Phase Transitions in Semidefinite Relaxations

Andrea Montanari
[with Adel Javanmard, Federico Ricci-Tersenghi, Subhabrata Sen]

Stanford University
December 7, 2015

What is this talk about?

SDP for Matrix/Graph estimation

The hidden partition model

Vertices $V,|V|=n, V=V_{+} \cup V_{-},\left|V_{+}\right|=\left|V_{-}\right|=n / 2$

$$
\mathbb{P}\{(i, j) \in E\}= \begin{cases}p & \text { if }\{i, j\} \subseteq V_{+} \text {or }\{i, j\} \subseteq V_{-} \\ q<p & \text { otherwise }\end{cases}
$$

Of course entries are not colored...

... and rows/columns are not ordered

Problem: Detect/estimate the partition

What is this talk about?

SDP for Matrix/Graph estimation

Exact phase transition(?)

Outline

(1) Background
(2) Near-optimality of SDP
(3) How does SDP work 'in practice'?

4 Proof ideas
(5) Conclusion

Background

Hypothesis testing

Hypothesis H_{0} :

$$
\mathbb{P}\{(i, j) \in E\}=\frac{p+q}{2}
$$

Hypothesis $H_{1}: V=V_{+} \cup V_{-},\left|V_{+}\right|=\left|V_{-}\right|=n / 2$

$$
\mathbb{P}\{(i, j) \in E\}= \begin{cases}p & \text { if }\{i, j\} \subseteq V_{+} \text {or }\{i, j\} \subseteq V_{-} \\ q<p & \text { otherwise }\end{cases}
$$

Hypothesis testing $(p=a / n, q=b / n)$

Hypothesis H_{0} :

$$
\mathbb{P}\{(i, j) \in E\}=\frac{a+b}{2 n}
$$

Hypothesis $H_{1}: V=V_{+} \cup V_{-},\left|V_{+}\right|=\left|V_{-}\right|=n / 2$

$$
\mathbb{P}\{(i, j) \in E\}= \begin{cases}a / n & \text { if }\{i, j\} \subseteq V_{+} \text {or }\{i, j\} \subseteq V_{-}, \\ b / n & \text { otherwise }\end{cases}
$$

Information theory threshold

Theorem (Mossel, Neeman, Sly, 2012)
 There is a test that succeed with high probability if and only if $a+b>2$ and

[Proves conjecture by Decelle, Krzakala, Moore, Zdeborova, 2011]

Information theory threshold

Theorem (Mossel, Neeman, Sly, 2012)
There is a test that succeed with high probability if and only if $a+b>2$ and

$$
\frac{a-b}{\sqrt{2(a+b)}}>1
$$

[Proves conjecture by Decelle, Krzakala, Moore, Zdeborova, 2011]

Computational threshold

- Dyer, Frieze 1989
- Condon, Karp 2001
- McSherry 2001
- Coja-Oghlan 2010

$$
p=n a>q=n b \text { fixed }
$$

$$
a-b \gg n^{1 / 2}
$$

$$
a-b \gg \sqrt{b \log n}
$$

$$
a-b \gg \sqrt{b}
$$

- Massoulie 2013 and Mossel, Neeman, Sly, 2013

Computational threshold

- Dyer, Frieze 1989
- Condon, Karp 2001

$$
\begin{aligned}
& p=n a>q=n b \text { fixed. } \\
& a-b>n^{1 / 2} \\
& a-b \gg \sqrt{b \log n} \\
& a-b \gg \sqrt{b}
\end{aligned}
$$

- Coja-Oghlan 2010
- McSherry 2001
- Massoulie 2013 and Mossel, Neeman, Sly, 2013

$$
\frac{a-b}{\sqrt{2(a+b)}}>1
$$

Computational threshold

- Dyer, Frieze 1989
- Condon, Karp 2001

$$
\begin{aligned}
& p=n a>q=n b \text { fixed. } \\
& a-b>n^{1 / 2} \\
& a-b \gg \sqrt{b \log n} \\
& a-b \gg \sqrt{b}
\end{aligned}
$$

- McSherry 2001
- Coja-Oghlan 2010
- Massoulie 2013 and Mossel, Neeman, Sly, 2013

$$
\frac{a-b}{\sqrt{2(a+b)}}>1
$$

What if I am not ingenious?

Maximum Likelihood

Adjacency matrix

$$
A_{i j}= \begin{cases}1 & \text { if }(i, j) \in E, \\ 0 & \text { otherwise } .\end{cases}
$$

$$
\boldsymbol{A}=\left(A_{i j}\right)_{1 \leq i, j \leq n}
$$

Maximum likelihood

maximize

Maximum likelihood

$$
\sigma_{i}= \begin{cases}+1 & \text { if } i \in V_{+} \\ -1 & \text { if } i \in V_{-}\end{cases}
$$

maximize

Maximum likelihood

$$
\sigma_{i}= \begin{cases}+1 & \text { if } i \in V_{+} \\ -1 & \text { if } i \in V_{-}\end{cases}
$$

$$
\begin{aligned}
\operatorname{maximize} & \sum_{i, j=1}^{n} A_{i j} \sigma_{i} \sigma_{j} \\
\text { subject to } & \sum_{i=1}^{n} \sigma_{i}=0 \\
& \sigma_{i} \in\{+1,-1\} .
\end{aligned}
$$

