Analysis of Compressive Sensing in Radar

Holger Rauhut
Lehrstuhl C für Mathematik (Analysis) RWTH Aachen

Compressed Sensing and Its Applications
TU Berlin
December 8, 2015

Overview

Several radar setups with compressive sensing approaches

- Range-Doppler resolution via compressive sensing
- Sparse MIMO Radar
- Antenna arrays with randomly positioned antennas

Time-Frequency Structured Random Matrices

Resolution of Range-Doppler in Radar

Resolution of Range-Doppler

Received signal is superposition of delayed and modulated (Doppler shifted) versions of sent signal.

Task: Determine delays (corresponding to distances; range) and Doppler shifts (corresponding to radial speed) from subsampled receive signal!

Gabor Systems in Finite Dimensions

Translation and Modulation on \mathbb{C}^{m}

$$
\left(T^{k} g\right)_{j}=g_{(j-k)} \quad \bmod m \quad \text { and } \quad\left(M^{\ell} g\right)_{j}=e^{2 \pi i \ell j / m} g_{j}
$$

Time-frequency shifts

$$
\pi(\lambda)=M^{\ell} T^{k}, \quad \lambda=(k, \ell) \in\{0, \ldots, m-1\}^{2}
$$

For $g \in \mathbb{C}^{m}$ define Gabor synthesis matrix $\left(\omega=e^{2 \pi i / m}\right)$

$$
\Psi_{g}=(\pi(\lambda) g)_{\lambda \in\{0, \ldots, m-1\}^{2}}
$$

$$
=\left(\begin{array}{cccc|ccc|cc}
g_{0} & g_{m-1} & \cdots & g_{1} & g_{0} & \cdots & g_{1} & \cdots & g_{1} \\
g_{1} & g_{0} & \cdots & g_{2} & \omega g_{1} & \cdots & \omega g_{2} & \cdots & \omega^{m-1} g_{2} \\
g_{2} & g_{1} & \cdots & g_{3} & \omega^{2} g_{2} & \cdots & \omega^{2} g_{3} & \cdots & \omega^{2(m-1)} g_{3} \\
g_{3} & g_{2} & \cdots & g_{4} & \omega^{3} g_{3} & \cdots & \omega^{3} g_{4} & \cdots & \omega^{3(m-1)} g_{4} \\
\vdots & \vdots & \ddots & \vdots & \vdots & \ddots & \vdots & & \vdots \\
g_{m-1} & g_{m-2} & \cdots & g_{0} & \omega^{m-1} g_{m-1} & \cdots & \omega^{m-1} g_{0} & \cdots & \omega^{(m-1)^{2}} g_{0}
\end{array}\right)
$$

Use of $\Psi_{g} \in \mathbb{C}^{m \times m^{2}}$ as measurement matrix in compressive sensing

Gabor Systems in Finite Dimensions

Translation and Modulation on \mathbb{C}^{m}

$$
\left(T^{k} g\right)_{j}=g_{(j-k)} \quad \bmod m \quad \text { and } \quad\left(M^{\ell} g\right)_{j}=e^{2 \pi i \ell j / m} g_{j}
$$

Time-frequency shifts

$$
\pi(\lambda)=M^{\ell} T^{k}, \quad \lambda=(k, \ell) \in\{0, \ldots, m-1\}^{2} .
$$

For $g \in \mathbb{C}^{m}$ define Gabor synthesis matrix $\left(\omega=e^{2 \pi i / m}\right)$

$$
\Psi_{g}=(\pi(\lambda) g)_{\lambda \in\{0, \ldots, m-1\}^{2}}
$$

$$
=\left(\begin{array}{cccc|ccc|cc}
g_{0} & g_{m-1} & \cdots & g_{1} & g_{0} & \cdots & g_{1} & \cdots & g_{1} \\
g_{1} & g_{0} & \cdots & g_{2} & \omega g_{1} & \cdots & \omega g_{2} & \cdots & \omega^{m-1} g_{2} \\
g_{2} & g_{1} & \cdots & g_{3} & \omega^{2} g_{2} & \cdots & \omega^{2} g_{3} & \cdots & \omega^{2(m-1)} g_{3} \\
g_{3} & g_{2} & \cdots & g_{4} & \omega^{3} g_{3} & \cdots & \omega^{3} g_{4} & \cdots & \omega^{3(m-1)} g_{4} \\
\vdots & \vdots & \ddots & \vdots & \vdots & \ddots & \vdots & & \vdots \\
g_{m-1} & g_{m-2} & \cdots & g_{0} & \omega^{m-1} g_{m-1} & \cdots & \omega^{m-1} g_{0} & \cdots & \omega^{(m-1)^{2}} g_{0}
\end{array}\right)
$$

Use of $\Psi_{g} \in \mathbb{C}^{m \times m^{2}}$ as measurement matrix in compressive sensing

Radar model (Herman, Strohmer 2008)

Emitted signal: $g \in \mathbb{C}^{m}$.
Objects scatters g and radar device receives the contribution

$$
x_{\lambda} \pi(\lambda) g=x_{k, \ell} M^{\ell} T^{k} g .
$$

T^{k} corresponds to delay, i.e., distance of object
M^{ℓ} corresponds to Doppler shift, i.e., speed of the object
$x_{k, \ell}$ reflectivity of object
Received signal is superposition of contribution of all scatteres:

$$
y=\sum_{\lambda \in \Lambda} x_{\lambda} \pi(\lambda) g=\Psi_{g} x
$$

Usually few scatterers so that $x \in \mathbb{C}^{m^{2}}$ can be assumed sparse.

Radar model (Herman, Strohmer 2008)

Emitted signal: $g \in \mathbb{C}^{m}$.
Objects scatters g and radar device receives the contribution

$$
x_{\lambda} \pi(\lambda) g=x_{k, \ell} M^{\ell} T^{k} g .
$$

T^{k} corresponds to delay, i.e., distance of object
M^{ℓ} corresponds to Doppler shift, i.e., speed of the object
$x_{k, \ell}$ reflectivity of object
Received signal is superposition of contribution of all scatteres:

$$
y=\sum_{\lambda \in \Lambda} x_{\lambda} \pi(\lambda) g=\Psi_{g} x
$$

Usually few scatterers so that $x \in \mathbb{C}^{m^{2}}$ can be assumed sparse.
We will choose g as random vector below.

