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Overview

Several radar setups with compressive sensing approaches
» Range-Doppler resolution via compressive sensing
» Sparse MIMO Radar

» Antenna arrays with randomly positioned antennas

)
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Time-Frequency Structured Random
Matrices

Resolution of Range-Doppler in Radar
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Resolution of Range-Doppler

Received signal is superposition of delayed and modulated
(Doppler shifted) versions of sent signal.

Task: Determine delays (corresponding to distances; range) and
Doppler shifts (corresponding to radial speed) from subsampled
receive signal!

44



Gabor Systems in Finite Dimensions
Translation and Modulation on C™

(T*g); = & k) moam and (M'g);=e*™/m

gj-
Time-frequency shifts
(A = MTK, A= (k)€ {0,...,m—1}2

For g € C™ define Gabor synthesis matrix (w = e27“'/m)

Vg = (m(A\)&)aeqo,...m—1)2

& Bm-1 81 &o xx a1 N g
81 80 ERIY -5} wgi .. wgr . wm71g2
Jo¢) e & w2 Wi L “)2("771)g3
= 83 82 84 w3g3 N w3g4 . w,3(m71)g4
: 2
8m—-1 8m-2 - 80 wmilgmil . wm*1g0 . w(m—l) g

2 .. . .
Use of W, € C™*™ as measurement matrix in compressive sensing
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Radar model (Herman, Strohmer 2008)

Emitted signal: g € C™.
Objects scatters g and radar device receives the contribution

x\m(\)g = xk’gMg Tkg.

Tk corresponds to delay, i.e., distance of object
M corresponds to Doppler shift, i.e., speed of the object
x,o reflectivity of object

Received signal is superposition of contribution of all scatteres:

y = Zx,\ﬂ()\)g = Wgx.
AEA

Usually few scatterers so that x € C™ can be assumed sparse.
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Radar model (Herman, Strohmer 2008)

Emitted signal: g € C™.
Objects scatters g and radar device receives the contribution

x\m(\)g = xk’gMg Tkg.

Tk corresponds to delay, i.e., distance of object
M corresponds to Doppler shift, i.e., speed of the object
x,o reflectivity of object

Received signal is superposition of contribution of all scatteres:

y = Zx,\ﬂ()\)g = Wgx.
AEA

Usually few scatterers so that x € C™ can be assumed sparse.

We will choose g as random vector below.
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Reconstruction via compressive sensing

Reconstruction of x from y = Ax via ¢1-minimization

min||z||y subject to Az=y

min||z||1  subject to ||[Az — y|l2 <7
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Reconstruction via compressive sensing

Reconstruction of x from y = Ax via ¢1-minimization

min||z||y subject to Az=y

min||z||1  subject to ||[Az — y|l2 <7

Alternatives:

Matching Pursuits

Iterative hard thresholding (pursuit)
Iteratively reweighted least squares
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Uniform vs. nonuniform recovery

Often recovery results are for random matrices A € R™*N; choose
generator g € C™ for W, at random

» Uniform recovery
With high probability on A every sparse vector is recovered;

P(Vs-sparse x, recovery of x is successful using A) > 1 —¢.

44



Uniform vs. nonuniform recovery

Often recovery results are for random matrices A € R™*N; choose
generator g € C™ for W, at random

» Uniform recovery
With high probability on A every sparse vector is recovered;

P(Vs-sparse x, recovery of x is successful using A) > 1 —¢.

Recovery conditions on A
> Null space property
» Restricted isometry property

44



Uniform vs. nonuniform recovery
Often recovery results are for random matrices A € R™*N; choose
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» Uniform recovery
With high probability on A every sparse vector is recovered;

P(Vs-sparse x, recovery of x is successful using A) > 1 —¢.

Recovery conditions on A
> Null space property
» Restricted isometry property

» Nonuniform recovery
A fixed sparse vector is recovered with high probability using
Ac RmXN.

Vs-sparse x : P(recovery of x is successful using A) > 1 —e¢.

