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Introduction and Motivation for Composite Penalties

Introduction

Goal: Recover signal x ∈ C
N from noisy linear measurements

y = Φx+w ∈ C
M

where usually M ≪ N .

Approach: Solve the optimization problem

x̂ = argmin
x

γ‖y −Φx‖22 +R(x),

with γ > 0 controlling the measurement fidelity.

Question: How should we choose penalty/regularization R(x)?
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Introduction and Motivation for Composite Penalties

Typical Choices of Penalty

Say Ψx is (approximately) sparse for “analysis operator” Ψ ∈ C
L×N .

ℓ0 penalty: R(x) = ‖Ψx‖0

Impractical: optimization problem is NP hard

ℓ1 penalty (generalized LASSO): R(x) = ‖Ψx‖1

Tightest convex relaxation of ℓ0 penalty

Fast algorithms: ADMM, MFISTA, NESTA-UP, grAMPa . . .

non-convex penalties

R(x) = ‖Ψx‖p for p ∈ (0, 1) (via IRW-L2)

R(x) =
∑L

l=1 log(ǫ+ |ψ
T
l x|) with ǫ ≥ 0 (via IRW-L1)

many others...
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Introduction and Motivation for Composite Penalties

Choice of Analysis Operator

How to choose Ψ in practice?

Maybe a wavelet transform? Which one?

Maybe a concatenation of several transforms





Ψ1...
ΨD



 (e.g., SARA1)?

What if signal is more sparse in one dictionary than another?
Can we compensate for this?
Can we exploit this?

1Carrillo, McEwen, Van De Ville, Thiran, Wiaux, “Sparsity averaged reweighted
analysis,” IEEE SPL, 2013
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Introduction and Motivation for Composite Penalties

Example: Undecimated Wavelet Transform of MRI Cine

Note different sparsity rate in each subband of 1-level UWT:
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Introduction and Motivation for Composite Penalties

Composite ℓ1 Penalties

We propose to use composite ℓ1 (Co-L1) penalties of the form

R(x;λ) ,
D
∑

d=1

λd‖Ψdx‖1, λd ≥ 0

where Ψd ∈ C
Ld×N have unit-norm rows.

The Ψd could be chosen, for example, as

different DWTs (i.e., db1,db2,db3,. . . ,db10),
different subbands of a given DWT,
row-subsets of I (i.e., group/hierarchical sparsity), or
all of the above.

We then aim to simultaneously tune the weights {λd} and recover the
signal x.
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Introduction and Motivation for Composite Penalties

The Co-L1 Algorithm

1: input: {Ψd}
D
d=1, Φ, y, γ > 0, ǫ ≥ 0

2: if Ψdx ∈ R
Ld then Cd = 1, elseif Ψdx ∈ C

Ld then Cd = 2.
3: initialization: λ

(1)
d = 1 ∀d

4: for t = 1, 2, 3, . . .

5: x(t) ← argmin
x

{

γ‖y −Φx‖22 +
D
∑

d=1

λ
(t)
d ‖Ψdx‖1

}

6: λ
(t+1)
d ←

CdLd

ǫ+ ‖Ψdx(t)‖1
, d = 1, . . . , D

7: end
8: output: x(t)

leverages existing ℓ1 solvers (e.g., ADMM, MFISTA, NESTA-UP, grAMPa),

reduces to the IRW-L1 algorithm [Figueiredo,Nowak’07] when Ld = 1 ∀d
(single-atom dictionaries).

applies to both real- and complex-valued cases,

Phil Schniter (Ohio State) Composite ℓ1 Regularization MATHEON — Dec’15 8 / 29



Introduction and Motivation for Composite Penalties

The Co-IRW-L1 Algorithm

1: input: {Ψd}
D
d=1, Φ, y, γ > 0

2: initialization: λ
(1)
d = 1 ∀d, W

(1)
d = I ∀d

3: for t = 1, 2, 3, . . .

4: x(t) ← argmin
x

{

γ‖y −Φx‖22 +

D
∑

d=1

λ
(t)
d ‖W

(t)
d Ψdx‖1

}

5: (λ
(t+1)
d , ǫ

(t+1)
d )← arg max

λd∈Λ,ǫd>0
log p(x(t);λ, ǫ), d = 1, ..., D

6: W
(t+1)
d ← diag

{

1

ǫ
(t+1)
d + |ψT

d,1x
(t)|

, · · · ,
1

ǫ
(t+1)
d + |ψT

d,Ld
x(t)|

}

, d = 1, ..., D

7: end
8: output: x(t)

tunes both λd and diagonal W d for all d: hierarchical weighting.

also tunes regularization parameters ǫd for all d.
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Introduction and Motivation for Composite Penalties

Understanding Co-L1 and Co-IRW-L1

In the sequel, we provide four interpretations of each algorithm:

1 Majorization-minimization (MM) for a particular non-convex penalty,

2 a particular approximation of ℓ0 minimization,

3 Bayesian estimation according to a particular hierarchical prior,

4 variational EM algorithm under a particular prior.
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Co-L1 and its Interpretations
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Co-L1 and its Interpretations

Optimization Interpretations of Co-L1

Co-L1 is an MM approach to the weighted log-sum optimization problem

argmin
x

{

γ‖y −Φx‖22 +
D
∑

d=1

Ld log(ǫ+ ‖Ψdx‖1)

}

and

As ǫ→ 0, Co-L1 aims to solve the weighted ℓ1,0 problem

argmin
x

{

γ‖y −Φx‖22 +
D
∑

d=1

Ld 1‖Ψdx‖1>0

}

Note: Ld is # atoms in dictionary Ψd, and 1� is the indicator function.
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Co-L1 and its Interpretations

Approximate-ℓ0 Interpretation of Log-Sum Penalty

1

log(1/ǫ)

N
∑

n=1

log(ǫ+ |un|)

=
1

log(1/ǫ)

[

∑

n: xn=0

log(ǫ)

+
∑

n: xn 6=0

log(ǫ+ |un|)

]

= ‖x‖0 −N +

∑

n: xn 6=0 log(ǫ+ |un|)

log(1/ǫ)
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As ǫ→0, the log-sum penalty becomes a scaled and shifted version of the
ℓ0 penalty.
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Co-L1 and its Interpretations

Bayesian Interpretations of Co-L1

Co-L1 is an MM approach to Bayesian MAP estimation under an AWGN
likelihood and the hierarchical prior

p(x|λ) =
D
∏

d=1

(

λd

2

)Ld

exp
(

−λd‖Ψdx‖1
)

i.i.d. Laplacian

p(λ) =
D
∏

d=1

Γ

(

0,
1

ǫ

)

,
i.i.d. Gamma

(i.i.d. Jeffrey’s as ǫ→ 0)

and

As ǫ→ 0, Co-L1 is a variational EM approach to estimating (determin-
istic) λ under an AWGN likelihood and the prior

p(x;λ) =
D
∏

d=1

(

λd

2

)Ld

exp
(

−λd(‖Ψdx‖1 + ǫ)
)

i.i.d. Laplacian as ǫ→ 0
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Co-IRW-L1 and its Interpretations

A Simplified Version of Co-IRW-L1

Consider the real-valued and fixed-ǫd variant of Co-IRW-L1.

1: input: {Ψd}
D
d=1, Φ, y, γ > 0, ǫd > 0 ∀d

2: initialization: λ
(1)
d = 1 ∀d, W

(1)
d = I ∀d

3: for t = 1, 2, 3, . . .

4: x(t) ← argmin
x

{

γ‖y −Φx‖22 +
D
∑

d=1

λ
(t)
d ‖W

(t)
d Ψdx‖1

}

5: λ
(t+1)
d ←

[

1

Ld

Ld
∑

l=1

log

(

1 +
|ψT

d,lx
(t)|

ǫd

)

]−1

+ 1, d = 1, ..., D

6: W
(t+1)
d ← diag

{

1

ǫd + |ψ
T
d,1x

(t)|
, · · · ,

1

ǫd + |ψ
T
d,Ld

x(t)|

}

, d = 1, ..., D,

7: end
8: output: x(t)
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Co-IRW-L1 and its Interpretations

Optimization Interpretations of real-Co-IRW-L1-ǫ

Real-Co-IRW-L1-ǫ is an MM approach to the non-convex optimization

argmin
x

{

γ‖y −Φx‖22 +

D
∑

d=1

Ld
∑

l=1

log

[

(

ǫd + |ψ
T
d,lx|

)

Ld
∑

i=1

log

(

1 +
|ψT

d,ix|

ǫd

)]

}

and

As ǫd → 0, real-Co-IRW-L1-ǫ aims to solve the ℓ0+ weighted ℓ0,0 prob-
lem

argmin
x

{

γ‖y −Φx‖22 + ‖Ψx‖0 +
D
∑

d=1

Ld 1‖Ψdx‖0>0

}

Note: Ld is the size of dictionary Ψd, and 1� is the indicator function.
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Co-IRW-L1 and its Interpretations

Bayesian Interpretations of real-Co-IRW-L1-ǫ

Real-Co-IRW-L1 is an MM approach to Bayesian MAP estimation under
an AWGN likelihood and the hierarchical prior

p(x|λ) =
D
∏

d=1

Ld
∏

l=1

λd

2ǫd

(

1 +
|ψT

d,lx|

ǫd

)−(λd+1)

i.i.d. generalized-Pareto

p(λ) =

D
∏

d=1

p(λd), p(λd) ∝

{

1
λd

λd > 0

0 else
Jeffrey’s non-informative

and

Real-Co-IRW-L1 is a variational EM approach to estimating (determin-
istic) λ under an AWGN likelihood and the prior

p(x;λ) =
D
∏

d=1

Ld
∏

l=1

λd − 1

2ǫd

(

1 +
|ψT

d,lx|

ǫd

)−λd

i.i.d. generalized-Pareto
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Co-IRW-L1 and its Interpretations

The Co-IRW-L1 Algorithm

Finally, we self-tune ǫd ∀d and allow for real or complex quantities:

1: input: {Ψd}
D
d=1, Φ, y, γ > 0

2: if Ψx ∈ R
L, use Λ = (1,∞) and the real version of log p(x;λ, ǫ);

elseif Ψx ∈ C
L, use Λ = (2,∞) and the complex version of log p(x;λ, ǫ).