Reconstruction via compressive sensing

Reconstruction of x from $y=A x$ via ℓ_{1}-minimization

$$
\begin{array}{ll}
\min \|z\|_{1} & \text { subject to } A z=y \\
\min \|z\|_{1} & \text { subject to }\|A z-y\|_{2} \leq \eta
\end{array}
$$

Reconstruction via compressive sensing

Reconstruction of x from $y=A x$ via ℓ_{1}-minimization

$$
\begin{array}{ll}
\min \|z\|_{1} & \text { subject to } A z=y \\
\min \|z\|_{1} & \text { subject to }\|A z-y\|_{2} \leq \eta
\end{array}
$$

Alternatives:
Matching Pursuits
Iterative hard thresholding (pursuit)
Iteratively reweighted least squares

Uniform vs. nonuniform recovery

Often recovery results are for random matrices $A \in \mathbb{R}^{m \times N}$; choose generator $g \in \mathbb{C}^{m}$ for Ψ_{g} at random

- Uniform recovery

With high probability on A every sparse vector is recovered; $\mathbb{P}(\forall s$-sparse x, recovery of x is successful using $A) \geq 1-\varepsilon$.

Uniform vs. nonuniform recovery

Often recovery results are for random matrices $A \in \mathbb{R}^{m \times N}$; choose generator $g \in \mathbb{C}^{m}$ for Ψ_{g} at random

- Uniform recovery

With high probability on A every sparse vector is recovered;
$\mathbb{P}(\forall s$-sparse x, recovery of x is successful using $A) \geq 1-\varepsilon$.
Recovery conditions on A

- Null space property
- Restricted isometry property

Uniform vs. nonuniform recovery

Often recovery results are for random matrices $A \in \mathbb{R}^{m \times N}$; choose generator $g \in \mathbb{C}^{m}$ for Ψ_{g} at random

- Uniform recovery

With high probability on A every sparse vector is recovered;
$\mathbb{P}(\forall s$-sparse x, recovery of x is successful using $A) \geq 1-\varepsilon$.
Recovery conditions on A

- Null space property
- Restricted isometry property
- Nonuniform recovery

A fixed sparse vector is recovered with high probability using $A \in \mathbb{R}^{m \times N}$;
\forall s-sparse $x: \mathbb{P}($ recovery of x is successful using $A) \geq 1-\varepsilon$.

Uniform vs. nonuniform recovery

Often recovery results are for random matrices $A \in \mathbb{R}^{m \times N}$; choose generator $g \in \mathbb{C}^{m}$ for Ψ_{g} at random

- Uniform recovery

With high probability on A every sparse vector is recovered;
$\mathbb{P}(\forall s$-sparse x, recovery of x is successful using $A) \geq 1-\varepsilon$.
Recovery conditions on A

- Null space property
- Restricted isometry property
- Nonuniform recovery

A fixed sparse vector is recovered with high probability using $A \in \mathbb{R}^{m \times N}$;
\forall s-sparse $x: \mathbb{P}($ recovery of x is successful using $A) \geq 1-\varepsilon$.
Recovery conditions on A

- Tangent cone (descent cone) of norm at x intersects $\operatorname{ker} A$ trivially.
- Dual certificates

Restricted isometry property (RIP)

Definition
The restricted isometry constant δ_{s} of a matrix $A \in \mathbb{C}^{m \times N}$ is defined as the smallest δ_{s} such that

$$
\left(1-\delta_{s}\right)\|\mathbf{x}\|_{2}^{2} \leq\|A \mathbf{x}\|_{2}^{2} \leq\left(1+\delta_{s}\right)\|\mathbf{x}\|_{2}^{2}
$$

for all s-sparse $\mathbf{x} \in \mathbb{C}^{N}$.

Stable and robust recovery

Theorem (Candès, Romberg, Tao '04-Cai, Zhang '13)
Let $A \in \mathbb{C}^{m \times N}$ with $\delta_{2 s}<1 / \sqrt{2} \approx 0.7071$. Let $\mathbf{x} \in \mathbb{C}^{N}$, and assume that noisy data are observed, $\mathbf{y}=A \mathbf{x}+\mathbf{e}$ with $\|\mathbf{e}\|_{2} \leq \tau$.
Let $\mathbf{x}^{\#}$ by a solution of

$$
\min _{\mathbf{z}}\|\mathbf{z}\|_{1} \quad \text { such that } \quad\|A \mathbf{z}-\mathbf{y}\|_{2} \leq \tau
$$

Then

$$
\begin{aligned}
& \left\|\mathbf{x}-\mathbf{x}^{\#}\right\|_{2} \leq C \frac{\sigma_{s}(\mathbf{x})_{1}}{\sqrt{s}}+D \tau \\
& \left\|\mathbf{x}-\mathbf{x}^{\#}\right\|_{1} \leq C \sigma_{s}(\mathbf{x})_{1}+D \sqrt{s} \tau
\end{aligned}
$$

for constants $C, D>0$, that depend only on $\delta_{2 s}$. Here

$$
\sigma_{s}(\mathbf{x})_{1}=\inf _{z:\|z\|_{0} \leq s}\|\mathbf{x}-\mathbf{z}\|_{1}
$$

Implies exact recovery in the s-sparse and noiseless case.

Dual certificate

Theorem (Fuchs 2004, Tropp 2005)
For $A \in \mathbb{C}^{m \times N}, \mathbf{x} \in \mathbb{C}^{N}$ with support S is the unique solution of

$$
\min \|\mathbf{z}\|_{1} \quad \text { subject to } A \mathbf{z}=A \mathbf{x}
$$

if A_{S} is injective and there exists a dual vector $\mathbf{h} \in \mathbb{C}^{m}$ such that

$$
\left(A^{*} \mathbf{h}\right)_{j}=\operatorname{sgn}\left(x_{j}\right), \quad j \in S, \quad\left|\left(A^{*} \mathbf{h}\right)_{\ell}\right|<1, \quad \ell \in \bar{S} .
$$

Corollary

Let $\mathbf{a}_{1}, \ldots, \mathbf{a}_{N}$ be the columns of $A \in \mathbb{C}^{m \times N}$. For $\mathbf{x} \in \mathbb{C}^{N}$ with support S, if the matrix A_{S} is injective and if

$$
\left|\left\langle A_{S}^{\dagger} \mathbf{a}_{\ell}, \operatorname{sgn}\left(\mathbf{x}_{S}\right)\right\rangle\right|<1 \quad \text { for all } \ell \in \bar{S},
$$

then the vector \mathbf{x} is the unique ℓ_{1}-minimizer with $\mathbf{y}=A \mathbf{x}$. Here, A_{S}^{\dagger} is Moore-Penrose pseudo inverse.