44



Uniform vs. nonuniform recovery
Often recovery results are for random matrices A € R™*N; choose
generator g € C™ for W, at random

» Uniform recovery
With high probability on A every sparse vector is recovered;

P(Vs-sparse x, recovery of x is successful using A) > 1 —¢.

Recovery conditions on A
> Null space property
» Restricted isometry property
» Nonuniform recovery
A fixed sparse vector is recovered with high probability using
A c RMxN.

Vs-sparse x : P(recovery of x is successful using A) > 1 —e¢.

Recovery conditions on A
» Tangent cone (descent cone) of norm at x intersects ker A
trivially.
» Dual certificates
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Restricted isometry property (RIP)

Definition
The restricted isometry constant s of a matrix A € C™*N s
defined as the smallest ds such that

(1= 05)lIxII3 < [|Ax]I3 < (1 + ds)lIx[13

for all s-sparse x € CN.
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Stable and robust recovery

Theorem (Candés, Romberg, Tao '04 — Cai, Zhang '13)

Let Ac C™N with 6,5 < 1/3/2 ~0.7071. Let x € CN, and
assume that noisy data are observed, y =
Let x7 by a solution of

min ||z|]|y  such that ||Az —yl|» < 7.
z

Then

os(x)1

[x — x| < cZVL | pr
\[

|x — x#||; < Cos(x)1 + Dy/sT

for constants C,D > 0, that depend only on d»s. Here

os(n = inf_ x|

Implies exact recovery in the s-sparse and noiseless case. .



Dual certificate

Theorem (Fuchs 2004, Tropp 2005)
For Ae C™N x e CN with support S is the unique solution of

min||z||;  subject to Az = Ax

if As is injective and there exists a dual vector h € C™ such that

(A*h); = sgn(x;), j€S, |(A*h),| <1, (€S.
Corollary
Let ay,...,ay be the columns of A€ C™N_ Forx € CN with

support S, if the matrix As is injective and if
](ATSag,sgn(xs))] <1 forallt €S,

then the vector x is the unique {1-minimizer with y = AX.
Here, A} is Moore-Penrose pseudo inverse.
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Dual certificate

Theorem (Fuchs 2004, Tropp 2005)
For Ae C™N x e CN with support S is the unique solution of

min||z||;  subject to Az = Ax

if As is injective and there exists a dual vector h € C™ such that

(A*h); = sgn(x;), j€S, |(A*h),| <1, (€S.
Corollary
Let ay,...,ay be the columns of A€ C™N_ Forx € CN with

support S, if the matrix As is injective and if
](ATSag,sgn(xs))] <1 forallt €S,

then the vector x is the unique {1-minimizer with y = AX.

Here, A} is Moore-Penrose pseudo inverse.
One ingredient: Check that [[ASAs — /]j2—2 <6 < 1.
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Stability and robustness via dual certificate

Theorem
Let x € CN and A € C™N with ¢y-normalized columns. Denote

by S C [N] the indices of the s largest absolute entries of x.
Assume that

(i) there is a dual certificate u = A*h € CN withh € C™ s.t.

1
ur =sgn(x)7, [urel/, < 5> [h][, < 3Vs.

(i) [ATAT = 1pop < 3
Given noisy measurements'y = Ax +e € C” with ||e|, < 7, the
solution ¥ € CN of noise-constrained ¢1-minimization satisfies

Ix — %, < 52v/57 + 1604(x)1.
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Stability and robustness via dual certificate

Theorem

Let x € CN and A € C™N with ¢y-normalized columns. Denote
by S C [N] the indices of the s largest absolute entries of x.
Assume that

(i) there is a dual certificate u = A*h € CN withh € C™ s.t.
1
ur =sgn()7, lurelo <5, [l <3V5

(i) [ATAT = 1pop < 3
Given noisy measurements'y = Ax +e € C” with ||e|, < 7, the
solution ¥ € CN of noise-constrained ¢1-minimization satisfies

Ix — %, < 52v/57 + 1604(x)1.

