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Part 1: Joint work with Pranjal Awasthi, Afonso Bandeira, Moses
Charikar, Ravi Krishnaswamy, and Soledad Villar




The basic geometric clustering problem

Given a finite dataset ¥ = {x1, xo, ..., xn}, and target number of
clusters k, find good partition so that data in any given partition are
“similar”.

“Geometric" — assume points embedded in Hilbert space

O
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... Sometimes this is easy.



The basic geometric clustering problem

But often it is not so clear (especially with data in R? for d large) ...



k-means clustering

Most popular unsupervised clustering method. Points embedded in
Euclidean space.

> X1,%2...,xy in R, pairwise Euclidean distances are
llx; = x;lI3.

» k-means optimization problem: among all k-partitions
CiUCyU---UC, = P, find one that minimizes
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» Works well for roughly spherical cluster shapes, uniform cluster
sizes



k-means clustering

» Classic application: RGB Color quantization

» In general, as simple and (nearly) parameter-free pre-processing
step for feature learning. These features then used for
classification.



Lloyd’s algorithm (’57) (a.k.a. “the" k-means algorithm)

Simple algorithm for locally minimizing k-means objective;
responsible for popularity of k-means
2

SRS 35 ) (R
C1UCLU---UCy = Py

eCl l XjEC[

» Initialize £ “means" at random from among data points

» Iterate until convergence between (a) assigning each point to
nearest mean and (b) computing new means as the average points
of each cluster.

» Only guaranteed to converge to local minimizers (k-means is
NP-hard)



Lloyd’s algorithm (’57) (a.k.a. “the" k-means algorithm)
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Lloyd’s method often converges to local minima
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[Arthur, Vassilvitskii 07] k-means++: Better initialization
through non-uniform sampling, but still limited in
high-dimension. Default in Matlab kmeans() algorithm

v

[Kannan, Kumar *10] Initialize Lloyd’s via spectral embedding.

v

For these methods, no “certificate” of optimality



Points drawn from Gaussian mixture model in R>. Initialization for
k-means++ via Matlab 2014b kmeans(), Seed 1

k-means
Semidefinite
relaxation

Spectral
k-means ++ e e L.
initialization




Outline of Talk

» Part 1: Generative clustering models and exact recovery
guarantees for SDP relaxation of k-means

» Part 2: Stability results for SDP relaxation of k-means



Generative models for clustering

[Nellore, W *2013]: Consider the “Stochastic ball model":

u is isotropic probability measure in R? supported in a unit ball.

\4

\4

Centers ¢y, ¢, . . ., cx € R4 such that ||¢; — cjlla > A

v

; as translation of u to c;.
» Draw n points x¢ 1, X¢,2,...,X¢,n from pe, € =1,..., k. N = nk.

o =E(llxe; - cell3) < 1.

v
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[Nellore, W *2013]: Consider the “Stochastic ball model":

u is isotropic probability measure in R? supported in a unit ball.

\4

\4

Centers ¢y, ¢, . . ., cx € R4 such that ||¢; — cjlla > A

v

; as translation of u to c;.
» Draw n points x¢ 1, X¢,2,...,X¢,n from pe, € =1,..., k. N = nk.
> 02 =E(llxe; —celly) < L.

D € RN*N such that Dz, (m, ) = 1X(t,iy = X(m, ) I3

Note: Unless Stochastic Block Model, edge weights here are not
independent



Stochastic ball model

Benchmark for “easy” clustering regime: A > 4

B

D
Points within the same cluster are closer to each other than points in

different clusters — simple thresholding of distance matrix.

