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High-dimensional approximation

Let

• D ⊆ Rd be a domain, d � 1

• f : D → C be a (smooth) function

• {ti}mi=1 be a set of sample points

Goal: Approximate f from {f (ti )}mi=1.

Applications: Uncertainty Quantification (UQ), scattered data
approximation, numerical PDEs,....

Main issue: curse of dimensionality (exponential blow-up with d).
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Quantifying uncertainty via polynomial chaos expansions

Uncertainty Quantification: Understand how output f (the quantity of
interest) of a physical system behave as functions of the inputs t (the
parameters).

Polynomial Chaos Expansions: (Xiu & Karniadakis, 2002). Expand f (t)
using multivariate orthogonal polynomials

f (t) ≈
M∑
i=1

xiφi (t).

Non-intrusive methods: Recover {xi}Mi=1 from samples {f (ti )}mi=1.
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Stochastic Collocation

Two widely-used approaches:

Structured meshes and interpolation (M = m): E.g. Sparse grids.

• Efficient interpolation schemes in moderate dimensions

• But may be too structured for very high dimensions, or miss certain
features (e.g. anisotropic behaviour).

Unstructured meshes and regression (m > M): Random sampling
combined with least-squares fitting.

• For the right distributions, can obtain stable approximation with
d-independent scaling of m and M.

• But still inefficient, especially in high dimensions.

Question
Can compressed sensing techniques be useful here?
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Compressed sensing in UQ

Theoretical work:

• Rauhut & Ward (2011), 1D Legendre polynomials

• Yan, Guo & Xiu (2012), dD Legendre polynomials

• Tang & Iaccarino (2014), randomized quadratures

• Hampton & Doostan (2014), coherence-optimized sampling

• Xu & Zhou (2014), deterministic sampling

• Rauhut & Ward (2014), weighted `1 minimization

• Chkifa, Dexter, Tran & Webster (2015), weighted `1 minimization

Applications to UQ:

• Doostan & Owhadi (2011), Mathelin & Gallivan (2012), Lei, Yang,

Zheng, Lin & Baker (2014), Rauhut & Schwab (2015), Yang, Lei, Baker

& Lin (2015), Jakeman, Eldred & Sargsyan (2015), Karagiannis, Konomi

& Lin (2015), Guo, Narayan, Xiu & Zhou (2015) and others.
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Are polynomial coefficient sparse?

Low dimensions: polynomial coefficients exhibit decay, not sparsity:

Polynomial coefficients Wavelet coefficients
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Nonlinear approximation error ≈ Linear approximation error

We may as well use interpolation/least squares.
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Are polynomial coefficient sparse?

Higher dimensions: polynomial coefficients are increasingly sparse
(Doostan et al., Schwab et al., Webster et al.,....).
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Sparsity and lower sets

In high dimensions, polynomial coefficients concentrate on lower sets:

Definition (Lower set)

A set ∆ ⊆ Nd is lower if, for any i = (i1, . . . , id) and j = (j1, . . . , jd) with
jk ≤ ik , ∀k, we have

i ∈ ∆ ⇒ j ∈ ∆.

Note: The number of lower sets of size s is O
(
s log(s)d−1

)
.
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Setup

Let

• ν be a measure on D with
∫
D
dν = 1,

• T = {ti}mi=1 ⊆ D, m ∈ N be drawn independently from ν,

• {φj}j∈N be an orthonormal system in L2
ν(D) ∩ L∞(D) (typically,

tensor algebraic polynomials).

Suppose that

f =
∑
j∈N

xjφj , xj = 〈f , φj〉L2
ν
,

where {xj}j∈N are the coefficients of f in the system {φj}j∈N.
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Current approaches – discretize first

Most existing approaches follow a ‘discretize first’ approach.

Choose M ≥ m and solve the finite-dimensional problem

min
z∈CM

‖z‖1,w subject to ‖Az − y‖2 ≤ δ, (?)

for some δ ≥ 0, where ‖z‖1,w =
∑M

i=1 wi |zi |, {wi}Mi=1 are weights and

A = {φj(ti )}m,Mi=1,j=1 , y = {f (ti )}mi=1.

