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Outline of Talk

• PART I
– A General model-based CS Framework

– Practical model-based recovery algorithm

• PART II
– Overview of Quantitative MRI & Magnetic Resonance 

Fingerprinting (MRF)

– A Compressed Sensing version of MRF
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Model based CS



IDCOM, University of Edinburgh

Basics of Compressed sensing

Signal Model:

Compressed Sensing typically assumes 
a signal that is approximately k-sparse.

Encoder:

Use an encoder usually in the form of a 
random projection with e.g. RIP

Decoder:

Signal reconstruction is achieved by a 
nonlinear reconstruction to invert the 
linear projection operator on the signal 
set, e.g. L1, OMP, IHT, CoSaMP, AMP, 
etc...

Set of signals 
of interest

random projection 
(observation)

nonlinear 
approximation 
(reconstruction)
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Reconstruction Algorithms
RIP enables us to replace ��	minimization with practical algorithms, e.g.:

Relaxation: replace ��	with ��:

�� = argmin
�

	 � �	subject to Φ� = �

Theorem [Candes 2008]: 

RIP ��� ≤ 2 − 1	 ⟹guaranteed sparse recovery

Iterative Hard Thresholding (IHT): greedy gradient projection

� ��� = ��� � � +  Φ! � − Φ� �

Theorem [Blumensath, D. 2010]: 

RIP ��� ≤ 1/5	 ⟹ guaranteed sparse recovery

Φ� = �
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Compressed sensing for general 
signal models

General  signal 
model

random projection 
(observation)

nonlinear 
approximation 
(reconstruction)

Signal Model:

Replace k-sparse signal model with 
a general signal model, e.g low 
rank models, union of subspace, 
low dimensional manifolds, …

Encoder:

Information preserving, e.g. Model-
based RIP

Decoder:

Atomic norm minimization?

Model-based greedy methods?
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Model based CS set up

– Measurement matrix: Φ ∈ ℝ&×(	

– a general (low dimensional) signal model: Σ ∈ ℝ(

– Assume a model based (Σ − Σ)	– RIP

, - �
� ≤ Φ- �

� ≤ . - �
�, ∀- ∈ Σ − Σ

(can be satisfied with number of measurements: 1 ∼ dim Σ )

– We now want a practical decoder... 
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A Practical model-based CS Algorithm

IHT generalizes to a good (Instance Optimal) decoder for 
an arbitrary signal model Σ given an appropriate RIP 
[Blumensath 2011] :

� (�� = �� � ( +  Φ! � − Φ� (

where �� � 	 is the orthogonal projection onto Σ	

Choice of (large) step size  is crucial for good performance!

. ≤
1

 
≤ 1.5	,

(in practice use adaptive stepsize)

Practical only if �� � can be implemented efficiently
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Compressive Quantitative MRI
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Structural MRI is Qualitative

Standard MR images are not 
quantitative…

Like your digital camera [Tofts] 
they produce pretty pictures..

…But the process is quantitative 
and described by the Bloch 
equations (physical model):

5 m(t)

5 6
= m(t) ×  γ B(t) –			

m�*6+/T2

1:*6+/T2

*1; 6 � m<=+/T1
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Quantitative MRI
• Quantitative MRI, e.g. estimation proton density, T1, T2, etc.,  

• Offers better physiological information and material discrimination etc. 

• Traditional approach: acquire multiple scans and estimate the 
exponential relaxation from multiple data points…

• Alternative new approach for full quantitative MRI:

“Magnetic Resonance Fingerprinting” [Ma et al, Nature, 2013] 
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Magnetic Resonance Fingerprinting
MRF aim: simultaneous acquisition of all MR parameters at 
once!

1. Excite magnetic spin in tissue with 
a sequence of random RF pulses

2. Acquire image sequence from very 
undersampled in k-space (spiral 
trajectory) and back project.

3. Use dictionary, >, of predicted 
responses for different parameter 
values (fingerprints) is matched 
each voxel sequence (from Ma et al. MRF, 

Nature 2013)
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Is MRF Compressed Sensing?