Lagrangian

$$
\begin{array}{ll}
\text { maximize } & \sum_{i, j=1}^{n} A_{i j} \sigma_{i} \sigma_{j}-\gamma\left(\sum_{i=1}^{n} \sigma_{i}\right)^{2} . \\
\text { subject to } & \sigma_{i} \in\{+1,-1\} .
\end{array}
$$

A good choice:

Lagrangian

$$
\begin{array}{ll}
\text { maximize } & \sum_{i, j=1}^{n} A_{i j} \sigma_{i} \sigma_{j}-\gamma\left(\sum_{i=1}^{n} \sigma_{i}\right)^{2} . \\
\text { subject to } & \sigma_{i} \in\{+1,-1\} .
\end{array}
$$

A good choice:

$$
\gamma=\frac{a+b}{2 n} \equiv \frac{d}{n}
$$

Centered adjacency matrix

$$
\begin{gathered}
A_{i j}^{\text {cen }}= \begin{cases}1-(d / n) & \text { if }(i, j) \in E, \\
-(d / n) & \text { otherwise. }\end{cases} \\
\boldsymbol{A}^{\text {cen }}=\boldsymbol{A}-\frac{d}{n} \mathbf{1} \mathbf{1}^{\top}
\end{gathered}
$$

Lagrangian

$$
\begin{aligned}
\operatorname{maximize} & \left\langle\boldsymbol{A}^{\mathrm{cen}}, \boldsymbol{\sigma} \boldsymbol{\sigma}^{\top}\right\rangle, \\
\text { subject to } & \boldsymbol{\sigma} \in\{+1,-1\}^{n} .
\end{aligned}
$$

- $\operatorname{SDP}\left(A^{\text {cen }}\right)$ is a very natural convex relaxation

Lagrangian

$$
\begin{aligned}
\operatorname{maximize} & \left\langle\boldsymbol{A}^{\mathrm{cen}}, \boldsymbol{\sigma} \boldsymbol{\sigma}^{\top}\right\rangle, \\
\text { subject to } & \boldsymbol{\sigma} \in\{+1,-1\}^{n} .
\end{aligned}
$$

- NP-hard
- $\operatorname{SDP}\left(\boldsymbol{A}^{\text {cen }}\right)$ is a very natural convex relaxation

Relaxation

$$
\begin{aligned}
\operatorname{maximize} & \left\langle\boldsymbol{A}^{\mathrm{cen}}, \boldsymbol{\sigma} \boldsymbol{\sigma}^{\mathrm{T}}\right\rangle, \\
\text { subject to } & \boldsymbol{\sigma} \in\{+1,-1\}^{n} .
\end{aligned}
$$

$\operatorname{SDP}\left(A^{\mathrm{cen}}\right):$

$$
\begin{aligned}
\operatorname{maximize} & \left\langle\boldsymbol{A}^{\text {cen }}, \boldsymbol{X}\right\rangle \\
\text { subject to } & \boldsymbol{X} \in \mathbb{R}^{n \times n}, \boldsymbol{X} \succeq 0 \\
& X_{i i}=1
\end{aligned}
$$

$$
T_{\mathrm{SDP}}(G)= \begin{cases}1 & \text { if } \operatorname{SDP}\left(\boldsymbol{A}_{G}^{\mathrm{cen}}\right) \geq \theta_{*} \\ 0 & \text { otherwise }\end{cases}
$$

- This is really off-the-shelf
- How well does it work?

Near-optimality of SDP

Before we pass to SDP

- What's the problem with sparse graphs?
- What's the problem vanilla PCA?

Why PCA?

Ground truth

$$
x_{0, i}= \begin{cases}+1 & \text { if } i \in V_{+}, \\ -1 & \text { if } i \in V_{-} .\end{cases}
$$

Data $=$ RankOne + Wigner

Why PCA?

Ground truth

$$
x_{0, i}= \begin{cases}+1 & \text { if } i \in V_{+}, \\ -1 & \text { if } i \in V_{-} .\end{cases}
$$

Data $=$ RankOne + Wigner

$$
\begin{aligned}
& \frac{1}{\sqrt{d}} A^{\mathrm{cen}}=\frac{\lambda}{n} x_{0} x_{0}^{\top}+W, \quad \lambda \equiv \frac{a-b}{\sqrt{2(a+b)}} \\
& E\left\{W_{i j}\right\}=0, \quad \mathbb{E}\left\{W_{i j}^{2}\right\} \in\left\{\frac{a}{d n}, \frac{b}{d n}\right\} \approx \frac{1}{n} .
\end{aligned}
$$

The right parametrization

$$
d=\frac{a+b}{2}, \quad \lambda=\frac{a-b}{\sqrt{2(a+b)}}
$$

Naive PCA

$$
\widehat{\mathbf{x}}^{\mathrm{PCA}}\left(\boldsymbol{A}^{\mathrm{cen}}\right)=\sqrt{n} \boldsymbol{v}_{1}\left(\boldsymbol{A}^{\mathrm{cen}}\right) .
$$

Does it work?

$$
\frac{1}{\sqrt{d}} A^{\text {cen }}=\frac{\lambda}{n} x_{0} x_{0}^{\top}+W
$$

Naive idea:

$$
\|\boldsymbol{W}\|_{2} \leq \text { const., } \quad\left\|\frac{\lambda}{n} x_{0} x_{0}^{\top}\right\|_{2}=\lambda \Rightarrow \text { Works for } \lambda=O(1)
$$

Does it work?

$$
\frac{1}{\sqrt{d}} A^{\mathrm{cen}}=\frac{\lambda}{n} x_{0} x_{0}^{\top}+W
$$

Naive idea:

$$
\|\boldsymbol{W}\|_{2} \leq \text { const., } \quad\left\|\frac{\lambda}{n} x_{0} x_{0}^{\top}\right\|_{2}=\lambda \Rightarrow \text { Works for } \lambda=O(1)
$$

Spectral relaxation bad in the sparse regime!

