Parallel- ℓ_0 : A fully parallel algorithm for combinatorial compressed sensing

Jared Tanner & Rodrigo Mendoza-Smith

2. Int. Matheon Conf. on CS and its applications 2015 7^{th} Dec. 2015

University of Oxford¹
Joint with Rodrigo Mendoza-Smith

¹Supported by: EPSRC, NVIDIA, & SELEX-Galileo

Combinatorial Compressed Sensing (CCS)

- ▶ Let $A \in \mathbb{R}^{m \times n}$, $x \in \chi_k^n := \{x \in \mathbb{R}^n : ||x||_0 \le k\}$,.
- ▶ Compressed sensing looks for the solution, with k < m < n, of

$$y = Ax$$
 s.t. $x \in \chi_k^n$.

▶ Most CS theory developed for A Gaussian or Partial Fourier

Combinatorial Compressed Sensing (CCS)

- ▶ Let $A \in \mathbb{R}^{m \times n}$, $x \in \chi_k^n := \{x \in \mathbb{R}^n : ||x||_0 \le k\}$,.
- ▶ Compressed sensing looks for the solution, with k < m < n, of

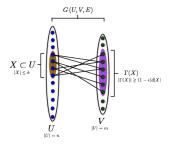
$$y = Ax$$
 s.t. $x \in \chi_k^n$.

▶ Most CS theory developed for A Gaussian or Partial Fourier

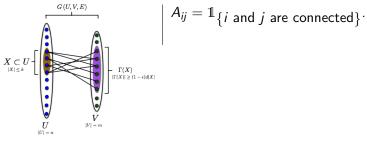
Ensemble	Storage	Generation	$A^T y$	m
Gaussian	O(mn)	$\mathcal{O}(mn)$	$\mathcal{O}(mn)$	$O(k \log(n/k))$
Partial Fourier	$\mathcal{O}(m)$	$\mathcal{O}(n)$	$\mathcal{O}(n\log(n))$	$\mathcal{O}(k\log^5(n))$
Expander	$\mathcal{O}(dn)$	$\mathcal{O}(dn)$	$\mathcal{O}(\mathit{dn})$	$\mathcal{O}(k\log(n/k))$

▶ In CCS A is an expander matrix, i.e. a sparse binary matrix with d << m ones per column $(A \in \mathbb{E}_{k,\varepsilon,d})$.

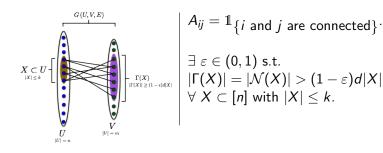
Edges of expander graph: $[n] = \{1, 2, ..., n\}$, or [m]Neighbours of vertices X, $\mathcal{N}(X)$, are vertices connected by an edge



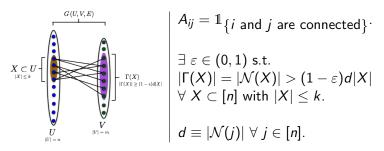
Edges of expander graph: $[n] = \{1, 2, ..., n\}$, or [m]Neighbours of vertices X, $\mathcal{N}(X)$, are vertices connected by an edge



Edges of expander graph: $[n] = \{1, 2, ..., n\}$, or [m]Neighbours of vertices X, $\mathcal{N}(X)$, are vertices connected by an edge



Edges of expander graph: $[n] = \{1, 2, ..., n\}$, or [m]Neighbours of vertices X, $\mathcal{N}(X)$, are vertices connected by an edge



 $A \in \mathbb{R}^{m \times n}$ is a sparse binary matrix with d << m ones per column

Structure of CCS Greedy Algorithms

Initialization: $A \in \mathbb{E}_{k,\varepsilon,d}$; $y \in \mathbb{R}^m$, $\hat{x} = 0$, r = y while not converged

Compute a score s_j and an update $\omega_j \ \forall \ j \in [n]$ Select $T \subset [n]$ based on a rule on s_j $\hat{x}_j \leftarrow \hat{x}_j + \omega_j$ for $j \in T$ $r \leftarrow y - A\hat{x}$