Dual certificate

Theorem (Fuchs 2004, Tropp 2005)
For $A \in \mathbb{C}^{m \times N}, \mathbf{x} \in \mathbb{C}^{N}$ with support S is the unique solution of

$$
\min \|\mathbf{z}\|_{1} \quad \text { subject to } A \mathbf{z}=A \mathbf{x}
$$

if A_{S} is injective and there exists a dual vector $\mathbf{h} \in \mathbb{C}^{m}$ such that

$$
\left(A^{*} \mathbf{h}\right)_{j}=\operatorname{sgn}\left(x_{j}\right), \quad j \in S, \quad\left|\left(A^{*} \mathbf{h}\right)_{\ell}\right|<1, \quad \ell \in \bar{S} .
$$

Corollary

Let $\mathbf{a}_{1}, \ldots, \mathbf{a}_{N}$ be the columns of $A \in \mathbb{C}^{m \times N}$. For $\mathbf{x} \in \mathbb{C}^{N}$ with support S, if the matrix A_{S} is injective and if

$$
\left|\left\langle A_{S}^{\dagger} \mathbf{a}_{\ell}, \operatorname{sgn}\left(\mathbf{x}_{S}\right)\right\rangle\right|<1 \quad \text { for all } \ell \in \bar{S},
$$

then the vector \mathbf{x} is the unique ℓ_{1}-minimizer with $\mathbf{y}=A \mathbf{x}$. Here, A_{S}^{\dagger} is Moore-Penrose pseudo inverse.
One ingredient: Check that $\left\|A_{S}^{*} A_{S}-I\right\|_{2 \rightarrow 2} \leq \delta<1$.

Stability and robustness via dual certificate

Theorem
Let $\mathbf{x} \in \mathbb{C}^{N}$ and $A \in \mathbb{C}^{m \times N}$ with ℓ_{2}-normalized columns. Denote by $S \subset[N]$ the indices of the s largest absolute entries of \mathbf{x}.
Assume that
(i) there is a dual certificate $\mathbf{u}=A^{*} \mathbf{h} \in \mathbb{C}^{N}$ with $\mathbf{h} \in \mathbb{C}^{m}$ s.t.

$$
\mathbf{u}_{T}=\operatorname{sgn}(\mathbf{x})_{T}, \quad\left\|\mathbf{u}_{T^{c}}\right\|_{\infty} \leq \frac{1}{2}, \quad\|\mathbf{h}\|_{2} \leq 3 \sqrt{s}
$$

(ii) $\left\|A_{T}^{*} A_{T}-I\right\|_{2 \rightarrow 2} \leq \frac{1}{2}$.

Given noisy measurements $\mathbf{y}=A \mathbf{x}+\mathbf{e} \in \mathbb{C}^{m}$ with $\|\mathbf{e}\|_{2} \leq \tau$, the solution $\hat{\mathrm{x}} \in \mathbb{C}^{N}$ of noise-constrained ℓ_{1}-minimization satisfies

$$
\|\mathbf{x}-\hat{\mathbf{x}}\|_{2} \leq 52 \sqrt{s} \tau+16 \sigma_{s}(\mathbf{x})_{1}
$$

Stability and robustness via dual certificate

Theorem
Let $\mathbf{x} \in \mathbb{C}^{N}$ and $A \in \mathbb{C}^{m \times N}$ with ℓ_{2}-normalized columns. Denote by $S \subset[N]$ the indices of the s largest absolute entries of \mathbf{x}.
Assume that
(i) there is a dual certificate $\mathbf{u}=A^{*} \mathbf{h} \in \mathbb{C}^{N}$ with $\mathbf{h} \in \mathbb{C}^{m}$ s.t.

$$
\mathbf{u}_{T}=\operatorname{sgn}(\mathbf{x})_{T}, \quad\left\|\mathbf{u}_{T^{c}}\right\|_{\infty} \leq \frac{1}{2}, \quad\|\mathbf{h}\|_{2} \leq 3 \sqrt{s}
$$

(ii) $\left\|A_{T}^{*} A_{T}-I\right\|_{2 \rightarrow 2} \leq \frac{1}{2}$.

Given noisy measurements $\mathbf{y}=A \mathbf{x}+\mathbf{e} \in \mathbb{C}^{m}$ with $\|\mathbf{e}\|_{2} \leq \tau$, the solution $\hat{\mathrm{x}} \in \mathbb{C}^{N}$ of noise-constrained ℓ_{1}-minimization satisfies

$$
\|\mathbf{x}-\hat{\mathbf{x}}\|_{2} \leq 52 \sqrt{s} \tau+16 \sigma_{s}(\mathbf{x})_{1} .
$$

Remark: Error bound is worse by factor of \sqrt{s} than the one obtained from RIP.
Can be removed again by additionally requiring the weak RIP.

Random choice of generator g

Recall Gabor synthesis matrix

$$
\Psi_{g}=\left(M^{\ell} T^{k} g\right)_{(k, \ell) \in[m]^{2}} \in \mathbb{C}^{m \times m^{2}}
$$

Random choice of generator g

Recall Gabor synthesis matrix

$$
\Psi_{g}=\left(M^{\ell} T^{k} g\right)_{(k, \ell) \in[m]^{2}} \in \mathbb{C}^{m \times m^{2}}
$$

Choice of g as subgaussian random vector:
Entries of g are independent, mean-zero, variance one and subgaussian: $\mathbb{P}\left(\left|g_{j}\right| \geq t\right) \leq 2 e^{-K t^{2}}$ for some $K>0$.
Examples:

- Rademacher: entries ± 1 with equal probability
- Steinhaus: entries are uniformly distributed on complex torus $\{z \in \mathbb{C}:|z|=1\}$
- Gaussian: entries are standard real or complex Gaussian variables

RIP estimate for random generator (Krahmer, Mendelson,

 Rauhut 2014)Theorem
Let $\Psi_{g} \in \mathbb{C}^{m \times N}, N=m^{2}$, be generated by a subgaussian random vector g. If, for $\delta \in(0,1)$,

$$
m \geq C \delta^{-2} s \max \left\{\log ^{2} s \log ^{2} N, \log \left(\varepsilon^{-1}\right)\right\},
$$

then with probability at least $1-\varepsilon$ the restricted isometry constant of $\frac{1}{\sqrt{m}} \Psi_{g}$ satisfies $\delta_{s} \leq \delta$.
Implies stable and robust recovery via ℓ_{1} minimization with high probability if $m \geq C s \log ^{2}(s) \log ^{2}(N)$.

RIP estimate for random generator (Krahmer, Mendelson, Rauhut 2014)

Theorem
Let $\Psi_{g} \in \mathbb{C}^{m \times N}, N=m^{2}$, be generated by a subgaussian random vector g. If, for $\delta \in(0,1)$,

$$
m \geq C \delta^{-2} s \max \left\{\log ^{2} s \log ^{2} N, \log \left(\varepsilon^{-1}\right)\right\}
$$

then with probability at least $1-\varepsilon$ the restricted isometry constant of $\frac{1}{\sqrt{m}} \psi_{g}$ satisfies $\delta_{s} \leq \delta$.
Implies stable and robust recovery via ℓ_{1} minimization with high probability if $m \geq C s \log ^{2}(s) \log ^{2}(N)$.
Previous results:
Pfander, R, Tropp 2012: $m \geq C_{\delta} s^{3 / 2} \log ^{3} N$
Nonuniform recovery, Pfander, R 2010: $m \geq C s \log (N)$
Theorem can be generalized to certain other systems of operators (instead of time-frequency shifts).