Theorem (Krivelevich, Sudakov 2003+Vu 2005)
With high probability,

$$
\lambda_{\max }\left(A^{c e n} / \sqrt{d}\right)= \begin{cases}2(1+o(1)) & \text { if } d \gg(\log n)^{4} \\ C \sqrt{\log n /(\log \log n)}(1+o(1)) & \text { if } d=O(1)\end{cases}
$$

Example: $d=20, \lambda=1.2, n=10^{4}$

Example: $d=3, \lambda=1.2, n=10^{4}$

Why should SDP work better?

$$
\begin{aligned}
\operatorname{maximize} & \left\langle\boldsymbol{A}^{\text {cen }}, \boldsymbol{X}\right\rangle \\
\text { subject to } & \boldsymbol{X} \in \mathbb{R}^{n \times n}, \boldsymbol{X} \succeq 0 \\
& X_{i i}=1
\end{aligned}
$$

Recall the ultimate limit

$\mathrm{G}(n, d, \lambda)$ graph distribution with parameters

$$
d=\frac{a+b}{2}>1, \quad \lambda=\frac{a-b}{\sqrt{2(a+b)}}
$$

Theorem (Mossel, Neeman, Sly, 2012)
If $\lambda<1$, then

$$
\lim \sup _{n \rightarrow \infty}\|\mathrm{G}(n, d, 0)-\mathrm{G}(n, d, \lambda)\|_{\mathrm{TV}}<1
$$

If $\lambda>1$, then

$$
\lim _{n \rightarrow \infty}\|\mathrm{G}(n, d, 0)-\mathrm{G}(n, d, \lambda)\|_{\mathrm{TV}}=1
$$

SDP has nearly optimal threshold

Theorem (Montanari, Sen 2015)

Assume $G \sim G(n, d, \lambda)$.
If $\lambda \leq 1$, then, with high probability,

$$
\frac{1}{n \sqrt{d}} \operatorname{SDP}\left(\boldsymbol{A}_{G}^{c e n}\right)=2+o_{d}(1)
$$

If $\lambda>1$, then there exists $\Delta(\lambda)>0$ such that, with high probability,

$$
\frac{1}{n \sqrt{d}} \operatorname{SDP}\left(\boldsymbol{A}_{G}^{c e n}\right)=2+\Delta(\lambda)+o_{d}(1)
$$

Consequence

$$
T_{\mathrm{SDP}}(G)= \begin{cases}1 & \text { if } \operatorname{SDP}\left(\boldsymbol{A}_{G}^{\mathrm{cen}}\right) \geq(2+\delta) n \sqrt{d} \\ 0 & \text { otherwise }\end{cases}
$$

Corollary (Montanari, Sen 2015)

Assume $\lambda \geq 1+\varepsilon$. Then there exists $d_{0}(\varepsilon)$ and $\delta(\varepsilon)$ such that the $S D P$-based test succeeds with high probability, provided $d \geq d_{0}(\varepsilon)$. Namely

$$
\lim _{n \rightarrow \infty}\left[\mathbb{P}_{0}\left(T_{\mathrm{SDP}}(G)=1\right)+\mathbb{P}_{1}\left(T_{\mathrm{SDP}}(G)=0\right)\right]=0
$$

Earlier/related work

Optimal spectral tests

- Massoulie 2013
- Mossel, Neeman, Sly, 2013
- Bordenave, Lelarge, Massoulie, 2015

SDP, $d=\Theta(\log n)$

- Abbe, Bandeira, Hall 2014
- Hajek, Wu, Xu 2015

SDP, detection

- Guédon, Vershynin, 2015 (requires $\lambda \geq 10^{4}$, very different proof)

How does SDP work 'in practice'?

Thresholds

- $\lambda_{c}^{\text {opt }}(d) \equiv$ Threshold for optimal test
- $\lambda_{c}^{\text {SDP }}(d) \equiv$ Threshold for SDP-based test

What we know

- $\lambda_{c}^{\text {opt }}(d)=1$
[Mossel, Neeman, Sly, 2013]

How big is the $o_{d}(1)$ gap?

What we know

- $\lambda_{c}^{\text {opt }}(d)=1$
[Mossel, Neeman, Sly, 2013]
- $\lambda_{c}^{\mathrm{SDP}}(d)=1+o_{d}(1)$
[Montanari, Sen, 2015]

How big is the $o_{d}(1)$ gap?

