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Overview

Several radar setups with compressive sensing approaches

I Range-Doppler resolution via compressive sensing

I Sparse MIMO Radar

I Antenna arrays with randomly positioned antennas
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Time-Frequency Structured Random

Matrices

Resolution of Range-Doppler in Radar
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Resolution of Range-Doppler

Received signal is superposition of delayed and modulated
(Doppler shifted) versions of sent signal.

Task: Determine delays (corresponding to distances; range) and
Doppler shifts (corresponding to radial speed) from subsampled
receive signal!
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Gabor Systems in Finite Dimensions
Translation and Modulation on Cm

(T kg)j = g(j−k) mod m and (M`g)j = e2πi`j/mgj .

Time-frequency shifts

π(λ) = M`T k , λ = (k, `) ∈ {0, . . . ,m − 1}2.

For g ∈ Cm define Gabor synthesis matrix (ω = e2πi/m)

Ψg = (π(λ)g)λ∈{0,...,m−1}2

=


g0 gm−1 · · · g1 g0 · · · g1 · · · g1

g1 g0 · · · g2 ωg1 · · · ωg2 · · · ωm−1g2

g2 g1 · · · g3 ω2g2 · · · ω2g3 · · · ω2(m−1)g3

g3 g2 · · · g4 ω3g3 · · · ω3g4 · · · ω3(m−1)g4

...
...

. . .
...

...
. . .

...
...

gm−1 gm−2 · · · g0 ωm−1gm−1 · · · ωm−1g0 · · · ω(m−1)2

g0

 .

Use of Ψg ∈ Cm×m2
as measurement matrix in compressive sensing
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Radar model (Herman, Strohmer 2008)

Emitted signal: g ∈ Cm.
Objects scatters g and radar device receives the contribution

xλπ(λ)g = xk,`M
`T kg .

T k corresponds to delay, i.e., distance of object
M` corresponds to Doppler shift, i.e., speed of the object
xk,` reflectivity of object

Received signal is superposition of contribution of all scatteres:

y =
∑
λ∈Λ

xλπ(λ)g = Ψgx .

Usually few scatterers so that x ∈ Cm2
can be assumed sparse.

We will choose g as random vector below.

6 / 44



Radar model (Herman, Strohmer 2008)

Emitted signal: g ∈ Cm.
Objects scatters g and radar device receives the contribution

xλπ(λ)g = xk,`M
`T kg .

T k corresponds to delay, i.e., distance of object
M` corresponds to Doppler shift, i.e., speed of the object
xk,` reflectivity of object

Received signal is superposition of contribution of all scatteres:

y =
∑
λ∈Λ

xλπ(λ)g = Ψgx .

Usually few scatterers so that x ∈ Cm2
can be assumed sparse.

We will choose g as random vector below.

6 / 44



Reconstruction via compressive sensing

Reconstruction of x from y = Ax via `1-minimization

min ‖z‖1 subject to Az = y

min ‖z‖1 subject to ‖Az − y‖2 ≤ η

Alternatives:
Matching Pursuits
Iterative hard thresholding (pursuit)
Iteratively reweighted least squares
...
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Uniform vs. nonuniform recovery
Often recovery results are for random matrices A ∈ Rm×N ; choose
generator g ∈ Cm for Ψg at random

I Uniform recovery
With high probability on A every sparse vector is recovered;

P(∀s-sparse x , recovery of x is successful using A) ≥ 1− ε.

Recovery conditions on A
I Null space property
I Restricted isometry property

I Nonuniform recovery
A fixed sparse vector is recovered with high probability using
A ∈ Rm×N ;

∀s-sparse x : P(recovery of x is successful using A) ≥ 1− ε.
Recovery conditions on A

I Tangent cone (descent cone) of norm at x intersects kerA
trivially.

I Dual certificates
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Restricted isometry property (RIP)

Definition
The restricted isometry constant δs of a matrix A ∈ Cm×N is
defined as the smallest δs such that

(1− δs)‖x‖2
2 ≤ ‖Ax‖2

2 ≤ (1 + δs)‖x‖2
2

for all s-sparse x ∈ CN .
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Stable and robust recovery

Theorem (Candès, Romberg, Tao ’04 – Cai, Zhang ’13)

Let A ∈ Cm×N with δ2s < 1/
√

2 ≈ 0.7071. Let x ∈ CN , and
assume that noisy data are observed, y = Ax + e with ‖e‖2 ≤ τ .
Let x# by a solution of

min
z
‖z‖1 such that ‖Az− y‖2 ≤ τ .