Numerical experiments for Steinhaus g

Horizontal axis $1 / m=m / m^{2}$, vertical axis s / m. Contours of success probability, 93% success rate, $1 /(2 \log (m))$. Numerical experiments suggest $s \leq \frac{m}{2 \log (m)}$ ensures s-sparse recovery.

Proof ingredient: chaos processes

Recall: δ_{s} is smallest constant such that

$$
\left(1-\delta_{s}\right)\|x\|_{2}^{2} \leq\|A x\|_{2}^{2} \leq\left(1+\delta_{s}\right)\|x\|_{2}^{2}
$$

Equivalently, with $T_{s}=\left\{x \in \mathbb{C}^{N}:\|x\|_{2} \leq 1,\|x\|_{0} \leq s\right\}$

$$
\delta_{s}=\sup _{x \in T_{s}}\left|\|A x\|_{2}^{2}-\|x\|_{2}^{2}\right|
$$

Proof ingredient: chaos processes

Recall: δ_{s} is smallest constant such that

$$
\left(1-\delta_{s}\right)\|x\|_{2}^{2} \leq\|A x\|_{2}^{2} \leq\left(1+\delta_{s}\right)\|x\|_{2}^{2}
$$

Equivalently, with $T_{s}=\left\{x \in \mathbb{C}^{N}:\|x\|_{2} \leq 1,\|x\|_{0} \leq s\right\}$

$$
\delta_{s}=\sup _{x \in T_{s}}\left|\|A x\|_{2}^{2}-\|x\|_{2}^{2}\right|
$$

In our case

$$
A x=\frac{1}{\sqrt{m}} \Psi_{g} x=\frac{1}{\sqrt{m}} \sum_{k, \ell=0}^{m-1} x_{k, \ell} M^{\ell} T^{k} g=V_{x} g
$$

with $V_{x}=\frac{1}{\sqrt{m}} \sum_{k, \ell=0}^{m-1} x_{k, \ell} M^{\ell} T^{k}$. Since entries of g have mean zero and variance one, $\mathbb{E}\left\|V_{x} g\right\|_{2}^{2}=\|x\|_{2}^{2}$, so that

$$
\delta_{s}=\sup _{x \in T_{s}}\left|\left\|V_{x} g\right\|_{2}^{2}-\mathbb{E}\left\|V_{x} g\right\|_{2}^{2}\right|
$$

This is a second order chaos processes.

Generic Chaining for Chaos Processes

Theorem (Krahmer, Mendelson, R 2014)
Let $\mathcal{B}=-\mathcal{B} \subset \mathbb{C}^{m \times N}$ be a symmetric set of matrices and $\xi \in \mathbb{C}^{N}$ be a subgaussian random vector. Then

$$
\begin{aligned}
& \mathbb{E} \sup _{B \in \mathcal{B}}\left|\|B \xi\|_{2}^{2}-\mathbb{E}\|B \xi\|_{2}^{2}\right| \\
& \leq C_{1} \gamma_{2}\left(\mathcal{B},\|\cdot\|_{2 \rightarrow 2}\right)^{2}+C_{2} \Delta_{\|\cdot\|_{F}}(\mathcal{B}) \gamma_{2}\left(\mathcal{B},\|\cdot\|_{2 \rightarrow 2}\right)
\end{aligned}
$$

Here, $\|B\|_{F}=\sqrt{\operatorname{tr}\left(B^{*} B\right)}$ denotes the Frobenius norm.
Symmetry assumption $\mathcal{B}=-\mathcal{B}$ can be dropped at the cost of slightly more complicated bound.

Here, $\Delta_{\|\cdot\|}(\mathcal{B})$ is the diameter of \mathcal{B} with respect to $\|\cdot\|$ and $\gamma_{2}(\mathcal{B},\|\cdot\|)$ is Talagrand's γ_{2}-functional which can be bounded by

$$
\gamma_{2}(\mathcal{B},\|\cdot\|) \leq C \int_{0}^{\Delta_{\|\cdot\|}(\mathcal{B})} \sqrt{\log N(\mathcal{B},\|\cdot\|, u)} d u
$$

where $N(\mathcal{B},\|\cdot\|, u)$ are the covering numbers of \mathcal{B} at radius u.

Tail bound

Theorem (Krahmer, Mendelson, R '14-Dirksen '15)
Let $\mathcal{B}=-\mathcal{B} \subset \mathbb{C}^{m \times N}$ and $\xi \in \mathbb{C}^{N}$ be a subgaussian random vector. Then

$$
\begin{aligned}
& \mathbb{P}\left(\sup _{B \in \mathcal{B}}\left|\|B \xi\|_{2}^{2}-\mathbb{E}\|B \xi\|_{2}^{2}\right| \geq C_{1} E+t\right) \\
& \leq 2 \exp \left(-C_{2} \min \left\{\frac{t^{2}}{V^{2}}, \frac{t}{U}\right\}\right),
\end{aligned}
$$

where

$$
\begin{aligned}
E & :=\Delta_{\|\cdot\|_{F}}(\mathcal{B}) \gamma_{2}\left(\mathcal{B},\|\cdot\|_{2 \rightarrow 2}\right)+\gamma_{2}\left(\mathcal{B},\|\cdot\|_{2 \rightarrow 2}\right)^{2} \\
V & :=\Delta_{\|\cdot\|_{2 \rightarrow 2}} \Delta_{\|\cdot\|_{F}}(\mathcal{B}) \\
U & :=\Delta_{\|\cdot\|_{2 \rightarrow 2}}^{2}(\mathcal{B})
\end{aligned}
$$

Sparse MIMO radar

MIMO Radar

MIMO Radar in 2D

- N_{T} transmit antennas at locations

$$
\left(0,(k-1) d_{T} \lambda\right), \quad k=1,2, \ldots, N_{T}
$$

- N_{R} receive antennas at locations

$$
\left(0,(j-1) d_{R} \lambda\right), \quad j=1, \ldots, N_{R}
$$

Choose $d_{T}=1 / 2, d_{R}=N_{T} / 2$.
Then system has similar characteristics as antenna array with $N_{T} N_{R}$ antennas.
(Alternatively, $d_{T}=N_{R} / 2, d_{R}=1 / 2$)

Measurement model

Strohmer, Friedlander 2012; Yu, Petropulu, Poor, 2011

- Transmit antennas send periodic continuous-time complex Gaussian pulses $s_{1}, \ldots, s_{N_{T}}$ with period T and band-width B.