Simulations: $d=5, N_{\text {sample }}=500$ (with Javanmard and Ricci)

SDP estimator $\hat{\boldsymbol{x}}^{\mathrm{SDP}} \in\{+1,-1\}^{n}$

$$
\operatorname{Overlap}_{n}(\widehat{\mathbf{x}})=\frac{1}{n} \mathbb{E}\left\{\left|\left\langle\hat{\boldsymbol{x}}^{\mathrm{SDP}}(G), x_{0}\right\rangle\right|\right\} .
$$

Simulations: $d=5, N_{\text {sample }}=500$

$$
\lambda_{c}^{\mathrm{SDP}}(d=5) \approx 1
$$

Simulations: $d=10, N_{\text {sample }}=500$

$$
\lambda_{c}^{\mathrm{SDP}}(d=10) \approx 1
$$

Simulations: $d=10, N_{\text {sample }}=500$

How to estimate $\lambda_{c}^{S D P}(d)$ from data?

A technique from physics: Binder cumulant

$$
\begin{aligned}
Q(G) & \equiv \frac{1}{n}\left\langle\hat{\boldsymbol{x}}^{\mathrm{SDP}}(G), x_{0}\right\rangle, \\
\operatorname{Bind}(n, \lambda, d) & \equiv \frac{\mathbb{E}\left\{Q(G)^{4}\right\}}{\mathbb{E}\left\{Q(G)^{2}\right\}^{2}}
\end{aligned}
$$

CLT heuristics

A technique from physics: Binder cumulant

$$
\begin{aligned}
Q(G) & \equiv \frac{1}{n}\left\langle\hat{\boldsymbol{x}}^{\mathrm{SDP}}(G), x_{0}\right\rangle, \\
\operatorname{Bind}(n, \lambda, d) & \equiv \frac{\mathbb{E}\left\{Q(G)^{4}\right\}}{\mathbb{E}\left\{Q(G)^{2}\right\}^{2}}
\end{aligned}
$$

CLT heuristics

$$
\lim _{n \rightarrow \infty} \operatorname{Bind}(n, \lambda, d)= \begin{cases}3 & \text { if } \lambda<\lambda_{c}^{\mathrm{SDP}}(d) \\ 1 & \text { if } \lambda>\lambda_{c}^{\mathrm{SDP}}(d)\end{cases}
$$

Simulations: $d=5, N_{\text {sample }} \geq 10^{5}$!

Zoom

 (~ 2 years CPU time)

Estimate $\lambda_{c}^{\text {SDP }}(d)$ by the crossing point

Zoom

 (~ 2 years CPU time)

Estimate $\lambda_{c}^{\text {SDP }}(d)$ by the crossing point

$\lambda_{c}^{\mathrm{SDP}}(d)$

- Dots: Numerical estimates
- Line: Non-rigorous analytical approximation (using statistical physics)
- At most 2% sub-optimal!

One last question

Is this approach robust to model miss-specifications?

An experiment

- Select $S \subseteq V$ uniformly at random. with $|S|=n \alpha$.
- For each $i \in S$, connect all of its neighbors.

An experiment

- Solid line:SDP
- Dashed line: Spectral
(Non-backtracking walk [Krzakala, Moore, Mossel, Neeman, Sly, Zdeborova, Zhang, 2013])

A simple robustness result

Lemma (Montanari, Sen, 2015)
If \widetilde{G} is obtained from the hidden partition model by flipping at most $n \varepsilon$ edges, then

$$
\left|\tilde{\lambda}_{c}^{S D P}(d)-\lambda_{c}^{S D P}(d)\right| \leq \delta(\varepsilon) .
$$

Proof ideas

What we want to prove

Theorem (Montanari, Sen 2015)

Assume $G \sim G(n, d, \lambda)$.
If $\lambda \leq 1$, then, with high probability,

$$
\frac{1}{n \sqrt{d}} \operatorname{SDP}\left(\boldsymbol{A}_{G}^{c e n}\right)=2+o_{d}(1)
$$

If $\lambda>1$, then there exists $\Delta(\lambda)>0$ such that, with high probability,

$$
\frac{1}{n \sqrt{d}} \operatorname{SDP}\left(\boldsymbol{A}_{G}^{c e n}\right)=2+\Delta(\lambda)+o_{d}(1)
$$

Strategy

I. Prove equivalence to Gaussian model
II. Analyze Gaussian model

Strategy

I. Prove equivalence to Gaussian model
II. Analyze Gaussian model

Gaussian model: $x_{0} \in\{+1,-1\}^{n}$

$$
B(\lambda) \equiv \frac{\lambda}{n} x_{0} x_{0}^{\top}+W
$$

$W \sim \operatorname{GOE}(n):$

- $\left(W_{i j}\right)_{i<j} \sim_{i i d} \mathrm{~N}(0,1 / n)$
- $\boldsymbol{W}=\boldsymbol{W}^{\boldsymbol{\top}}$
- A lot is known about spectral properties of B

Need to characterize the SDP value with Gaussian data

Gaussian model: $x_{0} \in\{+1,-1\}^{n}$

$$
B(\lambda) \equiv \frac{\lambda}{n} x_{0} x_{0}^{\top}+W
$$

$W \sim \operatorname{GOE}(n):$

- $\left(W_{i j}\right)_{i<j} \sim_{i i d} \mathrm{~N}(0,1 / n)$
- $\boldsymbol{W}=\boldsymbol{W}^{\boldsymbol{\top}}$
- A lot is known about spectral properties of \boldsymbol{B}
Need to characterize the SDP value with Gaussian data

Gaussian model: $x_{0} \in\{+1,-1\}^{n}$

$$
B(\lambda) \equiv \frac{\lambda}{n} x_{0} x_{0}^{\top}+W
$$

$W \sim \operatorname{GOE}(n):$

- $\left(W_{i j}\right)_{i<j} \sim_{i i d} \mathrm{~N}(0,1 / n)$
- $\boldsymbol{W}=\boldsymbol{W}^{\boldsymbol{\top}}$
- A lot is known about spectral properties of \boldsymbol{B}