Then

‖x− x#‖2 ≤ C
σs(x)1√

s
+ Dτ,

‖x− x#‖1 ≤ Cσs(x)1 + D
√
sτ

for constants C ,D > 0, that depend only on δ2s . Here

σs(x)1 = inf
z:‖z‖0≤s

‖x− z‖1.

Implies exact recovery in the s-sparse and noiseless case.
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Dual certificate

Theorem (Fuchs 2004, Tropp 2005)

For A ∈ Cm×N , x ∈ CN with support S is the unique solution of

min ‖z‖1 subject to Az = Ax

if AS is injective and there exists a dual vector h ∈ Cm such that

(A∗h)j = sgn(xj), j ∈ S , |(A∗h)`| < 1, ` ∈ S .

Corollary

Let a1, . . . , aN be the columns of A ∈ Cm×N . For x ∈ CN with
support S, if the matrix AS is injective and if

|〈A†Sa`, sgn(xS)〉| < 1 for all ` ∈ S ,

then the vector x is the unique `1-minimizer with y = Ax.

Here, A†S is Moore-Penrose pseudo inverse.

One ingredient: Check that ‖A∗SAS − I‖2→2 ≤ δ < 1.
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Stability and robustness via dual certificate

Theorem
Let x ∈ CN and A ∈ Cm×N with `2-normalized columns. Denote
by S ⊂ [N] the indices of the s largest absolute entries of x.
Assume that

(i) there is a dual certificate u = A∗h ∈ CN with h ∈ Cm s.t.

uT = sgn(x)T , ‖uT c‖∞ ≤
1

2
, ‖h‖2 ≤ 3

√
s.

(ii) ‖A∗TAT − I‖2→2 ≤ 1
2 .

Given noisy measurements y = Ax + e ∈ Cm with ‖e‖2 ≤ τ , the
solution x̂ ∈ CN of noise-constrained `1-minimization satisfies

‖x− x̂‖2 ≤ 52
√
sτ + 16σs(x)1.

Remark: Error bound is worse by factor of
√
s than the one

obtained from RIP.
Can be removed again by additionally requiring the weak RIP.
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Random choice of generator g

Recall Gabor synthesis matrix

Ψg = (M`T kg)(k,`)∈[m]2 ∈ Cm×m2

Choice of g as subgaussian random vector:
Entries of g are independent, mean-zero, variance one and
subgaussian: P(|gj | ≥ t) ≤ 2e−Kt

2
for some K > 0.

Examples:

I Rademacher: entries ±1 with equal probability

I Steinhaus: entries are uniformly distributed on complex torus
{z ∈ C : |z | = 1}

I Gaussian: entries are standard real or complex Gaussian
variables
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RIP estimate for random generator (Krahmer, Mendelson,
Rauhut 2014)

Theorem
Let Ψg ∈ Cm×N , N = m2, be generated by a subgaussian random
vector g. If, for δ ∈ (0, 1),

m ≥ Cδ−2s max{log2 s log2 N, log(ε−1)},

then with probability at least 1− ε the restricted isometry constant
of 1√

m
Ψg satisfies δs ≤ δ.

Implies stable and robust recovery via `1 minimization with high
probability if m ≥ Cs log2(s) log2(N).

Previous results:
Pfander, R, Tropp 2012: m ≥ Cδs

3/2 log3 N

Nonuniform recovery, Pfander, R 2010: m ≥ Cs log(N)

Theorem can be generalized to certain other systems of operators
(instead of time-frequency shifts).
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Numerical experiments for Steinhaus g
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Horizontal axis 1/m = m/m2, vertical axis s/m.
Contours of success probability, 93% success rate, 1/(2 log(m)).
Numerical experiments suggest s ≤ m

2 log(m) ensures s-sparse
recovery.
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Proof ingredient: chaos processes
Recall: δs is smallest constant such that