Remark: Error bound is worse by factor of /s than the one
obtained from RIP.
Can be removed again by additionally requiring the weak RIP. 12 /44



Random choice of generator g

Recall Gabor synthesis matrix

m n'72
v, = (M —’_kg)(k,e)e[m]2 e C™*
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Random choice of generator g

Recall Gabor synthesis matrix

m le2
v, = (M Tkg)(k,e)e[m]2 e C™*

Choice of g as subgaussian random vector:
Entries of g are independent, mean-zero, variance one and
. 2
subgaussian: P(|gj| > t) < 2e Kt for some K > 0.
Examples:
» Rademacher: entries +1 with equal probability

» Steinhaus: entries are uniformly distributed on complex torus

{zeC:|z| =1}
» Gaussian: entries are standard real or complex Gaussian
variables
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RIP estimate for random generator (Krahmer, Mendelson,
Rauhut 2014)

Theorem
Let Vg € C™*N N = m?, be generated by a subgaussian random
vector g. If, for § € (0,1),

m > C5?s max{log? slog® N, log(c™ 1)},

then with probability at least 1 — e the restricted isometry constant

of ﬁ\Ug satisfies 65 < 4.

Implies stable and robust recovery via #; minimization with high
probability if m > Cslog?(s)log?(N).
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RIP estimate for random generator (Krahmer, Mendelson,
Rauhut 2014)

Theorem
Let Vg € C™*N N = m?, be generated by a subgaussian random
vector g. If, for § € (0,1),

m > C5?s max{log? slog® N, log(c™ 1)},

then with probability at least 1 — e the restricted isometry constant

of ﬁ\ug satisfies 65 < 4.

Implies stable and robust recovery via #; minimization with high
probability if m > Cslog?(s)log?(N).

Previous results:
Pfander, R, Tropp 2012: m > C(553/2 Iog3 N
Nonuniform recovery, Pfander, R 2010: m > Cslog(N)

Theorem can be generalized to certain other systems of operators

(instead of time-frequency shifts).
14 /44



Numerical experiments for Steinhaus g

Horizontal axis 1/m = m/m?, vertical axis s/m.

Contours of success probability, 93% success rate, 1/(2log(m)).
Numerical experiments suggest s < 57— ensures s-sparse
recovery.
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Proof ingredient: chaos processes
Recall: §s is smallest constant such that

(1= 8s)lIx[13 < Ax]3 < (1 + ) Ix]3
Equivalently, with Ty = {x € CV : ||x|]2 < 1, ||x|[o < s}

ds = sup [|Ax[13 = lIx[3]
x€Ts
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Proof ingredient: chaos processes
Recall: §s is smallest constant such that

(1= 8s)lIx[13 < Ax]3 < (1 + ) Ix]3
Equivalently, with Ty = {x € CV : ||x|]2 < 1, ||x|[o < s}

2 2
ds = sup [[|Ax|[5 — [Ix[3]
x€Ts

In our case

1 1
Ax = —=Vx =

m—1
1k .
\/E Z Xk,ZM T g - VXg7

Vi o
with Vi, = ﬁ ZZ:E_:IO xk ¢M*Tk. Since entries of g have mean

zero and variance one, E||V,g||3 = ||x||3, so that

ds = sup |||ng||% - EHngHg‘
x€Ts

This is a second order chaos processes.

16
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Generic Chaining for Chaos Processes

Theorem (Krahmer, Mendelson, R 2014)

Let B=—B c C™N be a symmetric set of matrices and ¢ € CN
be a subgaussian random vector. Then

E sup [||B¢|2 - Bl B3|
BeB
< QB || 22)* + QA (B)12(B, | - [l22)-
Here, ||B||r = /tr(B*B) denotes the Frobenius norm.

Symmetry assumption B = —B can be dropped at the cost of
slightly more complicated bound.