Need to characterize the SDP value with Gaussian data

Notation

$$
\begin{aligned}
& \bar{s}(\lambda) \equiv \lim \sup _{n \rightarrow \infty} \frac{1}{n} \operatorname{SDP}(B(\lambda)), \\
& \underline{s}(\lambda) \equiv \lim \inf _{n \rightarrow \infty} \frac{1}{n} \operatorname{SDP}(B(\lambda)) .
\end{aligned}
$$

$$
\operatorname{SDP}(\boldsymbol{B}) \equiv \max \left\{\langle\boldsymbol{B}, \boldsymbol{X}\rangle: \boldsymbol{X} \succeq 0, X_{i i}=1 \forall i\right\}
$$

Phase transition at $\lambda=1$!

Theorem (Montanari, Sen, 2015)
The following holds almost surely

$$
\begin{array}{cl}
\lambda \in[0,1] \Rightarrow & \underline{s}(\lambda)=\bar{s}(\lambda)=2, \\
\lambda \in(1, \infty) \Rightarrow & \underline{s}(\lambda)>2 \quad \text { (strictly }) .
\end{array}
$$

For explicit probability bounds, see the paper

Proof of Gaussian phase transition

Simple facts:

$$
\begin{aligned}
& \bar{s}(\lambda) \leq \lim _{n \rightarrow \infty} \sigma_{\max }(B(\lambda))= \begin{cases}2 & \text { if } \lambda \in[0,1] \\
\lambda+\lambda^{-1} & \text { if } \lambda \in(1, \infty)\end{cases} \\
& \text { [Baik, Ben Arous, Peche, 2005] }
\end{aligned}
$$

$$
\underline{\mathrm{s}}(\lambda) \leq \lim _{n \rightarrow \infty} \frac{1}{n}\langle\mathbf{1}, \boldsymbol{B}(\lambda) 1\rangle=\lambda
$$

- $\mathrm{s}(\lambda), \overline{\mathrm{s}}(\lambda)$ are non-random, non-decreasing

Proof of Gaussian phase transition

Simple facts:

$$
\bar{s}(\lambda) \leq \lim _{n \rightarrow \infty} \sigma_{\max }(B(\lambda))= \begin{cases}2 & \text { if } \lambda \in[0,1] \\ \lambda+\lambda^{-1} & \text { if } \lambda \in(1, \infty)\end{cases}
$$

[Baik, Ben Arous, Peche, 2005]

- $\mathrm{s}(\lambda), \bar{s}(\lambda)$ are non-random, non-decreasing

Proof of Gaussian phase transition

Simple facts:

$$
\bar{s}(\lambda) \leq \lim _{n \rightarrow \infty} \sigma_{\max }(B(\lambda))= \begin{cases}2 & \text { if } \lambda \in[0,1] \\ \lambda+\lambda^{-1} & \text { if } \lambda \in(1, \infty) .\end{cases}
$$

[Baik, Ben Arous, Peche, 2005]

$$
\underline{s}(\lambda) \leq \lim _{n \rightarrow \infty} \frac{1}{n}\langle\mathbf{1}, \boldsymbol{B}(\lambda) \mathbf{1}\rangle=\lambda
$$

- $\underline{s}(\lambda), \bar{s}(\lambda)$ are non-random, non-decreasing

Proof of Gaussian phase transition

Simple facts:

$$
\bar{s}(\lambda) \leq \lim _{n \rightarrow \infty} \sigma_{\max }(B(\lambda))= \begin{cases}2 & \text { if } \lambda \in[0,1] \\ \lambda+\lambda^{-1} & \text { if } \lambda \in(1, \infty)\end{cases}
$$

[Baik, Ben Arous, Peche, 2005]

$$
\underline{s}(\lambda) \leq \lim _{n \rightarrow \infty} \frac{1}{n}\langle\mathbf{1}, \boldsymbol{B}(\lambda) \mathbf{1}\rangle=\lambda
$$

- $\mathrm{s}(\lambda), \bar{s}(\lambda)$ are non-random, non-decreasing

Summarizing

- Red: Upper bound
- Blue: Lower bound

Proof of Gaussian phase transition

Part 1:

Prove that $\underline{s}(\lambda=0) \geq 2$

Hence

- Red: Upper bound
- Blue: Lower bound
- Purple: Non-trivial lower bound

Proof of Gaussian phase transition

Part 1:

Prove that $\underline{s}(\lambda=0) \geq 2$

Part 2:

Prove that $\underline{s}(\lambda=1+\varepsilon)>2$

Hence

- Red: Upper bound
- Blue: Lower bound
- Purple: Non-trivial lower bound

Proof of Gaussian phase transition

Part 1:
Prove that $\underline{s}(\lambda=0) \geq 2$

Part 2:
Prove that $\mathrm{s}(\lambda=1+\varepsilon)>2$

Technique: Construct feasible X, such that $\langle\boldsymbol{A}, \boldsymbol{X}\rangle \geq \ldots$.