(1− δs)‖x‖2
2 ≤ ‖Ax‖2

2 ≤ (1 + δs)‖x‖2
2

Equivalently, with Ts = {x ∈ CN : ‖x‖2 ≤ 1, ‖x‖0 ≤ s}

δs = sup
x∈Ts

|‖Ax‖2
2 − ‖x‖2

2|

In our case

Ax =
1√
m

Ψgx =
1√
m

m−1∑
k,`=0

xk,`M
`T kg = Vxg ,

with Vx = 1√
m

∑m−1
k,`=0 xk,`M

`T k . Since entries of g have mean

zero and variance one, E‖Vxg‖2
2 = ‖x‖2

2, so that

δs = sup
x∈Ts

|‖Vxg‖2
2 − E‖Vxg‖2

2|

This is a second order chaos processes.
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Generic Chaining for Chaos Processes

Theorem (Krahmer, Mendelson, R 2014)

Let B = −B ⊂ Cm×N be a symmetric set of matrices and ξ ∈ CN

be a subgaussian random vector. Then

E sup
B∈B

∣∣‖Bξ‖2
2 − E‖Bξ‖2

2

∣∣
≤ C1γ2(B, ‖ · ‖2→2)2 + C2∆‖·‖F (B)γ2(B, ‖ · ‖2→2).

Here, ‖B‖F =
√

tr(B∗B) denotes the Frobenius norm.

Symmetry assumption B = −B can be dropped at the cost of
slightly more complicated bound.

Here, ∆‖·‖(B) is the diameter of B with respect to ‖ · ‖ and
γ2(B, ‖ · ‖) is Talagrand’s γ2-functional which can be bounded by

γ2(B, ‖ · ‖) ≤ C

∫ ∆‖·‖(B)

0

√
logN(B, ‖ · ‖, u)du,

where N(B, ‖ · ‖, u) are the covering numbers of B at radius u. 17 / 44



Tail bound

Theorem (Krahmer, Mendelson, R ’14 – Dirksen ’15)

Let B = −B ⊂ Cm×N and ξ ∈ CN be a subgaussian random
vector. Then

P
(

sup
B∈B

∣∣‖Bξ‖2
2 − E‖Bξ‖2

2

∣∣ ≥ C1E + t

)
≤ 2 exp

(
−C2 min

{
t2

V 2
,
t

U

})
,

where

E := ∆‖·‖F (B)γ2(B, ‖ · ‖2→2) + γ2(B, ‖ · ‖2→2)2,

V := ∆‖·‖2→2
∆‖·‖F (B),

U := ∆2
‖·‖2→2

(B).
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Sparse MIMO radar
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MIMO Radar

Seite 1
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MIMO Radar in 2D

I NT transmit antennas at locations(
0, (k − 1)dTλ

)
, k = 1, 2, . . . ,NT

I NR receive antennas at locations(
0, (j − 1)dRλ

)
, j = 1, . . . ,NR

Choose dT = 1/2, dR = NT/2.

Then system has similar characteristics as antenna array with
NTNR antennas.

(Alternatively, dT = NR/2, dR = 1/2)
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Measurement model
Strohmer, Friedlander 2012; Yu, Petropulu, Poor, 2011

I Transmit antennas send periodic continuous-time complex Gaussian
pulses s1, . . . , sNT

with period T and band-width B.

I Echo of target of unit reflectivity at position (r cos(θ), r sin(θ) and
radial speed v at receiver j :

rj(t) =

NT∑
k=1

e2πicλ−1(t−dk,j (t)/c)sk(t − dk,j(t)/c)

with carrier frequency λ, speed of light c , and distance from kth
transmitter to target and from target to jth receiver

dk,j(t) = 2(r + vt) + sin(θ)dT (k − 1)λ+ sin(θ)(j − 1)dRλ

I Demodulation (multiplication of rj(t) with e−2πicλ−1t) and assuming
B � λ (narrowband transmit waveforms), v � c (slowly moving
targets), r � λNRNT/2 (far field scenario) yields measurements

yj(t) ≈ e2πi·2λ−1re2πi sin(θ)dR (j−1)
N∑

k=1

e2πi·2λ−1vte2πi sin(θ)dT (k−1)sk(t−2r/c)
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Discretization

I By the Shannon-Nyquist sampling theorem, the band-limited
periodic complex Gaussian transmit signals can be represented
by their sampled counterparts sk ∈ CNt (sampled over one
period [0,T ]); Nt : number of samples.