Measurement model

Strohmer, Friedlander 2012; Yu, Petropulu, Poor, 2011

- Transmit antennas send periodic continuous-time complex Gaussian pulses $s_{1}, \ldots, s_{N_{T}}$ with period T and band-width B.
- Echo of target of unit reflectivity at position $(r \cos (\theta), r \sin (\theta)$ and radial speed v at receiver j :

$$
r_{j}(t)=\sum_{k=1}^{N_{T}} e^{2 \pi i c \lambda^{-1}\left(t-d_{k, j}(t) / c\right)} s_{k}\left(t-d_{k, j}(t) / c\right)
$$

with carrier frequency λ, speed of light c, and distance from k th transmitter to target and from target to j th receiver

$$
d_{k, j}(t)=2(r+v t)+\sin (\theta) d_{T}(k-1) \lambda+\sin (\theta)(j-1) d_{R} \lambda
$$

- Demodulation (multiplication of $r_{j}(t)$ with $\left.e^{-2 \pi i c \lambda^{-1} t}\right)$ and assuming $B \ll \lambda$ (narrowband transmit waveforms), $v \ll c$ (slowly moving targets), $r \gg \lambda N_{R} N_{T} / 2$ (far field scenario) yields measurements

$$
y_{j}(t) \approx e^{2 \pi i \cdot 2 \lambda^{-1} r} e^{2 \pi i \sin (\theta) d_{R}(j-1)} \sum_{k=1}^{N} e^{2 \pi i \cdot 2 \lambda^{-1} v t} e^{2 \pi i \sin (\theta) d_{T}(k-1)} s_{k}(t-2 r / c)
$$

Discretization

- By the Shannon-Nyquist sampling theorem, the band-limited periodic complex Gaussian transmit signals can be represented by their sampled counterparts $\mathbf{s}_{k} \in \mathbb{C}^{N_{t}}$ (sampled over one period $[0, T]$); N_{t} : number of samples.

Discretization

- By the Shannon-Nyquist sampling theorem, the band-limited periodic complex Gaussian transmit signals can be represented by their sampled counterparts $\mathbf{s}_{k} \in \mathbb{C}^{N_{t}}$ (sampled over one period $[0, T]$); N_{t} : number of samples.
- Target is described by triple (θ, r, v) (azimuth, range, velocity); Discretization of $(\beta, \tau, f)=\left(\sin (\theta), 2 r / c, 2 \lambda^{-1} v\right)$ with stepsizes

$$
\Delta_{\beta}=\frac{2}{N_{T} N_{R}}, \quad \Delta_{\tau}=\frac{1}{2 B}, \quad \Delta_{f}=\frac{1}{T}
$$

yields grid

$$
\mathcal{G}=\left\{\left(\beta \Delta_{\beta}, \tau \Delta_{\tau}, f \Delta_{f}\right): \beta \in\left[N_{R} N_{T}\right], \tau \in\left[N_{t}\right], f \in\left[N_{t}\right]\right\}
$$

Index set $G=\left[N_{T} N_{R}\right] \times\left[N_{t}\right] \times\left[N_{t}\right]$ of size $N:=N_{R} N_{T} N_{t}^{2}$ (here $[k]=\{1, \ldots, k\}$).

Discretization grid

Measurement Model I

One target with unit reflectivity at grid point indexed by
$\Theta=(\beta, \tau, f) \in G$
Discrete time samples at receiver $j\left(j=1, \ldots, N_{R}\right)$

$$
\begin{aligned}
\mathbf{y}_{j} & =\left(y_{j}\left(\Delta_{t}\right), y_{j}\left(2 \Delta_{t}\right), \ldots, y_{j}\left(N_{t} \Delta_{t}\right)\right)^{T} \\
& =e^{2 \pi i \cdot c \lambda^{-1} \tau \Delta_{\tau}}\left[e^{2 \pi i \cdot d_{R} \beta \Delta_{\beta}(j-1)} \sum_{k=1}^{N_{T}} e^{2 \pi i \cdot d_{T} \beta \Delta_{\beta}(k-1)} \mathbf{M}_{f} \mathbf{T}_{\tau} \mathbf{s}_{k}\right] \in \mathbb{C}^{N_{t}}
\end{aligned}
$$

with translation and modulation operators on $\mathbb{C}^{N_{t}}$ defined as

$$
\left(\mathbf{T}_{\tau} \mathbf{s}\right)_{k}=\mathbf{s}_{k-\tau}, \quad\left(\mathbf{M}_{f} \mathbf{s}\right)_{k}=e^{2 \pi i \cdot \frac{f k}{N_{t}}}(\mathbf{s})_{k}
$$

Targets on grid points index by $\Theta \in G$ with reflectivities ρ_{Θ}, setting also $x_{\Theta}=e^{2 \pi i \cdot c \lambda^{-1} \tau \Delta_{\tau}} \rho_{\Theta}$; measurements at receiver j :

$$
\mathbf{y}_{j}=\sum_{\Theta \in G} x_{\Theta} \underbrace{e^{2 \pi i \cdot d_{R} \beta \Delta_{\beta}(j-1)} \sum_{k=1}^{N_{T}} e^{2 \pi i \cdot d_{T} \beta \Delta_{\beta}(k-1)} \mathbf{M}_{f} \mathbf{T}_{\tau} \mathbf{s}_{k}}_{=: \mathbf{A}_{\Theta}^{j}}
$$

Measurement Model II

Collection of sampled signals at all receivers:

$$
\mathbf{y}=\left(\begin{array}{c}
\mathbf{y}_{1} \\
\vdots \\
\mathbf{y}_{N_{R}}
\end{array}\right)=\left(\begin{array}{c}
\sum_{\Theta \in G} x_{\Theta} \mathbf{A}_{\Theta}^{1} \\
\vdots \\
\sum_{\Theta \in G} x_{\Theta} \mathbf{A}_{\Theta}^{N_{R}}
\end{array}\right)=\mathbf{A} \mathbf{x} \in \mathbb{C}^{N_{r} \cdot N_{t}}
$$

Measurement matrix

$$
\mathbf{A}=\left(\begin{array}{c}
\mathbf{A}_{\Theta}^{1} \\
\vdots \\
\mathbf{A}_{\Theta}^{N_{R}}
\end{array}\right)_{\Theta \in G} \in \mathbb{C}^{N_{R} N_{t} \times N_{R} N_{T} N_{t}^{2}}, \quad G=\left[N_{R} N_{T}\right] \times\left[N_{t}\right] \times\left[N_{t}\right]
$$

$$
\mathbf{A}_{\Theta}^{j}=e^{2 \pi i \cdot d_{R} \beta \Delta_{\beta}(j-1)} \sum_{k=1}^{N_{T}} e^{2 \pi i \cdot d_{T} \beta \Delta_{\beta}(k-1)} \mathbf{M}_{f} \mathbf{T}_{\tau} \mathbf{s}_{k} \in \mathbb{C}^{N_{t}}, \Theta=(\beta, \tau, f)
$$

Structured random matrix; the $\mathbf{s}_{1}, \ldots, \mathbf{s}_{N_{T}}$ are independent subgaussian random vectors, e.g. standard complex Gaussian random vectors, Rademacher vectors, or Steinhaus vectors
Number of measurements: $m=N_{R} N_{t}$, signal dimension $N=N_{R} N_{T} N_{t}^{2}$, i.e., $m \ll N$; recall $d_{T}=1 / 2, d_{R}=N_{T} / 2, \Delta_{\beta}=\frac{2}{N_{T} N_{R}}$

Reconstruction via Compressive Sensing

Reconstruction problem of solving $\mathbf{A x}=\mathbf{y}$ is underdetermined.