If x̂ ∈ CM is a minimizer, set f ≈ f̃ =
∑M

i=1 x̂iφi .
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The choice of δ

The parameter δ is chosen so that the best approximation
∑M

i=1 xiφi to f
from span{φi}Mi=1 is feasible for (?).

In other words, we require

δ ≥

∥∥∥∥∥f −
M∑
i=1

xiφi

∥∥∥∥∥
L∞

=

∥∥∥∥∥∑
i>M

xiφi

∥∥∥∥∥
L∞

.

Equivalently, we treat the expansion tail as noise in the data.

Problems
• This tail error is unknown in general.

• A good estimation is necessary in order to get good accuracy.

• Empirical estimation via cross validation is tricky and wasteful.

• Solutions of (?) do not interpolate the data.
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New approach

We propose the infinite-dimensional `1 minimization

inf
z∈`1

w (N)
‖z‖1,w subject to Uz = y ,

where y = {f (ti )}mi=1, {wi}i∈N are weights and

U = {φj(ti )}m,∞i=1,j=1 ∈ Cm×∞,

is an infinitely fat matrix.

Advantages

• Solutions are interpolatory.

• No need to know the expansion tail.

• Agnostic to the ordering of the functions {φi}i∈N.

Note: a similar setup can also handle noisy data.
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Discretization

We cannot numerically solve the problem

inf
z∈`1

w (N)
‖z‖1,w subject to Uz = y . (1)

Discretization strategy: Introduce a parameter K ∈ N and solve the
finite-dimensional problem

min
z∈PK (`1

w (N))
‖z‖1,w subject to UPK z = y , (2)

where PK is defined by PK z = {z1, . . . , zK , 0, 0, . . .}.
• Note: UPK is equivalent to a fat m × K matrix.

Main Idea

Choose K suitably large, and independent of f , so that solutions of (2)
are close to solutions of (1).
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How to choose K

Let TK (x) be the additional error introduced by this discretization.

Theorem (BA)

Let x ∈ `1
w̃ (N), where w̃i ≥

√
iw2

i , ∀i . Suppose that K is sufficiently
large so that σr = σr (PKU

∗) > 0, where r = rank(U). Then

TK (x) ≤ ‖x − PKx‖1,w + 1/σr‖x − PKx‖1,w̃ .

The truncation condition σr ≈ 1 depends only on T and {φi}i∈N and is
independent of the function f to recover.

Example: Let D = (−1, 1)d with tensor Jacobi polynomials or the Fourier
basis and equispaced data. Then K = O

(
m1+ε

)
, ε > 0, suffices.

Rule-of-thumb
Letting K ≈ 4m works fine in most settings.
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Background

Unweighted `1 minimization:

• Recovery guarantees: Rauhut & Ward (2011), Yan, Guo & Xiu (2012).

• Applications to UQ: Doostan & Owhadi (2011), Mathelin & Gallivan

(2012), Hampton & Doostan (2014), Tang & Iaccarino (2014), Guo,

Narayan, Xiu & Zhou (2015).

Weighted `1 minimization: Observed empirically to give superior results.

0 100 200 300 400

10
−4

10
−2

10
0

 

 

α = 0.0
α = 0.5
α = 1.0
α = 1.5
α = 2.0

0 100 200 300 400

10
−2

10
−1

 

 

α = 0.0
α = 0.5
α = 1.0
α = 1.5
α = 2.0

0 100 200 300 400

10
−4

10
−2

10
0

 

 

α = 0.0
α = 0.5
α = 1.0
α = 1.5
α = 2.0

f (t) = e2t1 cos(3t2) f (t) = sin(et1t2t3/2) f (t) = e−
t1+t2+t3+t4

6

Plot of error versus m with algebraic weights: wi = (i1 · · · id)α, α ≥ 0.
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Standard weighting strategies

Non-adapted weights: Slowly-growing (e.g. algebraic) weights used to
alleviate aliasing/overfitting.

• Rauhut & Ward (2014), Rauhut & Schwab (2015), BA (2015).

Adapted weights: Weights chosen according to support estimates.

• A priori estimates: Peng, Hampton & Doostan (2014).

• Iterative re-weighting: Yang & Karniadakis (2014).

• See also: Bah & Ward (2015).