I Target is described by triple (θ, r , v) (azimuth, range,
velocity); Discretization of (β, τ, f ) = (sin(θ), 2r/c , 2λ−1v)
with stepsizes

∆β =
2

NTNR
, ∆τ =

1

2B
, ∆f =

1

T

yields grid

G =
{

(β∆β, τ∆τ , f ∆f ) : β ∈ [NRNT ], τ ∈ [Nt ], f ∈ [Nt ]
}

Index set G = [NTNR ]× [Nt ]× [Nt ] of size N := NRNTN
2
t

(here [k] = {1, . . . , k}).
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Discretization grid
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MIMO radar module

fk

sparse target scene
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NR = NT = 8
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Measurement Model I
One target with unit reflectivity at grid point indexed by
Θ = (β, τ, f ) ∈ G
Discrete time samples at receiver j (j = 1, . . . ,NR)

yj = (yj(∆t), yj(2∆t), . . . , yj(Nt∆t))T

= e2πi ·cλ−1τ∆τ

[
e2πi ·dRβ∆β(j−1)

NT∑
k=1

e2πi ·dTβ∆β(k−1)MfTτ sk

]
∈ CNt

with translation and modulation operators on CNt defined as

(Tτ s)k = sk−τ , (Mf s)k = e
2πi · fk

Nt (s)k .

Targets on grid points index by Θ ∈ G with reflectivities ρΘ,
setting also xΘ = e2πi ·cλ−1τ∆τρΘ; measurements at receiver j :

yj =
∑
Θ∈G

xΘ e2πi ·dRβ∆β(j−1)
NT∑
k=1

e2πi ·dTβ∆β(k−1)MfTτ sk︸ ︷︷ ︸
=:Aj

Θ
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Measurement Model II
Collection of sampled signals at all receivers:

y =

 y1
...

yNR

 =


∑

Θ∈G xΘA
1
Θ

...∑
Θ∈G xΘA

NR
Θ

 = Ax ∈ CNr ·Nt

Measurement matrix

A =

A1
Θ
...

ANR
Θ


Θ∈G

∈ CNRNt×NRNTN
2
t , G = [NRNT ]× [Nt ]× [Nt ]

Aj
Θ = e2πi ·dRβ∆β(j−1)

NT∑
k=1

e2πi ·dTβ∆β(k−1)MfTτ sk ∈ CNt , Θ = (β, τ, f )

Structured random matrix; the s1, . . . , sNT
are independent subgaussian

random vectors, e.g. standard complex Gaussian random vectors,
Rademacher vectors, or Steinhaus vectors

Number of measurements: m = NRNt , signal dimension N = NRNTN
2
t ,

i.e., m� N; recall dT = 1/2, dR = NT/2, ∆β = 2
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Reconstruction via Compressive Sensing

Reconstruction problem of solving Ax = y is underdetermined.

In many situations only very few targets are present, i.e., the vector
x of reflectivities is sparse!

Use compressive sensing for reconstruction!

For recovery, we will study `1-minimization

min
z
‖z‖1 subject to ‖Ax− y‖2 ≤ τ

and LASSO

min
z

1

2
‖Az− y‖2

2 + λ‖z‖1
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Recovery for random support sets

Strohmer and Friedlander (2013) showed recovery of the correct
support via (debiased) LASSO for s-sparse signals with random
support (and random signs) with high probability under the
condition

m = NRNt ≥ Cs log(N)

(plus minor additional technical assumptions).

Proof is based on an analysis of the coherence of A and a general
recovery result for random signals due to Tropp (2008).

Question:
Can we avoid the assumption of randomness of the support?
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The RIP for MIMO radar measurements

Theorem (Dorsch, R 2015)

If
Nt ≥ Cδ−2s max{log2(s) log2(N), log(ε−1)}

then the rescaled random radar measurement matrix
1√

NRNTNt
A ∈ CNRNt×NRNTN

2
t satisfies δs ≤ δ with probability at

least 1− ε.

Implies stable and robust sparse recovery via `1-minimization.

Proof uses generic chaining estimates for suprema of chaos
processes (Krahmer, Mendelson, R 2014).

