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The basic geometric clustering problem
Given a finite dataset P = {x1, x2, . . . , xN }, and target number of
clusters k, find good partition so that data in any given partition are
“similar".

“Geometric" – assume points embedded in Hilbert space

... Sometimes this is easy.
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The basic geometric clustering problem

But often it is not so clear (especially with data in Rd for d large) ...



k-means clustering

Most popular unsupervised clustering method. Points embedded in
Euclidean space.

I x1, x2, . . . , xN in Rd , pairwise Euclidean distances are
‖xi − x j ‖

2
2 .

I k-means optimization problem: among all k-partitions
C1 ∪ C2 ∪ · · · ∪ Ck = P, find one that minimizes

min
C1∪C2∪···∪Ck=P

k∑
i=1

∑
x∈Ci


x −

1
|Ci |

∑
x j ∈Ci

x j
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I Works well for roughly spherical cluster shapes, uniform cluster
sizes



k-means clustering

I Classic application: RGB Color quantization

I In general, as simple and (nearly) parameter-free pre-processing
step for feature learning. These features then used for
classification.



Lloyd’s algorithm (’57) (a.k.a. “the" k-means algorithm)

Simple algorithm for locally minimizing k-means objective;
responsible for popularity of k-means

min
C1∪C2∪···∪Ck=P
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i=1

∑
x∈Ci
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1
|Ci |
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x j ∈Ci

x j
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I Initialize k “means" at random from among data points
I Iterate until convergence between (a) assigning each point to
nearest mean and (b) computing new means as the average points
of each cluster.

I Only guaranteed to converge to local minimizers (k-means is
NP-hard)



Lloyd’s algorithm (’57) (a.k.a. “the" k-means algorithm)

I Lloyd’s method often converges to local minima

I [Arthur, Vassilvitskii ’07] k-means++: Better initialization
through non-uniform sampling, but still limited in
high-dimension. Default in Matlab kmeans() algorithm

I [Kannan, Kumar ’10] Initialize Lloyd’s via spectral embedding.
I For these methods, no “certificate" of optimality



Points drawn from Gaussian mixture model in R5. Initialization for
k-means++ via Matlab 2014b kmeans(), Seed 1

k-means ++
Spectral
initialization

k-means
Semidefinite
relaxation



Outline of Talk

I Part 1: Generative clustering models and exact recovery
guarantees for SDP relaxation of k-means

I Part 2: Stability results for SDP relaxation of k-means



Generative models for clustering

[Nellore, W ’2013]: Consider the “Stochastic ball model":

I µ is isotropic probability measure in Rd supported in a unit ball.
I Centers c1, c2, . . . , ck ∈ Rd such that ‖ci − cj ‖2 > ∆.
I µ j as translation of µ to cj .
I Draw n points x`,1, x`,2, . . . , x`,n from µ`, ` = 1, . . . , k. N = nk.
I σ2 = E(‖x`, j − c` ‖22 ) ≤ 1.

D ∈ RN×N such that D(`, i), (m, j ) = ‖x (`, i) − x (m, j ) ‖
2
2

Note: Unless Stochastic Block Model, edge weights here are not
independent
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Stochastic ball model

Benchmark for “easy" clustering regime: ∆ ≥ 4

Points within the same cluster are closer to each other than points in
different clusters – simple thresholding of distance matrix.

Existing clustering guarantees in this regime: [Kumar, Kannan ’10],
[Elhamifar, Sapiro, Vidal ’12 ], [Nellore, W. ’13] −∆ = 3.75



Generative models for clustering
Benchmark for “nontrivial" clustering case? 2 < ∆ < 4

pairwise distance matrix D no longer looks too much like E[D],

E
[
D(`, i), (m, j )

]
= ‖c` − cm ‖22 + 2σ

2

I Minimal number of points n > d where d is ambient dimension
I Take care with distribution µ generating points



Subtleties in k-means objective

vs.

I In one dimension, k-means optimal solution (k = 2) switches at
∆ = 2.75

I [Iguchi, Mixon, Peterson, Villar ’15] Similar phenomenon in 2D
for distribution µ supported on boundary of ball, switch at
∆ ≈ 2.05



k-means clustering

I Recall k-means optimization problem:

min
P=C1∪C2∪···∪Ck

k∑
i=1

∑
x∈Ci
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I Equivalent optimization problem:

min
P=C1∪C2∪···∪Ck

k∑
i=1

1
|Ci |

∑
x,y∈Ci

‖x − y‖2

= min
P=C1∪C2∪···∪Ck

k∑
`=1

1
|C` |

∑
(i, j )∈C`

Di, j
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k-means clustering

... equivalent to:

min
Z ∈RN×N

〈D, Z〉

subject to {Rank (Z ) = k, λ1(Z ) = · · · = λk (Z ) = 1, Z1 = 1, Z ≥ 0}

Spectral clustering relaxation:

Spectral clustering: Get top k eigenvectors, followed by clustering on
reduced space
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Our approach: Semidefinite relaxation for k-means

[Peng, Wei ’05] Proposed k-means semidefinite relaxation:

min 〈D, Z〉

subject to {Tr(Z) = k, Z � 0, Z1 = 1, Z ≥ 0}

Note: Only parameter in SDP is k, the number of clusters, even
though generative model assumes equal num. points n in each cluster



k-means SDP – recovery guarantees

I µ is isotropic probability measure in Rd supported in a unit ball.
I Centers c1, c2, . . . , ck ∈ Rd such that ‖ci − cj ‖2 > ∆.
I µ j as translation of µ to cj . σ2 = E(‖x`, j − c` ‖22 ) ≤ 1.

