Probably certifiably correct k-means clustering

Dustin G. Mixon

Compressed Sensing and its Applications
December 7 - 11, 2015

This week in clustering

This week in clustering

Regularize graphs before spectral clustering

This week in clustering

Regularize graphs before spectral clustering

$$
k \text {-means SDP clusters random data }
$$

This week in clustering

Regularize graphs before spectral clustering

k-means SDP clusters random data

SDP beats spectral clustering (and MLE!)

This week in clustering

Regularize graphs before spectral clustering

k-means SDP clusters random data

SDP beats spectral clustering (and MLE!)

This talk: Use SDP to quickly certify optimal clusterings

Collaborators

Takayuki Iguchi AFIT

Jesse Peterson AFIT

Soledad Villar UT Austin

The k-means problem

Given a point cloud, partition the points into concentrated clusters
k-means objective:

$$
\sum_{t=1}^{k} \sum_{i \in C_{t}}\left\|x_{i}-\frac{1}{\left|C_{t}\right|} \sum_{j \in C_{t}} x_{j}\right\|^{2}
$$

- NP-hard to minimize in general
- Lloyd's algorithm often works, but no optimality certificate

An SDP relaxation

Taking $D_{i j}:=\left\|x_{i}-x_{j}\right\|^{2}$, then

$$
\sum_{t=1}^{k} \sum_{i \in C_{t}}\left\|x_{i}-\frac{1}{\left|C_{t}\right|} \sum_{j \in C_{t}} x_{j}\right\|^{2}=\frac{1}{2} \operatorname{Tr}\left(D \sum_{t=1}^{k} \frac{1}{\left|C_{t}\right|} 1_{C_{t}} 1 C_{C_{t}}^{\top}\right)
$$

An SDP relaxation

Taking $D_{i j}:=\left\|x_{i}-x_{j}\right\|^{2}$, then

$$
\sum_{t=1}^{k} \sum_{i \in C_{t}}\left\|x_{i}-\frac{1}{\left|C_{t}\right|} \sum_{j \in C_{t}} x_{j}\right\|^{2}=\frac{1}{2} \operatorname{Tr}\left(D \sum_{t=1}^{k} \frac{1}{\left|C_{t}\right|} 1_{C_{t}} 1_{C_{t}}^{\top}\right)
$$

Proof:

$$
\begin{aligned}
\operatorname{Tr}\left(D 1_{C_{t}} 1_{C_{t}}^{\top}\right) & =\sum_{i \in C_{t}} \sum_{j \in C_{t}}\left\|x_{i}-x_{j}\right\|^{2} \\
& =\sum_{i \in C_{t}} \sum_{j \in C_{t}}\left\|\left(x_{i}-c_{t}\right)-\left(x_{j}-c_{t}\right)\right\|^{2} \\
& =2\left|C_{t}\right| \sum_{i \in C_{t}}\left\|x_{i}-c_{t}\right\|^{2}
\end{aligned}
$$

Divide by $2\left|C_{t}\right|$ and add.

An SDP relaxation

Taking $D_{i j}:=\left\|x_{i}-x_{j}\right\|^{2}$, then

$$
\sum_{t=1}^{k} \sum_{i \in C_{t}}\left\|x_{i}-\frac{1}{\left|C_{t}\right|} \sum_{j \in C_{t}} x_{j}\right\|^{2}=\frac{1}{2} \operatorname{Tr}(\underbrace{D \underbrace{\sum_{t=1}^{k} \frac{1}{\left|C_{t}\right|} 1_{C_{t}} 1_{C_{t}}^{\top}}})
$$

An SDP relaxation

Taking $D_{i j}:=\left\|x_{i}-x_{j}\right\|^{2}$, then

$$
\sum_{t=1}^{k} \sum_{i \in C_{t}}\left\|x_{i}-\frac{1}{\left|C_{t}\right|} \sum_{j \in C_{t}} x_{j}\right\|^{2}=\frac{1}{2} \operatorname{Tr}(\underbrace{D \underbrace{\sum_{t=1}^{k} \frac{1}{\left|C_{t}\right|} 1_{C_{t}} 1_{C_{t}}^{\top}}})
$$

Relax to SDP:

$$
\begin{array}{lr}
\operatorname{minimize} & \operatorname{Tr}(D X) \\
\text { subject to } & \operatorname{Tr}(X)=k \\
& X 1=1 \\
& X \geq 0 \\
& X \succeq 0
\end{array}
$$