Here, A (B) is the diameter of B with respect to || - || and
Y2(B, || - ||) is Talagrand's ~>-functional which can be bounded by

Ay (B)
(B -]) < C /O Viog N(B, |- T u)du,

where N(B, || - ||, u) are the covering numbers of B at radius u. 17/44




Tail bound

Theorem (Krahmer, Mendelson, R '14 — Dirksen '15)

Let B=—B c C™N and ¢ € CN be a subgaussian random
vector. Then

P <sup 18¢]3 — E|BE[3] > GE + t)
BeB
St ot
< 2exp <—C2m|n{v2,U}>,

E =N (B)2(B, | - ll2=2) + 72(B, || - l2=2)?,
Vo= Ay, A (B),
. 2

where
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Sparse MIMO radar
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MIMO Radar
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MIMO Radar in 2D

» N+ transmit antennas at locations
(0,(k—1)drA), k=1,2,.... Nt
» Ng receive antennas at locations

(0,(j —1)drA), j=1,...,Ng
Choose dr = 1/2, dg = Nt/2.

Then system has similar characteristics as antenna array with
N+ Ng antennas.

(Alternatively, dr = Ng/2, dgr = 1/2)
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Measurement model
Strohmer, Friedlander 2012; Yu, Petropulu, Poor, 2011

> Transmit antennas send periodic continuous-time complex Gaussian
pulses si, ..., sy, with period T and band-width B.
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Measurement model
Strohmer, Friedlander 2012; Yu, Petropulu, Poor, 2011

> Transmit antennas send periodic continuous-time complex Gaussian
pulses si, ..., sy, with period T and band-width B.

> Echo of target of unit reflectivity at position (r cos(6), rsin(#) and
radial speed v at receiver j:

Nt
t) _ Z ezwic/\*l(t—dk,j(t)/c)sk(t _ dk,j(t)/c)
k=1
with carrier frequency A, speed of light ¢, and distance from kth
transmitter to target and from target to jth receiver

dij(t) = 2(r + vt) +sin(0)dr(k — 1)A +sin(0)(j — 1)drA

» Demodulation (multiplication of r;(t) with e=2%* "'t} and assuming

B < X\ (narrowband transmit waveforms), v < ¢ (slowly moving
targets), r > ANg Nt /2 (far field scenario) yields measurements

y_/(t) ~ eQﬂi<2A’1re27rism( )dr(j— Ze2m 227 vte27rlsm(0)d7—(k 1) S (t 2r/c)

k=1
22 /44



Discretization

» By the Shannon-Nyquist sampling theorem, the band-limited
periodic complex Gaussian transmit signals can be represented
by their sampled counterparts s, € CN¢ (sampled over one
period [0, T]); N¢: number of samples.
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Discretization

» By the Shannon-Nyquist sampling theorem, the band-limited
periodic complex Gaussian transmit signals can be represented
by their sampled counterparts s, € CN¢ (sampled over one
period [0, T]); N¢: number of samples.

» Target is described by triple (0, r, v) (azimuth, range,
velocity); Discretization of (3,7, f) = (sin(9),2r/c,2A"tv)
with stepsizes

2 1

= — AT = —, A =
N7Np’ 2B f

1
Ag 7
yields grid
G= {(ﬁAg,TAT, fAfF) : B € [NrNT]|, T € [Ny], f € [Nt]}

Index set G = [NTNg] x [N¢] x [N¢] of size N := NgN7N?
(here [k] = {1,...,k}).
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Discretization grid

MIMO radar module

\ \
7 1
’

\

!
s

’

P
L
—~

N

AN
Bs

P16 . 3_)2

24 /44



Measurement Model |

One target with unit reflectivity at grid point indexed by
©=(8,1,f) et
Discrete time samples at receiver j (j =1,..., Ng)

yj = (yJ'(At)vyj(zAt)a oo ’yJ'(NtAt))T

Nt
_ 2mieA A, [ezdeﬁAﬁ(j—l) > P IrPAIM T s, | € CM
=1

with translation and modulation operators on CNt defined as
- _ 2wk
(TTS)k = Sk_—r, (MfS)k =€ t (S)k.