Theorem (with A., B., C., K., V. ’14)
Suppose

∆ ≥

√
8σ2

d
+ 8

Then k-means SDP recovers clusters as unique optimal
solution with probability ≥ 1 − 2dk exp

(
− cn

log2 (n)d

)
.

Proof: construct dual certificate matrix, PSD, orthogonal to rank-k
matrix with entries ‖xi − cj ‖22 , satisfies dual constraints bound largest
eigenvalue of residual “noise" matrix [Vershynin ’10]
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k-means SDP – cluster recovery guarantees

Theorem (with A., B., C., K., V. ’14)
Suppose

∆ ≥

√
8σ2

d
+ 8

Then k-means SDP recovers clusters as unique optimal
solution with probability ≥ 1 − 2dk exp

(
− cn

log2 (n)d

)
.

I In fact, deterministic dual certificate sufficient condition. The
“stochastic ball model" satisfies conditions with high probability.

I [Iguchi, Mixon, Peterson, Villar ’15]: Recovery also for
∆ ≥ 2σ

√
k
d , constructing different dual certificate



Inspirations

I [Candes, Romberg, Tao ’04; Donoho ’04] Compressive sensing

I Matrix factorizations
I [Recht, Fazel, Parrilo ’10] Low-rank matrix recovery

I [Chandrasekaran, Sanghavi, Parrilo, Willsky ’09 ] Robust PCA

I [Bittorf, Recht, Re, Tropp ’12] Nonnegative matrix factorization

I [Oymak, Hassibi, Jalali, Chen, Sanghavi, Xu, Fazel, Ames,
Mossel, Neeman, Sly, Abbe, Bandeira, ... ] community
detection, stochastic block model

I Many more...



Stability of k-means SDP



Stability of k-means SDP

Recall SDP:

min
Z ∈RN×N

〈D, Z〉

subject to {Rank (Z ) = k, λ1(Z ) = · · · = λk (Z ) = 1, Z1 = 1, Z ≥ 0}

I For data X = [x1, x2, . . . , xN ] “close" to being separated in k
clusters, SDP solution X Zopt = [ĉ1, ĉ2, . . . , ĉN ] should be
“close" to a cluster solution X ZC

I “Clustering is only hard when data does not fit the clustering
model"



Stability of k-means SDP

Gaussian mixture model with “even" weights:
I centers c1, c2, . . . , ck ∈ Rd

I For each t ∈ {1, 2, . . . , k}, draw xt,1, xt,2, . . . , xt,n i.i.d. from
N (γt, σ2I), N = nk points total.

I ∆ = mina,b ‖ca − cb ‖2.

I Want stability results in regime ∆ = Cσ for small C > 1
I Note: now E‖xt, j − ct ‖2 = dσ2
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Observed tightness of SDP
points in R5 – projected to first 2 coordinates

[Animation courtesy of Soledad Villar]



Stability of k-means SDP

min 〈D, Z〉

subject to {Tr(Z) = k, Z � 0, Z1 = 1, Z ≥ 0}

Theorem (with D. Mixon and S. Villar, 2016)
Consider N = nk points x j,` generated via Gaussian mixture model
with centers c1, c2, . . . , ck . Then with probability ≥ 1 − η, the SDP
optimal centers [ĉ1,1, ĉ1,2, . . . , ĉj,`, . . . , ĉk,n] satisfy

1
N

k∑
j=1

n∑
`=1

‖ĉj,` − cj ‖22 ≤
C(kσ2 + log(1/η))

∆2

where C is not too big.

I Since E[‖x j,` − cj ‖22] = dσ2, noise reduction in expectation
I Apply Markov’s inequality to get rounding scheme
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1
N

k∑
j=1

n∑
`=1
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Observed tightness of SDP
points in R5 – projected to first 2 coordinates
Observation: when not tight after one iteration, it is tight after two or
three iterations: [x1, x2, . . . , xN ]→ [ĉ1, ĉ2, . . . , ĉN ]→ [ĉ′1, ĉ

′
2, . . . , ĉ

′
N ]

[Animation courtesy of Soledad Villar]



Summary

I We analyzed a convex relaxation of the k-means optimization
problem, and showed that such an algorithm can recover global
k-means optimal solutions if the underlying data can be
partitioned in separated balls.

I In the same setting, popular heuristics like Lloyd’s algorithm can
get stuck in local optimal solutions

I We also showed that the k-means SDP is stable, providing noise
reduction for Gaussian mixture models

I Philosophy: It is OK, and in fact better, that k-means SDP does
not always return hard clusters. Denoising level indicates
“clusterability" of data



Future directions

I SDP relaxation for k-means clustering is not fast – complexity
scales at least N6 where N is number of points. Fast solvers.

I Guarantees for kernel k-means for non-spherical data
I Make dual-certificate based clustering algorithms interactive
(semi-supervised)



Thanks!

Mentioned papers:

1. Relax, no need to round: integrality of clustering formulations
with P. Awasthi, A. Bandeira, M. Charikar, R. Krishnaswamy,
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2. Stability of an SDP relaxation of k-means. D. Mixon, S. Villar,
R. Ward. Preprint, 2016.
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