

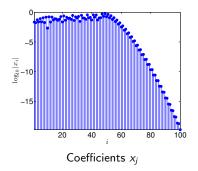
$$m \gtrsim k^{2\alpha+1} \times \log$$
 factors.

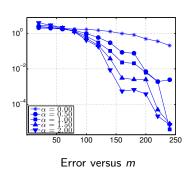
This estimate deteriorates with increasing  $\alpha$ .

• Note: The same argument generalizes to any dimension when the coefficients lie on a hyperbolic cross, BA (2015).

### Example

Take  $f(t) = \cos(45\sqrt{2}t + 1/3)$  and consider Chebyshev polynomials with random samples drawn from the Chebyshev measure.





### A new recovery guarantee

### Theorem (BA)

Let  $w = \{w_i\}_{i \in \mathbb{N}}$  be weights,  $x \in \ell^1_w(\mathbb{N})$  and  $\Delta \subseteq \{1, \ldots, K\}$  be such that  $\min_{i \in \{1, \ldots, K\} \setminus \Delta} \{w_i\} \ge 1$ . Let  $t_1, \ldots, t_m$  be drawn independently from  $\nu$ . Then

$$||x - \hat{x}||_2 \lesssim ||x - P_{\Delta}x||_{1,w} + T_{\kappa}(x),$$

with probability at least  $1 - \epsilon$ , provided

$$m \gtrsim \left( |\Delta|_u + \max_{i \in \{1, \dots, K\} \setminus \Delta} \{u_i^2/w_i^2\} \max\{|\Delta|_w, 1\} \right) \cdot L,$$
 (\*)

where 
$$u_i = \max\{\|\phi_i\|_{L^{\infty}}, 1\}$$
 and  $L = \log(\epsilon^{-1}) \cdot \log(2N\sqrt{\max\{|\Delta|_w, 1\}})$ .

#### Remarks:

- The weights  $u_i$  are intrinsic to the problem.
- This is a nonuniform guarantee  $(\star)$  relies heavily on this approach.
- As is typical, the error bound is weaker  $(\ell^2/\ell_w^1)$ .

### Consequence I: Sharpness for linear models

Consider the main estimate:

$$m \gtrsim \left( |\Delta|_u + \max_{i \in \{1, \dots, K\} \setminus \Delta} \{u_i^2/w_i^2\} \max\{|\Delta|_w, 1\} \right) \cdot L.$$

Sharpness for linear models: Let  $\Delta = \{1, ..., k\}$ . Suppose that  $u_i = \mathcal{O}(i^{\gamma})$  and  $w_i = \mathcal{O}(i^{\alpha})$  for  $\alpha > \gamma \geq 0$ . Then

$$m \gtrsim k^{2\gamma+1} \times \log$$
 factors.

- This is independent of the weights and optimal, up to log factors.
- Extends to any dimension for coefficients lying on a hyperbolic cross.

### Consequence II: Optimal non-adapted weights

For non-adapted weights, the estimate

$$m \gtrsim \left( |\Delta|_u + \max_{i \in \{1, \dots, K\} \setminus \Delta} \{u_i^2/w_i^2\} \max\{|\Delta|_w, 1\} \right) \cdot L.$$

is minimized by setting  $w_i = u_i$ .

Example 1: Legendre polynomials, uniform measure.

- $w_i = 1$ :  $m \gtrsim 3^d \cdot s \cdot L$ , where  $s = |\Delta|$ .
- $w_i = u_i$ :  $m \gtrsim s^2 \cdot L$  provided  $\Delta$  is a lower set.
- Note that  $s^2$  is sharp and avoids the curse of dimensionality.

Example 2: Chebyshev polynomials, Chebyshev measure.

- $w_i = 1$ :  $m \gtrsim 2^d \cdot s \cdot L$ .
- $w_i = u_i$ :  $m \gtrsim s^{\log(3)/\log(2)} \cdot L$  provided  $\Delta$  is a lower set.

### Consequence II: Optimal non-adapted weights

For non-adapted weights, the estimate

$$m \gtrsim \left( |\Delta|_u + \max_{i \in \{1, \dots, K\} \setminus \Delta} \{u_i^2/w_i^2\} \max\{|\Delta|_w, 1\} \right) \cdot L.$$

is minimized by setting  $w_i = u_i$ .

Example 1: Legendre polynomials, uniform measure.

- $w_i = 1$ :  $m \gtrsim 3^d \cdot s \cdot L$ , where  $s = |\Delta|$ .
- $w_i = u_i$ :  $m \gtrsim s^2 \cdot L$  provided  $\Delta$  is a lower set.
- Note that  $s^2$  is sharp and avoids the curse of dimensionality.

Example 2: Chebyshev polynomials, Chebyshev measure

- $w_i = 1$ :  $m \gtrsim 2^d \cdot s \cdot L$ .
- $w_i = u_i$ :  $m \gtrsim s^{\log(3)/\log(2)} \cdot L$  provided  $\Delta$  is a lower set.

### Consequence II: Optimal non-adapted weights

For non-adapted weights, the estimate

$$m \gtrsim \left( |\Delta|_u + \max_{i \in \{1, \dots, K\} \setminus \Delta} \{u_i^2/w_i^2\} \max\{|\Delta|_w, 1\} \right) \cdot L.$$

is minimized by setting  $w_i = u_i$ .

Example 1: Legendre polynomials, uniform measure.

- $w_i = 1$ :  $m \gtrsim 3^d \cdot s \cdot L$ , where  $s = |\Delta|$ .
- $w_i = u_i$ :  $m \gtrsim s^2 \cdot L$  provided  $\Delta$  is a lower set.
- Note that  $s^2$  is sharp and avoids the curse of dimensionality.

Example 2: Chebyshev polynomials, Chebyshev measure.

- $w_i = 1$ :  $m \gtrsim 2^d \cdot s \cdot L$ .
- $w_i = u_i$ :  $m \gtrsim s^{\log(3)/\log(2)} \cdot L$  provided  $\Delta$  is a lower set.

### Consequence III: The benefits of adapted weights

### Corollary (BA)

Assume  $u_i=1$  for simplicity. Let x be s-sparse with support  $\Delta$ . Let  $\Gamma\subseteq\{1,\ldots,K\}$  and suppose that  $w_i=\sigma<1$ ,  $i\in\Gamma$ , and  $w_i=1$ ,  $i\notin\Gamma$ . Then we require

$$m \gtrsim (2(1-\rho\alpha)+(1+\gamma)\rho)\cdot s\cdot L,$$

measurements, where

$$\alpha = |\Delta \cap \Gamma|/|\Gamma|, \qquad |\Gamma|/|\Delta| = \rho.$$

- Recall that  $m \gtrsim 2 \cdot s \cdot L$  in the unweighted case.
- Hence we see an improvement whenever  $\alpha > \frac{1}{2}(1+\gamma)$ .
- That is, we estimate  $\approx 50\%$  of the support correctly, for small  $\gamma$ .

#### Related work:

• Friedlander, Mansour, Saab & Yilmaz (2012), Yu & Baek (2013) (random Gaussian measurements).

References

# Thanks!

For more info. see:

- B. Adcock, Infinite-dimensional weighted  $\ell^1$  minimization and function approximation from pointwise data, arXiv:1503.02352 (2015).
- B. Adcock, Infinite-dimensional compressed sensing and function interpolation, arXiv:1509.06073 (2015).