Targets on grid points index by © € G with reflectivities pg,

setting also xg = €2™"A A pg: measurements at receiver j:
Nt

yj = Z X6 e27mi-drBAL(J—1) Z ezwi-dTﬁAB(kq)MfTTsk
0cG k=1

_.aJ
=:Ay
25 /44



Measurement Model |l
Collection of sampled signals at all receivers:

1
y1 > ecc X0Ap
y=|:|= 5 = Ax € CN M
N,
YNg ZeeG XGA@R
Measurement matrix
1
A@
. 2
A= : e CNRNeNRNTIE - G = [NRNT] x [Ne] x [Ne]
Ng
A@ ocG
. NT
Ao = OB R T 2ridrits UM T s € €, © = (5, 7.f)
k=1
Structured random matrix; the si,. .., sy, are independent subgaussian

random vectors, e.g. standard complex Gaussian random vectors,
Rademacher vectors, or Steinhaus vectors

Number of measurements: m = NgN,, signal dimension N = NRN-,-NE,
i.e., m< N;recall dr =1/2, dg = N7/2, Ag = 2

Nt Ng 26 / 44



Reconstruction via Compressive Sensing

Reconstruction problem of solving Ax =y is underdetermined.
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Reconstruction problem of solving Ax =y is underdetermined.
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x of reflectivities is sparse!
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Reconstruction via Compressive Sensing

Reconstruction problem of solving Ax =y is underdetermined.

In many situations only very few targets are present, i.e., the vector
x of reflectivities is sparse!

Use compressive sensing for reconstruction!
For recovery, we will study ¢1-minimization
min ||z]]1  subject to ||Ax —y|2 < T
z

and LASSO 1
min Az — y[3 + Azl
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Recovery for random support sets

Strohmer and Friedlander (2013) showed recovery of the correct
support via (debiased) LASSO for s-sparse signals with random
support (and random signs) with high probability under the
condition

m = NgN; > Cslog(N)

(plus minor additional technical assumptions).

Proof is based on an analysis of the coherence of A and a general
recovery result for random signals due to Tropp (2008).
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Recovery for random support sets

Strohmer and Friedlander (2013) showed recovery of the correct
support via (debiased) LASSO for s-sparse signals with random
support (and random signs) with high probability under the
condition

m = NgN; > Cslog(N)

(plus minor additional technical assumptions).

Proof is based on an analysis of the coherence of A and a general
recovery result for random signals due to Tropp (2008).

Question:
Can we avoid the assumption of randomness of the support?
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The RIP for MIMO radar measurements

Theorem (Dorsch, R 2015)
If
N; > C5%s max{log?(s) log?(N), log(¢ 1)}

then the rescaled random radar measurement matrix

WA € CNrN:xNeNTNE satisfies 5 < § with probability at
t

least 1 — €.

Implies stable and robust sparse recovery via £1-minimization.
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The RIP for MIMO radar measurements

Theorem (Dorsch, R 2015)

If
N; > C5%s max{log?(s) log?(N), log(¢ 1)}

then the rescaled random radar measurement matrix

1 NgNe x Ng N N? £ . .
WA € CNrRNexNRNTING satisfies 65 < & with probability at
least 1 — €.

Implies stable and robust sparse recovery via £1-minimization.

Proof uses generic chaining estimates for suprema of chaos
processes (Krahmer, Mendelson, R 2014).

Compared to other random matrix constructions in compressed
sensing (where m =< slog(eN/s) ) the result requires more
measurements because here m = N;Ng; i.e., we suffer an

additional factor of Ng.
29 / 44



Almost optimality of RIP estimate

Theorem (Dorsch, R 2015)

If a realization of the random MIMOQO radar measurement matrix

——L A satisfies 6s < 0.7 for s < N?, then necessarily
/NrNTN2

N; > Cslog(eN?/s).