Goal
Find recovery guarantees that explain the effectiveness of both strategies.
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Existing recovery guarantees

Rauhut & Ward (2014):

• Weights: wi ≥ ‖φi‖L∞

• Weighted sparsity: s = |∆|w =
∑

i∈∆ w2
i , where ∆ = supp(x).

• Recovery guarantee: m & s × log factors.

Problem: This is not sharp. Let wi = iα and suppose that f is such that

xj 6= 0, 1 ≤ j ≤ k , xj ≈ 0, j > k.

This is reasonable for oscillatory functions, for example. Then

m & k2α+1 × log factors.

This estimate deteriorates with increasing α.

• Note: The same argument generalizes to any dimension when the
coefficients lie on a hyperbolic cross, BA (2015).
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Example

Take f (t) = cos(45
√

2t + 1/3) and consider Chebyshev polynomials with
random samples drawn from the Chebyshev measure.
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A new recovery guarantee

Theorem (BA)

Let w = {wi}i∈N be weights, x ∈ `1
w (N) and ∆ ⊆ {1, . . . ,K} be such

that mini∈{1,...,K}\∆{wi} ≥ 1. Let t1, . . . , tm be drawn independently
from ν. Then

‖x − x̂‖2 . ‖x − P∆x‖1,w + TK (x),

with probability at least 1− ε, provided

m &

(
|∆|u + max

i∈{1,...,K}\∆
{u2

i /w
2
i }max{|∆|w , 1}

)
· L, (?)

where ui = max{‖φi‖L∞ , 1} and L = log(ε−1) · log(2N
√

max{|∆|w , 1}).

Remarks:

• The weights ui are intrinsic to the problem.

• This is a nonuniform guarantee – (?) relies heavily on this approach.

• As is typical, the error bound is weaker (`2/`1
w ).
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Consequence I: Sharpness for linear models

Consider the main estimate:

m &

(
|∆|u + max

i∈{1,...,K}\∆
{u2

i /w
2
i }max{|∆|w , 1}

)
· L.

Sharpness for linear models: Let ∆ = {1, . . . , k}. Suppose that
ui = O (iγ) and wi = O (iα) for α > γ ≥ 0. Then

m & k2γ+1 × log factors.

• This is independent of the weights and optimal, up to log factors.

• Extends to any dimension for coefficients lying on a hyperbolic cross.
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Consequence II: Optimal non-adapted weights

For non-adapted weights, the estimate

m &

(
|∆|u + max

i∈{1,...,K}\∆
{u2

i /w
2
i }max{|∆|w , 1}

)
· L.

is minimized by setting wi = ui .

Example 1: Legendre polynomials, uniform measure.

• wi = 1: m & 3d · s · L, where s = |∆|.
• wi = ui : m & s2 · L provided ∆ is a lower set.

• Note that s2 is sharp and avoids the curse of dimensionality.

Example 2: Chebyshev polynomials, Chebyshev measure.

• wi = 1: m & 2d · s · L.

• wi = ui : m & s log(3)/ log(2) · L provided ∆ is a lower set.
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Consequence III: The benefits of adapted weights

Corollary (BA)

Assume ui = 1 for simplicity. Let x be s-sparse with support ∆. Let
Γ ⊆ {1, . . . ,K} and suppose that wi = σ < 1, i ∈ Γ, and wi = 1, i /∈ Γ.
Then we require

m & (2(1− ρα) + (1 + γ)ρ) · s · L,

measurements, where

α = |∆ ∩ Γ|/|Γ|, |Γ|/|∆| = ρ.

• Recall that m & 2 · s · L in the unweighted case.

• Hence we see an improvement whenever α > 1
2 (1 + γ).

• That is, we estimate ≈ 50% of the support correctly, for small γ.

Related work:

• Friedlander, Mansour, Saab & Yilmaz (2012), Yu & Baek (2013) (random

Gaussian measurements).
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Thanks!

For more info, see:

B. Adcock, Infinite-dimensional weighted `1 minimization and function
approximation from pointwise data, arXiv:1503.02352 (2015).

B. Adcock, Infinite-dimensional compressed sensing and function
interpolation, arXiv:1509.06073 (2015).
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