CCS algorithms differ by their score metric s_j and how many elements T is allowed to contain

Overview of CCS Greedy Algorithms

Algorithm	Score	Concurrency	Complexity
SMP (EIHT) [1]	ℓ_1 / median	parallel	$\mathcal{O}((nd + n\log n)\log x _1)$
SSMP [2]	ℓ_1 / median	serial	$ \mathcal{O}((\frac{d^3n}{m}+n)k+(n\log n)\log x _1) $
LDDSR [3] / ER [4]	ℓ_0 / mode	serial	$\mathcal{O}((\frac{d^3n}{m}+n)k)$

Overview of CCS Greedy Algorithms

Algorithm	Score	Concurrency	Complexity
SMP (EIHT) [1]	ℓ_1 / median	parallel	$\mathcal{O}((nd + n\log n)\log x _1)$
SSMP [2]	ℓ_1 / median	serial	$\mathcal{O}((\frac{d^3n}{m}+n)k+(n\log n)\log x _1)$
LDDSR [3] / ER [4]	ℓ_0 / mode	serial	$\mathcal{O}((\frac{d^3n}{m}+n)k)$
Serial- ℓ_0 [5]	ℓ_0 / ℓ_0	serial	$\mathcal{O}(dn\log k)$
Parallel- ℓ_0 [5]	ℓ_0 / ℓ_0	parallel	$\mathcal{O}(dn\log k)$

Overview of CCS Greedy Algorithms

Algorithm	Score	Concurrency	Complexity
SMP (EIHT) [1]	ℓ_1 / median	parallel	$\mathcal{O}((nd + n\log n)\log x _1)$
SSMP [2]	ℓ_1 / median	serial	$\mathcal{O}((\frac{d^3n}{m}+n)k+(n\log n)\log x _1)$
LDDSR [3] / ER [4]	ℓ_0 / mode	serial	$\mathcal{O}((\frac{d^3n}{m}+n)k)$
Serial- ℓ_0 [5]	ℓ_0 / ℓ_0	serial	$\mathcal{O}(dn\log k)$
Parallel- ℓ_0 [5]	ℓ_0 / ℓ_0	parallel	$\mathcal{O}(dn\log k)$

- ▶ Only SMP was observed to take less computational time than non-combinatorial CS algorithms such as NIHT
- ▶ Unfortunately SMP only able to recovery $x \in \chi_k^n$ for $k/m \ll 1$
- ▶ Parallel- ℓ_0 computationally fast and recovery for $k/m \approx 0.3$
- ► Sudocodes is an alternative method, preprocessing to reduce *n* by determining locations in *x* that must be zero

Decoding by decreasing $||r||_{\ell_0}$

Parallel- ℓ_0 Initialization: $A \in \mathbb{E}_{k,\varepsilon,d}$; $y \in \mathbb{R}^m$, $\alpha \in [d-1]$, $\hat{x} = 0$, r = y while not converged $T \leftarrow \{(i, v) \in [n] \times \mathbb{R} : ||r||_{0} - ||r - v||_{0} > \alpha \}$

$$T \leftarrow \{(j, \omega_j) \in [n] \times \mathbb{R} : ||r||_0 - ||r - \omega_j a_j||_0 > \alpha\}$$
 for $(j, \omega_j) \in T$
 $\hat{x}_j \leftarrow \hat{x}_j + \omega_j$ for $j \in T$
 $r \leftarrow y - A\hat{x}$

Decoding by decreasing $||r||_{\ell_0}$

Parallel- ℓ_0

Initialization: $A \in \mathbb{E}_{k,\varepsilon,d}$; $y \in \mathbb{R}^m$, $\alpha \in [d-1]$, $\hat{x} = 0$, r = y while not converged

$$T \leftarrow \{(j, \omega_j) \in [n] \times \mathbb{R} : ||r||_0 - ||r - \omega_j a_j||_0 > \alpha\}$$
 for $(j, \omega_j) \in T$
 $\hat{x}_j \leftarrow \hat{x}_j + \omega_j$ for $j \in T$
 $r \leftarrow y - A\hat{x}$