3: initialization: λ
(1)
d = 1 ∀d, W

(1)
d = I ∀d

4: for t = 1, 2, 3, . . .

5: x(t) ← argmin
x

{

γ‖y −Φx‖22 +
D
∑

d=1

λ
(t)
d ‖W

(t)
d Ψdx‖1

}

6: (λ
(t+1)
d , ǫ

(t+1)
d )← arg max

λd∈Λ,ǫd>0
log p(x(t);λ, ǫ), d = 1, ..., D

7: W
(t+1)
d ← diag

{

1

ǫ
(t+1)
d + |ψT

d,1x
(t)|

, · · · ,
1

ǫ
(t+1)
d + |ψT

d,Ld
x(t)|

}

, d = 1, ..., D

8: end
9: output: x(t)
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Numerical Experiments
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Numerical Experiments

Experiment: Synthetic finite difference image

α = 1 α = 27

48×48 image with a total of
28 horiz & vert transitions.

α ,
# vertical transitions

# horizontal transitions

Ψ1 = vertical finite difference,
Ψ2 = horizon. finite difference

“spread-spectrum” Φ

sampling ratio M
N

= 0.3

AWGN @ 30 dB SNR
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⇒ The composite algorithms
significantly outperform the
non-composite ones

⇒ Performance improves as sparsities
become more disparate!
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Numerical Experiments

Experiment: Shepp-Logan Phantom

96× 96 image

Ψ ∈ R
7N×N = 2D UWT-db1,

Ψd ∈ R
N×N ∀d

“spread-spectrum” Φ

AWGN @ 30 dB SNR
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⇒ The composite algorithms
significantly outperform the
non-composite ones

⇒ Performance gap is larger for small
M/N
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Numerical Experiments

Experiment: Cameraman

96× 104 image

Ψ ∈ R
7N×N = 2D UWT-db1,

Ψd ∈ R
N×N ∀d

“spread-spectrum” Φ

AWGN @ 40 dB SNR
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⇒ The composite algorithms
significantly outperform the
non-composite ones

⇒ Performance gap is larger for small
M/N
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Numerical Experiments

Experiment: 1D Dynamic MRI

x-y profile x-t profile k-t sampling

144× 48
spatiotemporal
profile extracted
from MRI cine

Ψ ∈ R
3N×N :

[db1;db2;db3]
2D DWT

Φ: variable density
random Fourier

AWGN @ 30 dB
SNR
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Numerical Experiments

Experiment: 1D Dynamic MRI (cont.)

sampling ratio M/N = 0.3

L1 Co-L1 IRW-L1 Co-IRW-L1
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The composite algs significantly outperform the non-composite ones
at small measurement ratios M/N

Little advantage to Co-IRW-L1 over Co-L1 in this experiment
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Numerical Experiments

Average Runtimes for Previous Experiments

Shepp-Logan Cameraman dMRI

L1 8.12s 9.88s 22.0s

Co-L1 8.83s 12.8s 21.7s

IRW-L1 7.95s 12.7s 24.1s

Co-IRW-L1 9.29s 16.9s 29.6s

The composite algs run only 1.3× longer than the non-composite ones.
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Numerical Experiments

Open Questions

Performance guarantees?

Convergence guarantees? (So far we have only established an
asymptotic stationary point condition using an MM analysis of Julien
Mairal.2

Design of dictionaries {Ψd}?

Extension to matrix compressive sensing (e.g., low-rank, row-sparse,
column-sparse, etc.)?

2J. Mairal, “Optimization with first-order surrogate functions,” ICML, 2013.
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Numerical Experiments

Conclusions

We proposed a new “composite-L1” approach to L2-penalized signal
reconstruction that learns and exploits differences in sparsity across
sub-dictionaries.

Relative to standard L1 methods, our composite L1 methods give
significant improvements in reconstruction SNR at low sampling
rates, at the cost of very mild complexity increase.

Our algorithms can be interpreted as MM approaches to non-convex
optimization, approximate ℓ0 methods, Bayesian methods, and
variational Bayesian methods.
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Numerical Experiments

References
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1 R. Ahmad and P. Schniter, “Iteratively Reweighted L1 Approaches to Sparse
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2 R. Ahmad and P. Schniter, “Iteratively Reweighted L1 Approaches to
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