Reconstruction via Compressive Sensing

Reconstruction problem of solving $\mathbf{A x}=\mathbf{y}$ is underdetermined.
In many situations only very few targets are present, i.e., the vector \mathbf{x} of reflectivities is sparse!

Reconstruction via Compressive Sensing

Reconstruction problem of solving $\mathbf{A x}=\mathbf{y}$ is underdetermined.
In many situations only very few targets are present, i.e., the vector \mathbf{x} of reflectivities is sparse!

Use compressive sensing for reconstruction!
For recovery, we will study ℓ_{1}-minimization

$$
\min _{\mathbf{z}}\|\mathbf{z}\|_{1} \quad \text { subject to }\|\mathbf{A} \mathbf{x}-\mathbf{y}\|_{2} \leq \tau
$$

and LASSO

$$
\min _{\mathbf{z}} \frac{1}{2}\|\mathbf{A} \mathbf{z}-\mathbf{y}\|_{2}^{2}+\lambda\|\mathbf{z}\|_{1}
$$

Recovery for random support sets

Strohmer and Friedlander (2013) showed recovery of the correct support via (debiased) LASSO for s-sparse signals with random support (and random signs) with high probability under the condition

$$
m=N_{R} N_{t} \geq C s \log (N)
$$

(plus minor additional technical assumptions).
Proof is based on an analysis of the coherence of \mathbf{A} and a general recovery result for random signals due to Tropp (2008).

Recovery for random support sets

Strohmer and Friedlander (2013) showed recovery of the correct support via (debiased) LASSO for s-sparse signals with random support (and random signs) with high probability under the condition

$$
m=N_{R} N_{t} \geq C s \log (N)
$$

(plus minor additional technical assumptions).
Proof is based on an analysis of the coherence of \mathbf{A} and a general recovery result for random signals due to Tropp (2008).

Question:
Can we avoid the assumption of randomness of the support?

The RIP for MIMO radar measurements

Theorem (Dorsch, R 2015)
If

$$
N_{t} \geq C \delta^{-2} s \max \left\{\log ^{2}(s) \log ^{2}(N), \log \left(\varepsilon^{-1}\right)\right\}
$$

then the rescaled random radar measurement matrix $\frac{1}{\sqrt{N_{R} N_{T} N_{t}}} \mathbf{A} \in \mathbb{C}^{N_{R} N_{t} \times N_{R} N_{T} N_{t}^{2}}$ satisfies $\delta_{s} \leq \delta$ with probability at least $1-\varepsilon$.

Implies stable and robust sparse recovery via ℓ_{1}-minimization.

The RIP for MIMO radar measurements

Theorem (Dorsch, R 2015)
If

$$
N_{t} \geq C \delta^{-2} s \max \left\{\log ^{2}(s) \log ^{2}(N), \log \left(\varepsilon^{-1}\right)\right\}
$$

then the rescaled random radar measurement matrix $\frac{1}{\sqrt{N_{R} N_{T} N_{t}}} \mathbf{A} \in \mathbb{C}^{N_{R} N_{t} \times N_{R} N_{T} N_{t}^{2}}$ satisfies $\delta_{s} \leq \delta$ with probability at least $1-\varepsilon$.

Implies stable and robust sparse recovery via ℓ_{1}-minimization.
Proof uses generic chaining estimates for suprema of chaos processes (Krahmer, Mendelson, R 2014).

The RIP for MIMO radar measurements

Theorem (Dorsch, R 2015)
If

$$
N_{t} \geq C \delta^{-2} s \max \left\{\log ^{2}(s) \log ^{2}(N), \log \left(\varepsilon^{-1}\right)\right\}
$$

then the rescaled random radar measurement matrix $\frac{1}{\sqrt{N_{R} N_{T} N_{t}}} \mathbf{A} \in \mathbb{C}^{N_{R} N_{t} \times N_{R} N_{T} N_{t}^{2}}$ satisfies $\delta_{s} \leq \delta$ with probability at least $1-\varepsilon$.

Implies stable and robust sparse recovery via ℓ_{1}-minimization.
Proof uses generic chaining estimates for suprema of chaos processes (Krahmer, Mendelson, R 2014).

Compared to other random matrix constructions in compressed sensing (where $m \asymp s \log (e N / s)$) the result requires more measurements because here $m=N_{t} N_{R}$; i.e., we suffer an additional factor of N_{R}.

Almost optimality of RIP estimate

Theorem (Dorsch, R 2015)

If a realization of the random MIMO radar measurement matrix $\frac{1}{\sqrt{N_{R} N_{T} N_{t}^{2}}} \mathbf{A}$ satisfies $\delta_{s} \leq 0.7$ for $s \leq N_{t}^{2}$, then necessarily

$$
N_{t} \geq C_{s} \log \left(e N_{t}^{2} / s\right) .
$$

Proof idea:
Introduce $S_{\beta}:=\left\{\left(\beta^{\prime}, \tau^{\prime}, f^{\prime}\right) \in G: \beta^{\prime}=\beta\right\}$.
If \mathbf{x} has support in S_{β} then one can write

$$
\mathbf{A} \mathbf{x}=\mathbf{a}_{R}(\beta) \otimes \mathbf{B} \mathbf{x}_{S_{\beta}}
$$

for a vector $\mathbf{a}_{R}(\beta) \in \mathbb{C}^{N_{R}}$ with entries of magnitude 1 and a matrix $\mathbf{B} \in \mathbb{C}^{N_{t} \times N_{t}^{2}}$. Applying lower sparse recovery bounds for \mathbf{B} yields the claim.

Towards nonuniform recovery

Recovery depends on the fine structure of the support set:
Equivalence class of angles, $\beta, \beta^{\prime} \in\left[N_{R} N_{T}\right]$,

$$
\beta \sim \beta^{\prime}: \beta^{\prime}-\beta \equiv 0 \quad \bmod N_{R}
$$

This definition is motivated by the fact that the columns of \mathbf{A} satisfy, for $\Theta=(\beta, \tau, f), \Theta^{\prime}=\left(\beta^{\prime}, \tau^{\prime}, f^{\prime}\right)$,

$$
\left\langle\mathbf{A}_{\Theta}, \mathbf{A}_{\Theta^{\prime}}\right\rangle=N_{R} \widehat{\delta}_{\beta, \beta^{\prime}}= \begin{cases}N_{R} & \text { if } \beta \sim \beta^{\prime} \\ 0 & \text { otherwise }\end{cases}
$$

Towards nonuniform recovery

Recovery depends on the fine structure of the support set:
Equivalence class of angles, $\beta, \beta^{\prime} \in\left[N_{R} N_{T}\right]$,

$$
\beta \sim \beta^{\prime}: \beta^{\prime}-\beta \equiv 0 \quad \bmod N_{R}
$$

This definition is motivated by the fact that the columns of \mathbf{A} satisfy, for $\Theta=(\beta, \tau, f), \Theta^{\prime}=\left(\beta^{\prime}, \tau^{\prime}, f^{\prime}\right)$,

$$
\left\langle\mathbf{A}_{\Theta}, \mathbf{A}_{\Theta^{\prime}}\right\rangle=N_{R} \widehat{\delta}_{\beta, \beta^{\prime}}= \begin{cases}N_{R} & \text { if } \beta \sim \beta^{\prime} \\ 0 & \text { otherwise }\end{cases}
$$

Intuitively, the more elements of the support S are such that the corresponding β 's are contained in different equivalent classes the better the matrix \mathbf{A}_{S} is conditioned.