Serial- ℓ_0

Initialization: $A \in \mathbb{E}_{k,\varepsilon,d}$; $y \in \mathbb{R}^m$, $\alpha \in [d-1]$, $\hat{x} = 0$, r = y while not converged

for
$$j \in [n]$$

 $T \leftarrow \{\omega_j \in \mathbb{R} : ||r||_0 - ||r - \omega_j a_j||_0 > \alpha\}$
 $\hat{x}_j \leftarrow \hat{x}_j + \omega_j \text{ for } j \in T$
 $r \leftarrow y - A\hat{x}$

▶ Parallel- ℓ_0 : computing T and updating \hat{x} suitable for GPU

Theorem (Convergence of Expander ℓ_0 -Decoders)

Let $A \in \mathbb{E}_{k,\varepsilon,d}$ and $\varepsilon < 1/4$. and $x \in \chi_k^n$ be a dissociated signal. Then, Serial- ℓ_0 and Parallel- ℓ_0 with $\alpha = (1-2\varepsilon)d$ can recover x from $y = Ax \in \mathbb{R}^m$ in $\mathcal{O}(dn \log k)$ operations.

Dissociated: $\sum_{i \in T_1} x_i \neq \sum_{i \in T_2} x_i \ \forall \ T_1, T_2 \subset \text{supp}(x)$ with $T_1 \neq T_2$

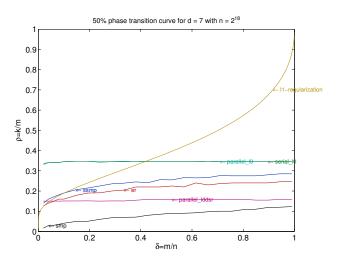
Theorem (Convergence of Expander ℓ_0 -Decoders)

Let $A \in \mathbb{E}_{k,\varepsilon,d}$ and $\varepsilon < 1/4$. and $x \in \chi_k^n$ be a dissociated signal. Then, Serial- ℓ_0 and Parallel- ℓ_0 with $\alpha = (1-2\varepsilon)d$ can recover x from $y = Ax \in \mathbb{R}^m$ in $\mathcal{O}(dn \log k)$ operations.

Dissociated:
$$\sum_{i \in T_1} x_i \neq \sum_{i \in T_2} x_i \ \forall \ T_1, T_2 \subset \text{supp}(x)$$
 with $T_1 \neq T_2$

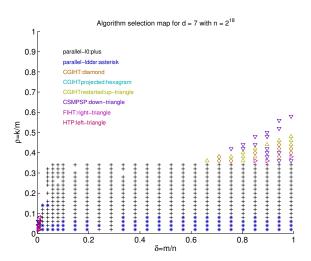
- ▶ Dissociation, the same signal model as consider by sudocodes.
- ▶ Parallel- ℓ_0 requires log k iterations of complexity $\mathcal{O}(dn)$ complexity, each of which is trivially decomposed into n independent tasks of complexity $\mathcal{O}(d)$.
- ▶ Serial- ℓ_0 requires $n \log k$ iterations of complexity $\mathcal{O}(d)$.
- ▶ Serial- ℓ_0 is faster than Parallel- ℓ_0 if both run on a single core, but Parallel- ℓ_0 substantially faster when run on high performance computing GPUs with thousands of cores.
- ▶ Serial- ℓ_0 and Parallel- ℓ_0 have nearly identical recovery regions.