Compared to other random matrix constructions in compressed
sensing (where m � s log(eN/s) ) the result requires more
measurements because here m = NtNR ; i.e., we suffer an
additional factor of NR .
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Almost optimality of RIP estimate

Theorem (Dorsch, R 2015)

If a realization of the random MIMO radar measurement matrix
1√

NRNTN
2
t

A satisfies δs ≤ 0.7 for s ≤ N2
t , then necessarily

Nt ≥ Cs log(eN2
t /s).

Proof idea:
Introduce Sβ := {(β′, τ ′, f ′) ∈ G : β′ = β}.
If x has support in Sβ then one can write

Ax = aR(β)⊗ BxSβ

for a vector aR(β) ∈ CNR with entries of magnitude 1 and a matrix
B ∈ CNt×N2

t . Applying lower sparse recovery bounds for B yields
the claim.
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Towards nonuniform recovery

Recovery depends on the fine structure of the support set:

Equivalence class of angles, β, β′ ∈ [NRNT ],

β ∼ β′ : β′ − β ≡ 0 mod NR

This definition is motivated by the fact that the columns of A
satisfy, for Θ = (β, τ, f ),Θ′ = (β′, τ ′, f ′),

〈AΘ,AΘ′〉 = NR δ̂β,β′ =

{
NR if β ∼ β′,
0 otherwise.

Intuitively, the more elements of the support S are such that the
corresponding β’s are contained in different equivalent classes the
better the matrix AS is conditioned.
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Well-balanced support sets

For a support set S ⊂ G = [NRNT ]× [Nt ]× [Nt ] let

S[β] := {Θ′ = (β′, τ ′, f ′) ∈ S : β′ ∼ β}.

Definition
A support set S ⊂ G is called η-balanced, if for all angle classes
[β],

|S[β]| ≤ η
|S |
NR

.

The parameter η ranges in [1,NR ].
A small value of η means that the support S is well-distributed
over the angle classes, which is favorable for recovery.

32 / 44



Well-balanced support sets

For a support set S ⊂ G = [NRNT ]× [Nt ]× [Nt ] let

S[β] := {Θ′ = (β′, τ ′, f ′) ∈ S : β′ ∼ β}.

Definition
A support set S ⊂ G is called η-balanced, if for all angle classes
[β],

|S[β]| ≤ η
|S |
NR

.

The parameter η ranges in [1,NR ].
A small value of η means that the support S is well-distributed
over the angle classes, which is favorable for recovery.

32 / 44



Nonuniform recovery I

Theorem
Let x ∈ CN and S ⊂ G be an index set corresponding to s largest
absolute entries in x. Assume S to be η-balanced and that the
signs of the coefficients xS form a Steinhaus sequence. Assume
measurements y = Ax + n ∈ CNRNt are given, where the signals
s1, s2, . . . , sNT

generating the measurement matrix A are
independent subgaussian random vectors, and ‖n‖2 ≤ τ . If

m = NRNt &ηs log3(N/ε),

then, with probability at least 1− ε, the solution x# to constrained
`1-minimization satisfies

‖x# − x‖2 ≤ C1σs(x)1 + C2
τ
√
s√

NTNRNt
,

where C1 and C2 are numerical constants.

Exact recovery for s-sparse scene x.
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Nonuniform recovery for LASSO
Theorem (Dorsch, R 2015)
Let x ∈ CN , N = NRNTN

2
t , be a fixed s-sparse target scene with

η-balanced support S such that the phases of the nonzero entries form a
random Steinhaus sequence and such that

min
Θ∈S

> 8σ

√
2 log(N)

NTNRNt
.

Draw A at random and let y = A + e be noisy measurements with
random noise, e ∼ CN (0, σ2). Assume that

m = NRNt ≥ Cηs log3(N/ε).

Then, with probability at least 1− 7 max{ε,N−3}, the solution x] of

min
z

1

2
‖Az− y‖2

2 + λ‖z‖1 with λ = 2σ

√
2 log(N)

NTNRNt

satisfies supp(x) = supp(x#).
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Remarks about nonuniform recovery

I The debiased LASSO estimator x̂ – least squares on supp(x]),
after computing LASSO solution – satisfies

‖x− x̂‖2 ≤ 2σ
√

2s log(N)/(NTNRNt).