Well-balanced support sets

For a support set $S \subset G=\left[N_{R} N_{T}\right] \times\left[N_{t}\right] \times\left[N_{t}\right]$ let

$$
S_{[\beta]}:=\left\{\Theta^{\prime}=\left(\beta^{\prime}, \tau^{\prime}, f^{\prime}\right) \in S: \beta^{\prime} \sim \beta\right\} .
$$

Well-balanced support sets

For a support set $S \subset G=\left[N_{R} N_{T}\right] \times\left[N_{t}\right] \times\left[N_{t}\right]$ let

$$
S_{[\beta]}:=\left\{\Theta^{\prime}=\left(\beta^{\prime}, \tau^{\prime}, f^{\prime}\right) \in S: \beta^{\prime} \sim \beta\right\} .
$$

Definition
A support set $S \subset G$ is called η-balanced, if for all angle classes [β],

$$
\left|S_{[\beta]}\right| \leq \eta \frac{|S|}{N_{R}}
$$

The parameter η ranges in $\left[1, N_{R}\right]$.
A small value of η means that the support S is well-distributed over the angle classes, which is favorable for recovery.

Nonuniform recovery I

Theorem

Let $\mathbf{x} \in \mathbb{C}^{N}$ and $S \subset G$ be an index set corresponding to s largest absolute entries in \mathbf{x}. Assume S to be η-balanced and that the signs of the coefficients \mathbf{x}_{S} form a Steinhaus sequence. Assume measurements $\mathbf{y}=\mathbf{A x}+\mathbf{n} \in \mathbb{C}^{N_{R} N_{t}}$ are given, where the signals $\mathbf{s}_{1}, \mathbf{s}_{2}, \ldots, \mathbf{s}_{N_{T}}$ generating the measurement matrix \mathbf{A} are independent subgaussian random vectors, and $\|\mathbf{n}\|_{2} \leq \tau$. If

$$
m=N_{R} N_{t} \gtrsim \eta s \log ^{3}(N / \varepsilon)
$$

then, with probability at least $1-\varepsilon$, the solution $\mathbf{x}^{\#}$ to constrained ℓ_{1}-minimization satisfies

$$
\left\|\mathbf{x}^{\#}-\mathbf{x}\right\|_{2} \leq C_{1} \sigma_{s}(\mathbf{x})_{1}+C_{2} \frac{\tau \sqrt{s}}{\sqrt{N_{T} N_{R} N_{t}}}
$$

where C_{1} and C_{2} are numerical constants.
Exact recovery for s-sparse scene \mathbf{x}.

Nonuniform recovery for LASSO

Theorem (Dorsch, R 2015)
Let $\mathbf{x} \in \mathbb{C}^{N}, N=N_{R} N_{T} N_{t}^{2}$, be a fixed s-sparse target scene with η-balanced support S such that the phases of the nonzero entries form a random Steinhaus sequence and such that

$$
\min _{\Theta \in S}>8 \sigma \sqrt{\frac{2 \log (N)}{N_{T} N_{R} N_{t}}}
$$

Draw \mathbf{A} at random and let $\mathbf{y}=\mathbf{A}+\mathbf{e}$ be noisy measurements with random noise, $\mathbf{e} \sim \mathcal{C N}\left(0, \sigma^{2}\right)$. Assume that

$$
m=N_{R} N_{t} \geq C \eta s \log ^{3}(N / \varepsilon)
$$

Then, with probability at least $1-7 \max \left\{\varepsilon, N^{-3}\right\}$, the solution \mathbf{x}^{\sharp} of

$$
\min _{\mathbf{z}} \frac{1}{2}\|\mathbf{A} \mathbf{z}-\mathbf{y}\|_{2}^{2}+\lambda\|\mathbf{z}\|_{1} \quad \text { with } \lambda=2 \sigma \sqrt{\frac{2 \log (N)}{N_{T} N_{R} N_{t}}}
$$

satisfies $\operatorname{supp}(\mathbf{x})=\operatorname{supp}\left(\mathbf{x}^{\#}\right)$.

Remarks about nonuniform recovery

- The debiased LASSO estimator $\widehat{\mathbf{x}}$ - least squares on $\operatorname{supp}\left(\mathbf{x}^{\sharp}\right)$, after computing LASSO solution - satisfies

$$
\|\mathbf{x}-\widehat{\mathbf{x}}\|_{2} \leq 2 \sigma \sqrt{2 s \log (N) /\left(N_{T} N_{R} N_{t}\right)}
$$

- The randomness in the signs of the nonzero entries of \mathbf{x} can likely be removed.
- For optimal balancedness parameter $\eta=1$, we obtain a (near-)optimal bound on the number of measurements: $m \geq C s \log ^{3}(N / \varepsilon)$.
- RIP-result covers the worst case where $\eta=N_{R}$.
- A random support set will be η-balanced for small η with high probability, which explains the result of Strohmer and Friedlander.

Numerical experiments for Doppler-free scenario

Success rates for various values of η red curve corresponds to randomly chosen support sets
$N_{T}=N_{R}=8$ transmit and receive antennas, $N_{t}=64$ time-domain samples, grid size $N=N_{T} N_{R} N_{t}=4096$ $m=N_{R} N_{t}=512$ measurements

Antenna arrays with random antenna positions

Radar setup

n antenna elements on square $[0, B]^{2}$ in plane $z=0$.
Targets in the plane $z=z_{0}$ on grid of resolution cells $r_{j} \in[-L, L]^{2} \times\left\{z_{0}\right\}, j=1, \ldots, N$ with mesh size h.
$\mathbf{x} \in \mathbb{C}^{N}:$ vector of reflectivities in resolution cells $\left(r_{j}\right)_{j=1, \ldots, N}$.