Part 1: $\lambda=0$

Limiting Spectral Density

First idea:

> $v_{1}=v_{1}(B) \equiv$ principal eginvector of B

- Take $X=n v_{1} v_{1}^{\top}$
- Wrong: $X_{i i} \approx \mathrm{~N}(0,1)^{2} \neq 1$

Part 1: $\lambda=0$

First idea:

- $\boldsymbol{v}_{1}=\boldsymbol{v}_{1}(B) \equiv$ principal eginvector of B
- Take $\boldsymbol{X}=n \boldsymbol{v}_{1} \boldsymbol{v}_{1}^{\top}$
- Wrong: $X_{i i} \approx N(0,1)^{2} \neq 1$

Part 1: $\lambda=0$

First idea:

- $\boldsymbol{v}_{1}=\boldsymbol{v}_{1}(B) \equiv$ principal eginvector of B
- Take $\boldsymbol{X}=n \boldsymbol{v}_{1} \boldsymbol{v}_{1}^{\top}$
- Wrong: $X_{i i} \approx \mathrm{~N}(0,1)^{2} \neq 1$

Part 1: $\lambda=0$

Limiting Spectral Density

Good idea:

- Let $\boldsymbol{U}=\left[\boldsymbol{v}_{1}\left|\boldsymbol{v}_{2}\right| \cdots \mid \boldsymbol{v}_{n \delta}\right] \in \mathbb{R}^{n \times n \delta}, \delta$ small.
- $D \equiv \operatorname{Diag}\left(U U^{\top}\right) \in \mathbb{R}^{n \times n}$. Claim $D \approx \delta \mathrm{I}\left(D_{i i} \sim n^{-1} \chi_{n \delta}\right)$ - Set $\boldsymbol{X}=\boldsymbol{D}^{-1 / 2}\left(\boldsymbol{U} \boldsymbol{U}^{\top}\right) D^{-1 / 2}$

Part 1: $\lambda=0$

Good idea:

- Let $\boldsymbol{U}=\left[\boldsymbol{v}_{1}\left|\boldsymbol{v}_{2}\right| \cdots \mid \boldsymbol{v}_{n \delta}\right] \in \mathbb{R}^{n \times n \delta}, \delta$ small.
- $\boldsymbol{D} \equiv \operatorname{Diag}\left(\boldsymbol{U} \boldsymbol{U}^{\top}\right) \in \mathbb{R}^{n \times n}$. Claim $\boldsymbol{D} \approx \delta \mathbf{I}\left(D_{i i} \sim n^{-1} \chi_{n \delta}\right)$

Part 1: $\lambda=0$

Good idea:

- Let $\boldsymbol{U}=\left[\boldsymbol{v}_{1}\left|\boldsymbol{v}_{2}\right| \cdots \mid \boldsymbol{v}_{n \delta}\right] \in \mathbb{R}^{n \times n \delta}, \delta$ small.
- $\boldsymbol{D} \equiv \operatorname{Diag}\left(\boldsymbol{U} \boldsymbol{U}^{\top}\right) \in \mathbb{R}^{n \times n}$. Claim $\boldsymbol{D} \approx \delta \mathbf{I}\left(D_{i i} \sim n^{-1} \chi_{n \delta}\right)$
- Set $\boldsymbol{X}=\boldsymbol{D}^{-1 / 2}\left(\boldsymbol{U} \boldsymbol{U}^{\top}\right) \boldsymbol{D}^{-1 / 2}$

Part 2: $\lambda=1+\varepsilon$
Limiting Spectral Density

Construction:

$\rightarrow T(x) \equiv \max (\min (x,+1),-1), \varphi \in \mathbb{R}^{n}$

$$
\varphi_{i} \equiv T\left(\varepsilon \sqrt{n} v_{1, i}\right)
$$

- $\boldsymbol{U}=\left[\boldsymbol{v}_{2}\left|\boldsymbol{v}_{3}\right| \cdots \mid \boldsymbol{v}_{n \delta+1}\right] \in \mathbb{R}^{n \times n \delta}$
- $D \in \mathbb{R}^{n \times n}$ diagonal $D_{i i} \equiv \sqrt{1-\varphi_{2}^{2}} /\left\|U e_{i}\right\|_{2}$.

$$
X \equiv \varphi \varphi^{\top}+D U U^{\top} D
$$

Part 2: $\lambda=1+\varepsilon$
Limiting Spectral Density

Construction:

- $T(x) \equiv \max (\min (x,+1),-1), \varphi \in \mathbb{R}^{n}$

$$
\varphi_{i} \equiv T\left(\varepsilon \sqrt{n} v_{1, i}\right) .
$$

- $U=\left[v_{2}\left|v_{3}\right| \cdots \mid v_{n \delta+1}\right] \in \mathbb{R}^{n \times n \delta}$
- $D \in \mathbb{R}^{n \times n}$ diagonal $D_{i i} \equiv \sqrt{1-\varphi_{i}^{2}} /\left\|U e_{i}\right\|_{2}$.