I The randomness in the signs of the nonzero entries of x can
likely be removed.

I For optimal balancedness parameter η = 1, we obtain a
(near-)optimal bound on the number of measurements:
m ≥ Cs log3(N/ε).

I RIP-result covers the worst case where η = NR .

I A random support set will be η-balanced for small η with high
probability, which explains the result of Strohmer and
Friedlander.

35 / 44



Numerical experiments for Doppler-free scenario

sparsity |S|
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1

Success rates for various values of η
red curve corresponds to randomly chosen support sets

NT = NR = 8 transmit and receive antennas, Nt = 64
time-domain samples, grid size N = NTNRNt = 4096
m = NRNt = 512 measurements
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Antenna arrays with random antenna

positions
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Radar setup

n antenna elements on square [0,B]2 in plane z = 0.
Targets in the plane z = z0 on grid of resolution cells
rj ∈ [−L, L]2 × {z0}, j = 1, . . . ,N with mesh size h.

x ∈ CN : vector of reflectivities in resolution cells (rj)j=1,...,N .
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Sensing mechanism (Fannjiang, Strohmer, Yan 2010)
Antenna at position a ∈ R3 emits monochromatic wave
(wavelength λ, wavenumber ω) with amplitude at position r ∈ R3

given by Green’s function of Helmholtz equation

H(a, r) =
exp (2πi‖r − a‖2/λ)

4π‖r − a‖2
.

Approximation (valid for large z0): H(a, r) ≈ e iωz0

4πz0
G (a, r) with

G (a, r) = exp

(
iω

2z0
(|r1 − a1|2 + |r2 − a2|2)

)
Signal corresponding to emitting antenna a` and receive antenna
ak (Born approximation)

y(k,`) =
N∑
j=1

xjG (a`, rj)G (rj , ak) = (Ax)(k,`), k , ` = 1, . . . , n

n2 measurements
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Random scattering matrix
Choose antenna positions aj , j ∈ [n], independently and uniformly

at random in [0,B]2. Then A ∈ Cn2×N is structured random
matrix. Entries

A(k,`);j = G (ak , rj)G (rj , a`), (k , `) ∈ [n]2, j ∈ [N].

Define v(ak , a`) = (G (ak , rj)G (rj , a`))j∈[N] ∈ CN . Then

A =



v(a1, a1)
v(a1, a2)

...
v(a2, a1)

...
v(an, an)


Rows and columns are coupled.
Under the condition hB

λz0
∈ N we have EA∗A = I .
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Reconstruction via `1-minimization

Sparse scene (sparsity s = 100, 6400 grid points):

Reconstruction (n = 30 antennas, 900 noisy measurements,
SNR 20dB)

41 / 44



Nonuniform recovery

Theorem (Hügel, R, Strohmer 2014)

Let x ∈ CN . Choose the n antenna positions independent and
uniformly at random in [0,B]2. Assume hB

λz0
∈ N, where h is mesh

size and λ the wavelength; further

n2 ≥ Cs ln2(N/ε) .

Let y = Ax + e ∈ Cn2
with ‖e‖2 ≤ ηn. Let x# be the solution to

min ‖z‖1 subject to ‖y − Az‖2 ≤ ηn.

Then with probability at least 1− ε

‖x− x#‖2 ≤ C1σs(x)1 + C2

√
sη.

Exact recovery when η = 0 and σs(x)1 = 0.
RIP estimate open.
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Conclusions
Analysis of compressive sensing in various radar setups may be
interesting and challenging!

I Time-Frequency (range-Doppler) structured random matrices
(Pfander, R 2010; Pfander, R, Tropp 2012;
Krahmer, Mendelson, R - 2014)

I MIMO radar with random transmit pulses
(Friedlander, Strohmer 2014; Dorsch, R 2015)

I Antenna arrays with random antenna positions
(Fannjiang, Strohmer 2013; Hügel, R, Strohmer 2014)

I Not covered:
I Subsampled random convolutions (R, Romberg, Tropp 2012;

Krahmer, Mendelson, R 2014)
I MIMO radar with random antenna position (Strohmer, Wang

2013)
I ...

I More challenging mathematical problems from radar
applications

I Off grid compressive sensing
I ...
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