Proof idea:
Introduce Sg := {(#',7',f") € G : f’ = j3}.
If x has support in Sz then one can write

Ax = aR(/B) ® Bx5g

for a vector ag(3) € CNR with entries of magnitude 1 and a matrix
B € CNexNV?, Applying lower sparse recovery bounds for B yields
the claim.
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Towards nonuniform recovery

Recovery depends on the fine structure of the support set:

Equivalence class of angles, 3,5 € [NgNT],
B~pB B —B=0 mod Ng

This definition is motivated by the fact that the columns of A
satisfy, for © = (8, 7,1),®" = (8,7, f),

- ~ . NR if 5 ~ Bla
(Ao,Aer) = Nrigpr = { 0 otherwise.
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Towards nonuniform recovery

Recovery depends on the fine structure of the support set:

Equivalence class of angles, 3,5 € [NgNT],
B~pB B —B=0 mod Ng

This definition is motivated by the fact that the columns of A
satisfy, for © = (8, 7,1),®" = (8,7, f),

(Ao,Aer) = Nrigpr = { 0 otherwise.

Intuitively, the more elements of the support S are such that the

corresponding 3's are contained in different equivalent classes the
better the matrix Ag is conditioned.

31/44



Well-balanced support sets

For a support set S C G = [NgN7] x [N¢] x [N¢] let

5[5] = {@/ = (ﬁ/,T,, f’) €SB~ B}
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Well-balanced support sets

For a support set S C G = [NgN7] x [N¢] x [N¢] let

5[5] = {@/ = (ﬁ/,T,, f,) €SB~ B}.

Definition
A support set S C G is called n-balanced, if for all angle classes
5],

5]

< n—-.
S| < e

The parameter 7 ranges in [1, Ng].
A small value of 7 means that the support S is well-distributed
over the angle classes, which is favorable for recovery.

32 /44



Nonuniform recovery |

Theorem

Let x e CN and S C G be an index set corresponding to s largest
absolute entries in x. Assume S to be n-balanced and that the
signs of the coefficients xs form a Steinhaus sequence. Assume
measurements y = Ax +n € CNrNe are given, where the signals
S1,82,...,SN, generating the measurement matrix A are
independent subgaussian random vectors, and ||n|> < 7. If

m = NgN; Znslog>(N/e),

then, with probability at least 1 — ¢, the solution x* to constrained
{1-minimization satisfies

_TVs

# xlla<C + C
||x X||2 — 10'5(X)1 QW’

where C; and C, are numerical constants.

Exact recovery for s-sparse scene x.
33 /44



Nonuniform recovery for LASSO
Theorem (Dorsch, R 2015)

Let x € CN, N = NgrNTN2, be a fixed s-sparse target scene with
n-balanced support S such that the phases of the nonzero entries form a
random Steinhaus sequence and such that

Draw A at random and let y = A + e be noisy measurements with
random noise, € ~ CN(0,02). Assume that

m = NgN; > Cnslog®(N/e).

Then, with probability at least 1 — 7 max{e, N=3}, the solution xt of

2log(N)

1 ;
min 5 1Az —yll3 + Allzlls - with A = 20 | T

satisfies supp(x) = supp(x™).

34 /44



Remarks about nonuniform recovery

» The debiased LASSO estimator X — least squares on supp(x?),
after computing LASSO solution — satisfies

Ix — %2 < 20/25 1og(N)/ (N7 Ng ;).

» The randomness in the signs of the nonzero entries of x can
likely be removed.

» For optimal balancedness parameter 7 = 1, we obtain a
(near-)optimal bound on the number of measurements:
m > Cslog3(N/g).

> RIP-result covers the worst case where n = Ng.

> A random support set will be n-balanced for small 1 with high
probability, which explains the result of Strohmer and
Friedlander.
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Numerical experiments for Doppler-free scenario

1.0

0.8

0.6

0.4

probability of success

0.2

= €
0 8 16 24 32 40 48 56 64 72 80 83 96 104 112 120 128 13(757 [

1, Ng]

0

sparsity |S]

Success rates for various values of n
red curve corresponds to randomly chosen support sets

Nt = Ngi = 8 transmit and receive antennas, N; = 64
time-domain samples, grid size N = Nt NgN; = 4096

m = NgN; = 512 measurements
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Antenna arrays with random antenna
positions
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Radar setup

targets 5
at
] distance

-z resolution grid
0

distance

Targets sparse in the resolution cells

ey
A . v
. R RSt Pvac S

— aperture

n antenna elements on square [0, B]? in plane z = 0.
Targets in the plane z = zy on grid of resolution cells
ri € [-L, L] x {z}, j=1,..., N with mesh size h.

