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k-means SDP clusters random data

SDP beats spectral clustering (and MLE!)

This talk: Use SDP to quickly certify optimal clusterings
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The k-means problem

Given a point cloud, partition the
points into concentrated clusters

k-means objective:
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» NP-hard to minimize in general

> Lloyd's algorithm often works, but no optimality certificate



An SDP relaxation

Taking Djj := ||x; — x;||2, then
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An SDP relaxation

Taking Djj := ||x; — x;||2, then
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Relax to SDP:

minimize  Tr(DX)
subject to  Tr(X) = k
X1l=1
X>0
X >0

Peng, Wei, SIAM J. Optim., 2007



Main problem

SDP solvers are polytime, but slow

SDP clusters 64 points in 20 sec, Lloyd takes 0.001 sec

(cf. PhaseLift vs. Wirtinger flow)
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SDP solvers are polytime, but slow

SDP clusters 64 points in 20 sec, Lloyd takes 0.001 sec

(cf. PhaseLift vs. Wirtinger flow)

Probably certifiably correct algorithm
» Oracle provides k-means-optimal solution whp

» Task: Given “solution,” quickly certify optimality
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Weak duality: (b — Ax,y) >0, (x,ATy —c) >0

= (c,x) < (x,Aly) = (Ax,y) < (b,y)

Strong duality: (¢, Xopt) = (b, Yopt) “dual certificate”



Preliminaries

Dual cone: C*:={x: (x,y) >0 Vy e C}

Primal program: Dual program:
max (c,x) min (b, y)

st. b—Axel st. Aly—ceK*

x €K yelL

Complementary slackness
x is primal-opt and y is dual-opt if and only if
> x is primal feasible

> y is dual feasible
> (b—Ax,y) = (x,Aly —c) =0



Preliminaries

y

S:{(X,y) : (b_AX7y> = <X7ATy_C> :0}

(Xopta YOpt)

dual feasible

primal feasible
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The big idea (Afonso Bandeira)

Task: Given xgpt, quickly find yopt ’
Method: \

1. Check that xupt is primal feasible
2. Find y such that (Xopt,y) € S
3. Check that y is dual feasible <|7

Bandeira, arXiv:1509.00824
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Task: Given xgpt, quickly find yopt ’
Method: \

1. Check that xupt is primal feasible
2. Find y such that (Xopt,y) € S
3. Check that y is dual feasible <|7

Example: Minimum bisection in stochastic block model
» Easy to find unique y such that (xopt,y) € S

» Checking dual feasibility is an eigenvalue problem (easy)

Problem: y is not unique in the case of k-means
(Choice of y is an art form, “optimal” choice remains open)

Bandeira, arXiv:1509.00824



A small technicality

Subproblem in checking dual feasibility:

Is span(v) the unique leading eigenspace of A?

Fast solution: Power method from random initialization

Report 1 — ) confidence after O(log(1/7n)) power iterations

Open problem: Remove the possibility of “false certificates”

Iguchi, M., Peterson, Villar, arXiv:1509.07983



It works, and it's fast!
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Guarantee for random problem instances

(D, ~, n)-stochastic ball model

» D = rotation-invariant distribution over unit ball in R™
~1,...,7v = ball centers in R”
Draw re1,. .., fepn ii.d. from D for each i € {1,..., k}

vV v Y

Xt,i = Yt + rt,i = ith point from cluster t

When does the PCC method certify the planted solution whp?

Nellore, Ward, arXiv:1309.3256
Iguchi, M., Peterson, Villar, arXiv:1509.07983



Guarantee for random problem instances

(D, ~, n)-stochastic ball model
» D = rotation-invariant distribution over unit ball in R™
> ~1,...,7 = ball centers in R”
» Draw ri1,..., Ity i.i.d. from D for each j € {1,..., k}

» X:.i =Yt + rt,i = ith point from cluster t

When does the PCC method certify the planted solution whp?

Theorem
PCC certifies the planted solution under (D, ~, n)-SBM w.p. 1 — e~ jf

inllv: — il > 2+ £
rg;?llm Yl =2+ 5

Nellore, Ward, arXiv:1309.3256
Iguchi, M., Peterson, Villar, arXiv:1509.07983



When does SDP recover planted clustering?

Corollary

SDP recovers the planted solution under (D,~, n)-SBM w.p. 1 — e () jf

min [ = = min {2+ 2, 2v2(1+ Z5)}

Bounds from different choices of dual certificate (art form)
Appears loose in the small-m regime

What is the best bound? (Ideas from statistical mechanics?)

Awasthi, Bandeira, Charikar, Krishnaswamy, Villar, Ward, Proc. ITCS, 2015
Iguchi, M., Peterson, Villar, arXiv:1509.07983
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When does SDP recover planted clustering?

Natural conjecture: SDP recovers whp provided m;in lvi — il > 2
i#]

Disproof: Cluster two unit circles in R? with ||y; — 72| = 2.08

O

The planted clustering is not k-means-optimal!

Open problem: Necessary separation for two (m — 1)-spheres?

Iguchi, M., Peterson, Villar, arXiv:1509.07983
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Conclusion and future directions

Relaxations offer fast optimality certificates

Phase retrieval
> Injectivity is hard to check

» Fast uniqueness certificate? Golfing scheme?

PCC approximation ratios
» In some applications, relaxations aren't tight but close

» Stable version of the complementary slackness trick?



Questions?

Probably certifiably correct k-means clustering
T. lguchi, D. G. Mixon, J. Peterson, S. Villar
arXiv:1509.07983

A note of probably certifiably correct algorithms
A. S. Bandeira
arXiv:1509.00824

Also, google short fat matrices for my research blog