Sensing mechanism (Fannjiang, Strohmer, Yan 2010)

Antenna at position $a \in \mathbb{R}^{3}$ emits monochromatic wave (wavelength λ, wavenumber ω) with amplitude at position $r \in \mathbb{R}^{3}$ given by Green's function of Helmholtz equation

$$
H(a, r)=\frac{\exp \left(2 \pi i\|r-a\|_{2} / \lambda\right)}{4 \pi\|r-a\|_{2}}
$$

Approximation (valid for large z_{0}): $H(a, r) \approx \frac{e^{i \omega z_{0}}}{4 \pi z_{0}} G(a, r)$ with

$$
G(a, r)=\exp \left(\frac{i \omega}{2 z_{0}}\left(\left|r_{1}-a_{1}\right|^{2}+\left|r_{2}-a_{2}\right|^{2}\right)\right)
$$

Signal corresponding to emitting antenna a_{ℓ} and receive antenna a_{k} (Born approximation)

$$
y_{(k, \ell)}=\sum_{j=1}^{N} x_{j} G\left(a_{\ell}, r_{j}\right) G\left(r_{j}, a_{k}\right)=(A \mathbf{x})_{(k, \ell)}, \quad k, \ell=1, \ldots, n
$$

n^{2} measurements

Random scattering matrix

Choose antenna positions $a_{j}, j \in[n]$, independently and uniformly at random in $[0, B]^{2}$. Then $A \in \mathbb{C}^{n^{2} \times N}$ is structured random matrix. Entries

$$
A_{(k, \ell) ; j}=G\left(a_{k}, r_{j}\right) G\left(r_{j}, a_{\ell}\right), \quad(k, \ell) \in[n]^{2}, j \in[N] .
$$

Define $v\left(a_{k}, a_{\ell}\right)=\left(G\left(a_{k}, r_{j}\right) G\left(r_{j}, a_{\ell}\right)\right)_{j \in[N]} \in \mathbb{C}^{N}$. Then

$$
A=\left(\begin{array}{c}
v\left(a_{1}, a_{1}\right) \\
v\left(a_{1}, a_{2}\right) \\
\vdots \\
v\left(a_{2}, a_{1}\right) \\
\vdots \\
v\left(a_{n}, a_{n}\right)
\end{array}\right)
$$

Rows and columns are coupled.
Under the condition $\frac{h B}{\lambda z_{0}} \in \mathbb{N}$ we have $\mathbb{E} A^{*} A=I$.

Reconstruction via ℓ_{1}-minimization

Sparse scene (sparsity $s=100,6400$ grid points):

Reconstruction ($n=30$ antennas, 900 noisy measurements, SNR 20dB)

Nonuniform recovery

Theorem (Hügel, R, Strohmer 2014)

Let $\mathbf{x} \in \mathbb{C}^{N}$. Choose the n antenna positions independent and uniformly at random in $[0, B]^{2}$. Assume $\frac{h B}{\lambda z_{0}} \in \mathbb{N}$, where h is mesh size and λ the wavelength; further

$$
n^{2} \geq C s \ln ^{2}(N / \varepsilon)
$$

Let $\mathbf{y}=A \mathbf{x}+\mathbf{e} \in \mathbb{C}^{n^{2}}$ with $\|\mathbf{e}\|_{2} \leq \eta n$. Let $\mathbf{x}^{\#}$ be the solution to

$$
\min \|\mathbf{z}\|_{1} \quad \text { subject to } \quad\|\mathbf{y}-A \mathbf{z}\|_{2} \leq \eta n .
$$

Then with probability at least $1-\varepsilon$

$$
\left\|\mathbf{x}-\mathbf{x}^{\#}\right\|_{2} \leq C_{1} \sigma_{s}(\mathbf{x})_{1}+C_{2} \sqrt{s} \eta
$$

Exact recovery when $\eta=0$ and $\sigma_{s}(\mathbf{x})_{1}=0$. RIP estimate open.

Conclusions

Analysis of compressive sensing in various radar setups may be interesting and challenging!

- Time-Frequency (range-Doppler) structured random matrices (Pfander, R 2010; Pfander, R, Tropp 2012; Krahmer, Mendelson, R - 2014)
- MIMO radar with random transmit pulses (Friedlander, Strohmer 2014; Dorsch, R 2015)
- Antenna arrays with random antenna positions (Fannjiang, Strohmer 2013; Hügel, R, Strohmer 2014)

Conclusions

Analysis of compressive sensing in various radar setups may be interesting and challenging!

- Time-Frequency (range-Doppler) structured random matrices (Pfander, R 2010; Pfander, R, Tropp 2012; Krahmer, Mendelson, R - 2014)
- MIMO radar with random transmit pulses (Friedlander, Strohmer 2014; Dorsch, R 2015)
- Antenna arrays with random antenna positions
(Fannjiang, Strohmer 2013; Hügel, R, Strohmer 2014)
- Not covered:
- Subsampled random convolutions (R, Romberg, Tropp 2012; Krahmer, Mendelson, R 2014)
- MIMO radar with random antenna position (Strohmer, Wang 2013)
- ...

Conclusions

Analysis of compressive sensing in various radar setups may be interesting and challenging!

- Time-Frequency (range-Doppler) structured random matrices (Pfander, R 2010; Pfander, R, Tropp 2012; Krahmer, Mendelson, R - 2014)
- MIMO radar with random transmit pulses (Friedlander, Strohmer 2014; Dorsch, R 2015)
- Antenna arrays with random antenna positions (Fannjiang, Strohmer 2013; Hügel, R, Strohmer 2014)
- Not covered:
- Subsampled random convolutions (R, Romberg, Tropp 2012; Krahmer, Mendelson, R 2014)
- MIMO radar with random antenna position (Strohmer, Wang 2013)
- ...
- More challenging mathematical problems from radar applications
- Off grid compressive sensing

The End

Literature

- D. Dorsch, H. Rauhut, Refined analysis of sparse MIMO radar, Preprint 2015, arXiv:1509.03625.
- M. Hügel, H. Rauhut, T. Strohmer, Remote sensing via I1-minimization. Found. Comp. Math. 14:115-150, 2014.
- F. Krahmer, S. Mendelson, H. Rauhut, Suprema of chaos processes and the restricted isometry property. Comm. Pure Appl. Math. 67(11):1877-1904, 2014.
- T. Strohmer and B. Friedlander. Analysis of Sparse MIMO Radar. Appl. Comp. Harm. Anal. vol.37, pp. 361-388, 2014.
- G. Pfander, H. Rauhut, Sparsity in time-frequency representations. J. Fourier Anal. Appl., 16(2):233-260, 2010.
- A. Fannjiang, P. Yan, and T. Strohmer. Compressed Remote Sensing of Sparse Objects. SIAM J. Imag. Sci. vol. 3(3), pp.596-618, 2010.
- M. Herman and T. Strohmer. High Resolution Radar via Compressed Sensing. IEEE Trans. Signal Processing, vol.57(6): 2275-2284, 2009.
- G. Pfander, H. Rauhut, J. Tanner, Identification of matrices having a sparse representation. IEEE Trans. Signal Process., 56(11):5376-5388, 2008.