Part 2: $\lambda=1+\varepsilon$
Limiting Spectral Density

Construction:

- $T(x) \equiv \max (\min (x,+1),-1), \varphi \in \mathbb{R}^{n}$

$$
\varphi_{i} \equiv T\left(\varepsilon \sqrt{n} v_{1, i}\right) .
$$

- $\boldsymbol{U}=\left[\boldsymbol{v}_{2}\left|\boldsymbol{v}_{3}\right| \cdots \mid \boldsymbol{v}_{n \delta+1}\right] \in \mathbb{R}^{n \times n \delta}$

Part 2: $\lambda=1+\varepsilon$

Construction:

- $T(x) \equiv \max (\min (x,+1),-1), \varphi \in \mathbb{R}^{n}$

$$
\varphi_{i} \equiv T\left(\varepsilon \sqrt{n} v_{1, i}\right) .
$$

- $U=\left[v_{2}\left|v_{3}\right| \cdots \mid v_{n \delta+1}\right] \in \mathbb{R}^{n \times n \delta}$
- $D \in \mathbb{R}^{n \times n}$ diagonal $D_{i i} \equiv \sqrt{1-\varphi_{i}^{2}} /\left\|U \mathrm{e}_{i}\right\|_{2}$.

Part 2: $\lambda=1+\varepsilon$

Construction:

- $T(x) \equiv \max (\min (x,+1),-1), \varphi \in \mathbb{R}^{n}$

$$
\varphi_{i} \equiv T\left(\varepsilon \sqrt{n} v_{1, i}\right)
$$

- $\boldsymbol{U}=\left[\boldsymbol{v}_{2}\left|\boldsymbol{v}_{3}\right| \cdots \mid \boldsymbol{v}_{n \delta+1}\right] \in \mathbb{R}^{n \times n \delta}$
- $\boldsymbol{D} \in \mathbb{R}^{n \times n}$ diagonal $D_{i i} \equiv \sqrt{1-\varphi_{i}^{2}} /\left\|\boldsymbol{U} \mathbf{e}_{i}\right\|_{2}$.

$$
X \equiv \varphi \varphi^{\top}+D U U^{\top} D
$$

A parenthesis

The Gaussian model is very interesting

Strategy

I. Prove equivalence to Gaussian model
II. Analyze Gaussian model

We want to prove

$$
\frac{1}{\sqrt{d}} \operatorname{SDP}\left(\boldsymbol{A}^{\mathrm{cen}}\right) \approx \operatorname{SDP}(\boldsymbol{B}(\lambda))
$$

Lindeberg method: Replace the entries one-by-one

We want to prove

$$
\frac{1}{\sqrt{d}} \operatorname{SDP}\left(A^{\mathrm{cen}}\right) \approx \operatorname{SDP}(B(\lambda))
$$

Lindeberg method: Replace the entries one-by-one

A simple Lindeberg lemma

- $X_{1}, X_{2}, \ldots X_{M}$ iid

$$
X_{i}= \begin{cases}\frac{1}{\sqrt{d}}\left(1-\frac{d}{n}\right) & \text { with probability } \frac{d}{n} \\ -\frac{\sqrt{d}}{n} & \text { with probability }\left(1-\frac{d}{n}\right)\end{cases}
$$

$\mathbb{E}\left\{X_{i}\right\}=0, \mathbb{E}\left\{X_{i}^{2}\right\}=(1 / n)-\left(d / n^{2}\right)$

- $Z_{1}, Z_{2}, \ldots Z_{M} \sim_{i . i . d .} \mathrm{N}(0,1 / n)$

where $\partial_{i}^{\ell} F(x) \equiv \frac{\partial^{\ell} F}{\partial x_{i}^{\ell}}$, and $\left\|\partial_{i}^{\ell} F\right\|_{\infty} \equiv \sup _{x \in \mathbb{R}^{M}}\left|\partial_{i}^{\ell} F(x)\right|$.

A simple Lindeberg lemma

- $X_{1}, X_{2}, \ldots X_{M}$ iid

$$
X_{i}= \begin{cases}\frac{1}{\sqrt{d}}\left(1-\frac{d}{n}\right) & \text { with probability } \frac{d}{n} \\ -\frac{\sqrt{d}}{n} & \text { with probability }\left(1-\frac{d}{n}\right)\end{cases}
$$

$\mathbb{E}\left\{X_{i}\right\}=0, \mathbb{E}\left\{X_{i}^{2}\right\}=(1 / n)-\left(d / n^{2}\right)$

- $Z_{1}, Z_{2}, \ldots Z_{M} \sim_{i . i . d .} \mathrm{N}(0,1 / n)$

Lemma

Assume $M=n(n-1) / 2, F \in C_{3}\left(\mathbb{R}^{M}\right), d \leq n^{2 / 3} / 10$. Then

$$
|\mathbb{E} F(\boldsymbol{X})-\mathbb{E} F(\boldsymbol{Z})| \leq \frac{n}{3 \sqrt{d}} \max _{i \in[M]}\left(\left\|\partial_{i}^{2} F\right\|_{\infty} \vee\left\|\partial_{i}^{3} F\right\|_{\infty}\right) .
$$

where $\partial_{i}^{\ell} F(x) \equiv \frac{\partial^{\ell} F}{\partial x_{i}^{\ell}}$, and $\left\|\partial_{i}^{\ell} F\right\|_{\infty} \equiv \sup _{x \in \mathbb{R}^{M}}\left|\partial_{i}^{\ell} F(x)\right|$.