Main problem

SDP solvers are polytime, but slow

SDP clusters 64 points in 20 sec , Lloyd takes 0.001 sec
(cf. PhaseLift vs. Wirtinger flow)

Main problem

SDP solvers are polytime, but slow

SDP clusters 64 points in 20 sec , Lloyd takes 0.001 sec
(cf. PhaseLift vs. Wirtinger flow)

Probably certifiably correct algorithm

- Oracle provides k-means-optimal solution whp
- Task: Given "solution," quickly certify optimality

Preliminaries

Dual cone: $C^{*}:=\{x:\langle x, y\rangle \geq 0 \quad \forall y \in C\}$

Preliminaries

Dual cone: $C^{*}:=\{x:\langle x, y\rangle \geq 0 \quad \forall y \in C\}$

Primal program:

$$
\begin{array}{ll}
\max & \langle c, x\rangle \\
\text { s.t. } & b-A x \in L \\
& x \in K
\end{array}
$$

Dual program:

$$
\begin{aligned}
& \min \langle b, y\rangle \\
& \text { s.t. } \quad A^{\top} y-c \in K^{*} \\
& y \in L^{*}
\end{aligned}
$$

Preliminaries

Dual cone: $C^{*}:=\{x:\langle x, y\rangle \geq 0 \quad \forall y \in C\}$

Primal program:

$$
\begin{array}{llll}
\max & \langle c, x\rangle & \min & \langle b, y\rangle \\
\text { s.t. } & b-A x & \in L & \text { s.t. } \\
& A^{\top} y-c & \in K^{*} \\
& x \in K & & y \in L^{*}
\end{array}
$$

Dual program:

Weak duality: $\langle b-A x, y\rangle \geq 0,\left\langle x, A^{\top} y-c\right\rangle \geq 0$

$$
\Longrightarrow \quad\langle c, x\rangle \leq\left\langle x, A^{\top} y\right\rangle=\langle A x, y\rangle \leq\langle b, y\rangle
$$

Strong duality: $\left\langle c, x_{\text {opt }}\right\rangle=\left\langle b, y_{\text {opt }}\right\rangle \quad$ "dual certificate"

Preliminaries

Dual cone: $C^{*}:=\{x:\langle x, y\rangle \geq 0 \quad \forall y \in C\}$

Primal program:

$$
\begin{array}{ll}
\max & \langle c, x\rangle \\
\text { s.t. } & b-A x \in L \\
& x \in K
\end{array}
$$

Dual program:

$$
\begin{aligned}
& \min \langle b, y\rangle \\
& \text { s.t. } \quad A^{\top} y-c \in K^{*} \\
& y \in L^{*}
\end{aligned}
$$

Complementary slackness
x is primal-opt and y is dual-opt if and only if

- x is primal feasible
- y is dual feasible
- $\langle b-A x, y\rangle=\left\langle x, A^{\top} y-c\right\rangle=0$

Preliminaries

The big idea (Afonso Bandeira)

Task: Given x_{opt}, quickly find y_{opt} Method:

1. Check that $x_{\text {opt }}$ is primal feasible
2. Find y such that $\left(x_{\mathrm{opt}}, y\right) \in S$
3. Check that y is dual feasible

The big idea (Afonso Bandeira)

Task: Given x_{opt}, quickly find y_{opt} Method:

1. Check that $x_{\text {opt }}$ is primal feasible
2. Find y such that $\left(x_{\mathrm{opt}}, y\right) \in S$
3. Check that y is dual feasible

Example: Minimum bisection in stochastic block model

- Easy to find unique y such that $\left(x_{\text {opt }}, y\right) \in S$
- Checking dual feasibility is an eigenvalue problem (easy)

The big idea (Afonso Bandeira)

Task: Given x_{opt}, quickly find y_{opt}
Method:

1. Check that $x_{\text {opt }}$ is primal feasible
2. Find y such that $\left(x_{\mathrm{opt}}, y\right) \in S$
3. Check that y is dual feasible

Example: Minimum bisection in stochastic block model

- Easy to find unique y such that $\left(x_{\mathrm{opt}}, y\right) \in S$
- Checking dual feasibility is an eigenvalue problem (easy)

Problem: y is not unique in the case of k-means
(Choice of y is an art form, "optimal" choice remains open)

A small technicality

Subproblem in checking dual feasibility:
Is $\operatorname{span}(v)$ the unique leading eigenspace of A ?