Improved phase transition



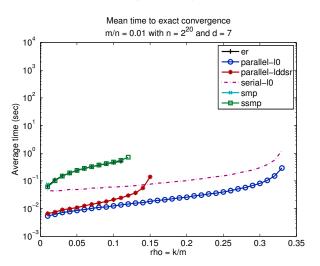
- ▶ Greater recovery region than other CCS algorithms
- ▶ No apparent decrease in phase transition for $m \ll n$

Fastest CS algorithm for $A \in \mathbb{E}_{k,\varepsilon,d}$



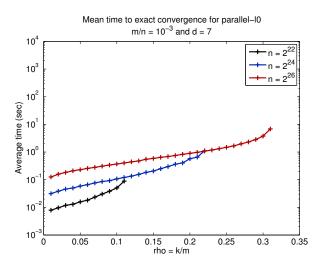
- ▶ Parallel- ℓ_0 and Parallel-LDDSR fastest when convergent
- First examples of CCS algorithms being state-of-the-art

Average timing for fixed m/n = 1/100



- ▶ Less computational time over Parallel-LDSR, all but $k/m \ll 1$
- ▶ Near constant speedup of Parallel- ℓ_0 over Serial- ℓ_0

High phase transition persists for $m/n \ll 1$



- ▶ Recovery ability of $m \approx 3k$ even for $m = n \times 10^{-3}$,
- ▶ Time for $n \approx 67$ million in under 2 seconds

Sketch of the complexity proof:

Lemma (Bounded frequency of values in expander measurements of dissociated signals)

Let $x \in \chi_k^n$ be dissociated, $A \in \mathbb{E}_{k,\varepsilon,d}$, and ω a nonzero value in Ax. Then, there is a unique set $T \subset \operatorname{supp}(x)$ such that $\omega = \sum_{j \in T} x_j$ and the value ω occurs in y at most d times,

$$|\{i \in [m] : y_i = \omega\}| \le d \quad \forall \ \omega \ne 0.$$

Proof: The uniqueness of the set $T \subset \operatorname{supp}(x)$ such that $\omega = \sum_{j \in T} x_j$ follows by the definition of dissociated. Since $|\mathcal{N}(j)| = d$ for all $j \in [n]$, we have that,

$$|\{i \in [m] : y_i = \omega\}| = \left|\bigcap_{j \in T} \mathcal{N}(j)\right| \leq |\mathcal{N}(j_0)| = d$$

for any $i_0 \in T$.

Lemma (Pairwise column overlap)

Let $A \in \mathbb{E}_{k,\varepsilon,d}$. If $\varepsilon < 1/4$, every pair of columns of A intersect in less than $(1-2\varepsilon)d$ rows, that is, for all $j_1, j_2 \in [n]$ with $j_1 \neq j_2$

$$\Big|\mathcal{N}(j_1) \bigcap \mathcal{N}(j_2)\Big| < (1-2\varepsilon)d.$$

Proof: Let $S \subset [n]$ be such that |S| = 2 then

$$|\mathcal{N}(S)| \ge 2(1-\varepsilon)d > 2d - (1-2\varepsilon)d,$$

where the first inequality is definition of $A \in \mathbb{E}_{k,\varepsilon,d}$ and the second inequality follows from $\epsilon < 1/4$.

Lemma (Support identification)

Let y = Ax for dissociated $x \in \chi_k^n$ and $A \in \mathbb{E}_{k,\varepsilon,d}$ with $\varepsilon < 1/4$. Let $\omega \neq 0$ be such that

$$|\{i \in \mathcal{N}(j) : y_i = \omega\}| > (1 - 2\varepsilon)d, \tag{1}$$

then $\omega = x_i$.

Proof: Our claim is that for any ω which is a nonzero value from y, if the cardinality condition (1) is satisfied then the value $\omega = \sum_{j \in \mathcal{T}} x_j$ occurs for the set T being a singleton, |T| = 1. Frequency lemma states that T is unique and that

$$|\{i \in \mathcal{N}(j) : y_i = \omega\}| = \left|\bigcap_{j \in T} \mathcal{N}(j)\right|.$$

If |T| > 1 then the above is not more than the intersection of any two of the sets $\mathcal{N}(j_1)$ and $\mathcal{N}(j_2)$, and by pairwise column overlap lemma, is less than $(1-2\varepsilon)d$ which contradicts the cardinality condition (1) and consequently |T|=1 and $\omega=x_i$.