A simple Lindeberg lemma

- $X_{1}, X_{2}, \ldots X_{M}$ iid

$$
X_{i}= \begin{cases}\frac{1}{\sqrt{d}}\left(1-\frac{d}{n}\right) & \text { with probability } \frac{d}{n} \\ -\frac{\sqrt{d}}{n} & \text { with probability }\left(1-\frac{d}{n}\right)\end{cases}
$$

$\mathbb{E}\left\{X_{i}\right\}=0, \mathbb{E}\left\{X_{i}^{2}\right\}=(1 / n)-\left(d / n^{2}\right)$

- $Z_{1}, Z_{2}, \ldots Z_{M} \sim_{\text {i.i.d. }} \mathrm{N}(0,1 / n)$

Lemma

Assume $M=n(n-1) / 2, F \in C_{3}\left(\mathbb{R}^{M}\right), d \leq n^{2 / 3} / 10$. Then

$$
|\mathbb{E} F(\boldsymbol{X})-\mathbb{E} F(\boldsymbol{Z})| \leq \frac{n}{3 \sqrt{d}} \max _{i \in[M]}\left(\left\|\partial_{i}^{2} F\right\|_{\infty} \vee\left\|\partial_{i}^{3} F\right\|_{\infty}\right) .
$$

where $\partial_{i}^{\ell} F(x) \equiv \frac{\partial^{\ell} F}{\partial x_{i}^{\ell}}$, and $\left\|\partial_{i}^{\ell} F\right\|_{\infty} \equiv \sup _{x \in \mathbb{R}^{M}}\left|\partial_{i}^{\ell} F(x)\right|$.
Problem: $F(\cdot)=\operatorname{SDP}(\cdot) \notin C_{3}\left(\mathbb{R}^{M}\right)$

Smoothing

$\operatorname{SDP}(A)$:

$$
\begin{array}{cl}
\operatorname{maximize} & \sum_{i, j=1}^{n} A_{i j}\left\langle\boldsymbol{\sigma}_{i}, \boldsymbol{\sigma}_{j}\right\rangle \\
\text { subject to } & \boldsymbol{\sigma}=\left(\boldsymbol{\sigma}_{1}, \boldsymbol{\sigma}_{2}, \ldots, \boldsymbol{\sigma}_{n}\right)^{\top} \in \mathbb{R}^{n \times n}, \\
& \boldsymbol{\sigma}_{i} \in \mathbb{R}^{n}, \quad\left\|\boldsymbol{\sigma}_{i}\right\|_{2}=1
\end{array}
$$

Free energy

$\Phi_{k}(\beta, k ; A) \equiv \frac{1}{\beta} \log \left\{\int \exp \left(\beta \sum_{i, j=1}^{n} A_{i, j}\left\langle\sigma_{i}, \sigma_{j}\right\rangle\right) \nu_{0, k}(\mathrm{~d} \sigma)\right\}$

Smoothing

$\operatorname{SDP}(A)$:

$$
\begin{aligned}
\operatorname{maximize} & \sum_{i, j=1}^{n} A_{i j}\left\langle\boldsymbol{\sigma}_{i}, \boldsymbol{\sigma}_{j}\right\rangle \\
\text { subject to } & \boldsymbol{\sigma}=\left(\boldsymbol{\sigma}_{1}, \boldsymbol{\sigma}_{2}, \ldots, \boldsymbol{\sigma}_{n}\right)^{\top} \in \mathbb{R}^{n \times n} \\
& \boldsymbol{\sigma}_{i} \in \mathbb{R}^{n}, \quad\left\|\boldsymbol{\sigma}_{i}\right\|_{2}=1
\end{aligned}
$$

Free energy

$$
\Phi_{k}(\beta, k ; \boldsymbol{A}) \equiv \frac{1}{\beta} \log \left\{\int \exp \left(\beta \sum_{i, j=1}^{n} A_{i, j}\left\langle\boldsymbol{\sigma}_{i}, \boldsymbol{\sigma}_{j}\right\rangle\right) \nu_{0, k}(\mathrm{~d} \boldsymbol{\sigma})\right\}
$$

- $\nu_{0, k}(\mathrm{~d} \sigma) \equiv$ uniform measure on $S^{k-1} \times \cdots \times S^{k-1}$
- Control $\beta \rightarrow \infty, k \rightarrow \infty$

Conclusion

Conclusion

- SDP \gg PCA when data are heterogeneous
- Sharp information about eigenvalues of random matrices
- A lot of work on SDP with random data
[Srebro, Fazel, Parrillo, Candés, Recht, Gross, myself, ...]
- Little known about 'sharp SDP properties' and SDP vs PCA

Conclusion

- SDP \gg PCA when data are heterogeneous
- Sharp information about eigenvalues of random matrices
- A lot of work on SDP with random data
[Srebro, Fazel, Parrillo, Candés, Recht, Gross, myself,
- Little known about 'sharp SDP properties' and SDP vs PCA

Conclusion

- SDP \gg PCA when data are heterogeneous
- Sharp information about eigenvalues of random matrices
- A lot of work on SDP with random data
[Srebro, Fazel, Parrillo, Candés, Recht, Gross, myself, ...]
- Little known about 'sharp SDP properties' and SDP vs PCA

Conclusion

- SDP \gg PCA when data are heterogeneous
- Sharp information about eigenvalues of random matrices
- A lot of work on SDP with random data
[Srebro, Fazel, Parrillo, Candés, Recht, Gross, myself, ...]
- Little known about 'sharp SDP properties' and SDP vs PCA

Conclusion

- SDP \gg PCA when data are heterogeneous
- Sharp information about eigenvalues of random matrices
- A lot of work on SDP with random data
[Srebro, Fazel, Parrillo, Candés, Recht, Gross, myself, ...]
- Little known about 'sharp SDP properties' and SDP vs PCA

Thanks!