… not quite:

• Fingerprints average aliasing ≠ Alias cancellation (c.f. 
filtered Back Projection vs Iterative recon)

• Spiral k-space sampling does not provide suitable 
data embedding
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Voxel-wise Bloch response model
We can think of the MRF dictionary D (Fingerprints) as a discretization 
of the Bloch magnetization response to B(t) with respect to the 
parameters T1, T2… 

• This essentially samples a manifold ℬ ∈ ℂB for C

excitation pulses

• The proton density simply scales the response defining a cone ℝ�ℬ

• Full image sequence model is the N-product of this cone (N voxels):

D ∈ ℝ�ℬ E ⊂ ℂE×B

G

ℬ

5 m(t)
5 6

= m(t) ×  γ B(t) –			
m�(6)/T2

1:(6)/T2

(1; 6 − m<=)/T1
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Model Projection

• MRF reconstruction is “matched filter” with voxel sequence D H,: :

IJH = argmax
�

>� , D H,:

>� �

• T1L and T2L can be found using look up table.

• Proton density estimated as the magnitude of the correlation:

G�H =
>� , D H,:

>� �

Our interpretation: this is an approximate projection onto ℝ�ℬ
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Excitation Scheme

• Random excitation sequences map parameter space into 
higher dimensional response space

• not directly part of  “compressed sensing”… but still 
involves data embedding.

• However in order to get a RIP we require some form of 
persistence of excitation to continuously acquire new 
information. 
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Persistence of Excitation

We measure persistence of excitation through the following 
definition:

Definition: flatness. Let M be a collection of vectors 
{O} ∈ 	ℂB. We denote the flatness of M	, Q M as:

Q M ≔ max
S∈T

O U

O �

from standard norm inequalities LW�/� ≤ Q M ≤ 1

We assume that random pulses give us chords of ℝ�ℬ, 
O ∈ ℝ�ℬ − ℝ�ℬ are sufficiently flat (empirically true)

(similar ideas in other areas of CS)
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Signal model has no spatial structure. 
Hence need to fully cover k-space

Proposed k-space sampling:

Randomized Echo Planar Imaging 
(EPI): uniformly subsample multiple 
lines in k-space with random shift

Theorem [D., Puy, Vandergheynst, Wiaux 2014]: RIP for random EPI

If excitation is “sufficiently persistent” then random EPI with factor X
undersampling achieves RIP on voxel-wise model, ℝ�ℬ E with a 
sequence length: C ∼ Y*�W�X�	dim %�@ 	log*

E

\
+

Subsampling & model-based RIP

We would prefer 
to have ] ∼ pppp
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Bloch response recovery via Iterated 
Projection (BLIP)

• Incorporate Bloch dictionary into projected gradient
algorithm:
– (1) Gradient : calculate for each acquisition time, t:

D:,_
{(��/�}

= D:,_
{(}

+  `a� � ! � � `D:,_
{(}

− b:,_	

– (2) Projection: for each voxel c find the atom in > most 

correlated to voxel sequence DH,:
{(��/�} then scale and 

replace. 

(~Y C log >� using a fast nearest neighbour search)

• Finally use look up table to estimate G, T�, T�
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Proposed acquisition system: b:,_ � � � `D:,_

Each image in the sequence is heavily aliased,… but 
encodes different spatial parameter information…

Together the image sequence can be restored with BLIP…

Back Projected Image Sequence

Random RF pulses; Random EPI; highly aliased images
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Proton density, T1 and T2 
Simulation Set up: Sequence length 200; random EPI sampling at 6.25%
Nyq. uniform TR and i.i.d. random flip angles applied to MNI anatomical 
brain phantom
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Performance vs Sequence Length
Random EPI sampling at 6.25% Nyq. applied to the MNI anatomical 
brain phantom

BLIP gives near perfect recovery from very short pulse sequences

– significant improvement over the MRF matched filter reconstruction
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Conclusions
• Model based CS  gives us a new tool for CS

• Initial go at applying it to fully quantitative MR Imaging

• Developed a practical algorithm based on gradient 
projection onto the Bloch equations model and Random 
EPI sampling (BLIP)

Next…

• We need to put it on the scanner. (in progress..)

• Deduce better excitation sequences & sampling patterns

• Evaluate model inaccuracies

• Determine how best to incorporate spatial regularization
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Questions