Theorem (Convergence rate of Parallel- ℓ_0)

Let $A \in \mathbb{E}_{k,\varepsilon,d}$ and let $\varepsilon < 1/4$, and $x \in \chi_k^n$ be dissociated. Then, Parallel- ℓ_0 with $\alpha = (1-2\varepsilon)d$ can recover x from $y = Ax \in \mathbb{R}^m$ in $\mathcal{O}(\log k)$ iterations of complexity $\mathcal{O}(dn)$.

Sketch of proof: Let T_{ℓ} be set T of vertices to update at iteration ℓ and $S_{\ell} = \operatorname{supp}(x - \hat{x})$. As $A \in \mathbb{E}_{k,\varepsilon,d}$ has d nonzeros per column, the reduction in the cardinality of the residual, say $\|r^{\ell}\|_{0} - \|r^{\ell+1}\|_{0}$, can be at most $d|T_{\ell}|$;

$$||r^{\ell}||_0 - ||r^{\ell+1}||_0 \le d|T_{\ell}|.$$

Reduction in residual bounded below by (non-obvious)

$$||r^{\ell}||_0 - ||r^{\ell+1}||_0 \ge \alpha |T_{\ell}| + (|S_{\ell}| - |T_{\ell}|).$$

Combining bounds ensures linear convergence

$$|S_{\ell+1}| \le \frac{2\varepsilon d}{1 + 2\varepsilon d} |S_{\ell}|$$

Summary

- ▶ Serial- ℓ_0 and Parallel- ℓ_0 recovery for $A \in \mathbb{E}_{k,\varepsilon,d}$ in complexity $\mathcal{O}(dn\log k)$ and observed to take less time than non-CCS algorithms
- ▶ Recovery observed, for *n* large enough, with $m \approx 3k$
- ► Theory requires either x dissociated, or x drawn independent of A and columns of A scaled by dissociated values
- ▶ Robustness to ℓ_{∞} bounded additive noise follows, but unknown for other noise variants or compressible signals
- ▶ There are noise robustness techniques for sudocodes (Ma, Baron, Needell 2014) which can be applied to ℓ_0 decoders

Bibliography

[1] Radu Berinde, Piotr Indyk, and Milan Ruzic

Practical near-optimal sparse recovery in the ℓ_1 norm.

Allerton Communication, control and computing 2008

[2] Radu Berinde and Piotr Indyk

Sequential sparse matching pursuit.

Allerton Communication, control and computing 2009

[3] Weiyu Xu and Babak Hassibi

Efficient compressive sensing with deterministic guarantees using expander graphs.

Information theory workshop, 2007. ITW'07. IEEE, pages 414-419 [4] Sina Jafarpour, Weiyu Xu, Babak Hassibi, Robert Calderbank Efficient and robust compressed sensing using high-quality expander graphs.

arXiv preprint arXiv:0806.3802, 2008.

[5] Rodrigo Mendoza-Smith and Jared Tanner Expander ℓ_0 -decoding

Alan Turing Institute (ATI): watch this space

- ► The UK recently (Nov. 2015) launched a new "Date Science" centre
 - ► Funded by 5 universities: Cambridge, Edinburgh, Oxford, UCL, Warwick and EPSRC (Eng. Phy. Sci. Res. Council)
 - Physical space in central London: British Library
 - ► Currently has £77million budget for five years (growing)
- ▶ The scientific programme of the ATI is currently being formed, based on a series of workshops between Oct. 2015 to Feb. 2016.
 - ► Currently advertising for Research Fellows (senior postdoc) with initial 3 year appointment, possibly extended to 5 years.
 - ► Five founding universities are advertising permanent (tenure track) positions, including Oxford...
 - Happy to answer any questions and hope to see you at the ATI

Thank you for your time