Fast solution: Power method from random initialization

Report $1-\eta$ confidence after $O(\log (1 / \eta))$ power iterations

Open problem: Remove the possibility of "false certificates"

It works, and it's fast!

Guarantee for random problem instances

(\mathcal{D}, γ, n)-stochastic ball model

- $\mathcal{D}=$ rotation-invariant distribution over unit ball in \mathbb{R}^{m}
- $\gamma_{1}, \ldots, \gamma_{k}=$ ball centers in \mathbb{R}^{m}
- Draw $r_{t, 1}, \ldots, r_{t, n}$ i.i.d. from \mathcal{D} for each $i \in\{1, \ldots, k\}$
- $x_{t, i}=\gamma_{t}+r_{t, i}=i$ th point from cluster t

When does the PCC method certify the planted solution whp?

Nellore, Ward, arXiv:1309.3256

Guarantee for random problem instances

(\mathcal{D}, γ, n)-stochastic ball model

- $\mathcal{D}=$ rotation-invariant distribution over unit ball in \mathbb{R}^{m}
- $\gamma_{1}, \ldots, \gamma_{k}=$ ball centers in \mathbb{R}^{m}
- Draw $r_{t, 1}, \ldots, r_{t, n}$ i.i.d. from \mathcal{D} for each $i \in\{1, \ldots, k\}$
- $x_{t, i}=\gamma_{t}+r_{t, i}=i$ th point from cluster t

When does the PCC method certify the planted solution whp?

Theorem

PCC certifies the planted solution under (\mathcal{D}, γ, n)-SBM w.p. $1-e^{-\Omega_{\mathcal{D}, \gamma}(n)}$ if

$$
\min _{i \neq j}\left\|\gamma_{i}-\gamma_{j}\right\| \geq 2+\frac{k^{2}}{m}
$$

When does SDP recover planted clustering?

Corollary

SDP recovers the planted solution under (\mathcal{D}, γ, n)-SBM w.p. $1-e^{-\Omega_{\mathcal{D}, \gamma}(n)}$ if

$$
\min _{i \neq j}\left\|\gamma_{i}-\gamma_{j}\right\| \geq \min \left\{2+\frac{k^{2}}{m}, 2 \sqrt{2}\left(1+\frac{1}{\sqrt{m}}\right)\right\}
$$

Bounds from different choices of dual certificate (art form)
Appears loose in the small- m regime
What is the best bound? (Ideas from statistical mechanics?)

[^0]
When does SDP recover planted clustering?

Natural conjecture: SDP recovers whp provided $\min _{i \neq j}\left\|\gamma_{i}-\gamma_{j}\right\|>2$

When does SDP recover planted clustering?

Natural conjecture: SDP recovers whp provided $\min _{i \neq j}\left\|\gamma_{i}-\gamma_{j}\right\|>2$
Disproof: Cluster two unit circles in \mathbb{R}^{2} with $\left\|\gamma_{1}-\gamma_{2}\right\|=2.08$

When does SDP recover planted clustering?

Natural conjecture: SDP recovers whp provided $\min _{i \neq j}\left\|\gamma_{i}-\gamma_{j}\right\|>2$
Disproof: Cluster two unit circles in \mathbb{R}^{2} with $\left\|\gamma_{1}-\gamma_{2}\right\|=2.08$

The planted clustering is not k-means-optimal!
Open problem: Necessary separation for two ($m-1$)-spheres?

Conclusion and future directions

Relaxations offer fast optimality certificates

Conclusion and future directions

Relaxations offer fast optimality certificates

Phase retrieval

- Injectivity is hard to check
- Fast uniqueness certificate? Golfing scheme?

PCC approximation ratios

- In some applications, relaxations aren't tight but close
- Stable version of the complementary slackness trick?

Questions?

Probably certifiably correct k-means clustering
T. Iguchi, D. G. Mixon, J. Peterson, S. Villar arXiv:1509.07983

A note of probably certifiably correct algorithms A. S. Bandeira
arXiv:1509.00824

Also, google short fat matrices for my research blog

[^0]: Awasthi, Bandeira, Charikar, Krishnaswamy, Villar, Ward, Proc. ITCS, 2015