x € CN: vector of reflectivities in resolution cells (rj)j:1

N

38
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Sensing mechanism (Fannjiang, Strohmer, Yan 2010)
Antenna at position a € R3 emits monochromatic wave
(wavelength \, wavenumber w) with amplitude at position r € R3
given by Green's function of Helmholtz equation

Hea. ) — SRl = al2/)

47r||r — a||2

Approximation (valid for large zp): H(a,r) =~ gl% G(a, r) with

%)
i

w
G(a,r) = exp (zo( — a1+ |- )>

Signal corresponding to emitting antenna a; and receive antenna
ax (Born approximation)

N
(k) = ZXJG(Q[, G)G(rj7 ak) = (Ax)(k,l)a k,t=1,....n
=1

n? measurements
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Random scattering matrix
Choose antenna positions aj, j € [n], independently and uniformly

at random in [0, B]2. Then A € C™*N is structured random
matrix. Entries

Aty = G(ai. )G, a0), (k. 0) € [n)?,j € [N].
Define v(ax, az) = (G(ax, rj) G(rj, ag))je[N] € CN. Then

v(ai,a1)
v(ay, ap)

v(az, a1)

v(an, an)

Rows and columns are coupled.
Under the condition 42 € N we have EA"A = /.
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Reconstruction via ¢;-minimization

Sparse scene (sparsity s = 100, 6400 grid points):

W
resolution cells

Reconstruction (n = 30 antennas, 900 noisy measurements,
SNR 20dB)
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Nonuniform recovery

Theorem (Hiigel, R, Strohmer 2014)

Let x € CN. Choose the n antenna positions independent and
uniformly at random in [0, B]?. Assume 6 N, where h is mesh
size and \ the wavelength; further

n> > CsIn?(N/e) .
Lety = Ax+e € C™ with ||e|la < nn. Let x* be the solution to
min||z|ly subject to |y — Az|]> < nn.
Then with probability at least 1 — ¢

HX - X#Hz < C10'5(X)1 + Czﬁn.

Exact recovery when 7 = 0 and os(x); = 0.
RIP estimate open.
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Conclusions

Analysis of compressive sensing in various radar setups may be
interesting and challenging!

» Time-Frequency (range-Doppler) structured random matrices
(Pfander, R 2010; Pfander, R, Tropp 2012;
Krahmer, Mendelson, R - 2014)
» MIMO radar with random transmit pulses
(Friedlander, Strohmer 2014; Dorsch, R 2015)
» Antenna arrays with random antenna positions
(Fannjiang, Strohmer 2013; Hiigel, R, Strohmer 2014)

43 /44



Conclusions

Analysis of compressive sensing in various radar setups may be
interesting and challenging!

» Time-Frequency (range-Doppler) structured random matrices
(Pfander, R 2010; Pfander, R, Tropp 2012;
Krahmer, Mendelson, R - 2014)
» MIMO radar with random transmit pulses
(Friedlander, Strohmer 2014; Dorsch, R 2015)
» Antenna arrays with random antenna positions
(Fannjiang, Strohmer 2013; Hiigel, R, Strohmer 2014)

> Not covered:
» Subsampled random convolutions (R, Romberg, Tropp 2012;
Krahmer, Mendelson, R 2014)
» MIMO radar with random antenna position (Strohmer, Wang
2013)

> .

43 /44



Conclusions

Analysis of compressive sensing in various radar setups may be
interesting and challenging!

>

Time-Frequency (range-Doppler) structured random matrices
(Pfander, R 2010; Pfander, R, Tropp 2012;

Krahmer, Mendelson, R - 2014)

MIMO radar with random transmit pulses

(Friedlander, Strohmer 2014; Dorsch, R 2015)

Antenna arrays with random antenna positions

(Fannjiang, Strohmer 2013; Hiigel, R, Strohmer 2014)

Not covered:
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>
More challenging mathematical problems from radar
applications
» Off grid compressive sensing
'S
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The End
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