Existing clustering guarantees in this regime: [Kumar, Kannan *10],
[Elhamifar, Sapiro, Vidal *12 ], [Nellore, W. *13] —A = 3.75



Generative models for clustering
Benchmark for “nontrivial” clustering case? 2 < A < 4

i)

D
pairwise distance matrix D no longer looks too much like E[D],

E [D(€,i),(m,j)] = llee = cmll3 + 207

» Minimal number of points n > d where d is ambient dimension
» Take care with distribution u generating points



Subtleties in k-means objective

(= (oY

» In one dimension, k-means optimal solution (k = 2) switches at
A=275

» [Iguchi, Mixon, Peterson, Villar *15] Similar phenomenon in 2D
for distribution y supported on boundary of ball, switch at
A ~2.05



k-means clustering

=

» Recall k-means optimization problem:

k

N
P=CUCLU---UCy

i=1 xeC;
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k-means clustering
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» Recall k-means optimization problem:

k
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» Equivalent optimization problem:

k
min Z
P=C1UCLU---UCy — x
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= min
P C1UCLU---UCY
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k-means clustering

. JER

)
... equivalent to:
min (D, Z)
Z eRNXN
subjectto {Rank(Z) =k, L((Z)=---= A (Z)=1,Z1=1, Z > 0}

ﬂ?'}"nw (D,Z)

subjectto {Rank(Z) =k, 1,(Z) = -+ = A4 (Z) = l.sz, 2}4”



k-means clustering

(A&

... equivalent to:

min (D, Z)
Z eRNXN
subjectto {Rank(Z) =k, L((Z)=---= A (Z)=1,Z1=1, Z > 0}

Spectral clustering relaxation:
i D,Z
20, (D.Z)

subjectto {Rank(Z) = k, A\(Z) = -+ = A4 (Z) = 1-Z><L‘ 2}@}

Spectral clustering: Get top k eigenvectors, followed by clustering on
reduced space



Our approach: Semidefinite relaxation for k-means

[Peng, Wei *05] Proposed k-means semidefinite relaxation:

(SATE]

)

min (D, Z)
subjectto {Tr(Z) =k, Z >0,Z1=1,Z > 0}

Note: Only parameter in SDP is k, the number of clusters, even
though generative model assumes equal num. points » in each cluster



k-means SDP — recovery guarantees

>y is isotropic probability measure in R¢ supported in a unit ball.
» Centers ¢y, ¢, . . ., cx € R¥ such that ||¢c; — cill > A.

> ; as translation of u to c;. o’ = E(llxe,; — Cg”%) <1




k-means SDP — recovery guarantees

>y is isotropic probability measure in R¢ supported in a unit ball.
» Centers ¢y, ¢, . . ., cx € R? such that ||¢; — cill > A.

> ; as translation of u to c;. o’ = E(llxe,; — Cg”%) <1

Theorem (with A., B., C., K., V. ’14)
Suppose
802
A>A[— +38
d
Then k-means SDP recovers clusters as unique optimal

solution with probability > 1 — 2dk exp (—_logg(r;)d )

Proof: construct dual certificate matrix, PSD, orthogonal to rank-k
matrix with entries [|x; — ¢; ||§, satisfies dual constraints bound largest
eigenvalue of residual “noise" matrix [Vershynin *10]



k-means SDP — cluster recovery guarantees

Theorem (with A., B., C., K., V. ’14)
Suppose
802
A>+[— +8
- d
Then k-means SDP recovers clusters as unique optimal

solution with probability > 1 — 2dk exp (_logg(r:l)d )

» In fact, deterministic dual certificate sufficient condition. The
“stochastic ball model" satisfies conditions with high probability.

» [Iguchi, Mixon, Peterson, Villar *15]: Recovery also for
A> 20"/7%, constructing different dual certificate



Inspirations

» [Candes, Romberg, Tao *04; Donoho ’04] Compressive sensing

» Matrix factorizations

> [Recht, Fazel, Parrilo *10] Low-rank matrix recovery

> [Chandrasekaran, Sanghavi, Parrilo, Willsky 09 ] Robust PCA

> [Bittorf, Recht, Re, Tropp *12] Nonnegative matrix factorization

> [Oymak, Hassibi, Jalali, Chen, Sanghavi, Xu, Fazel, Ames,
Mossel, Neeman, Sly, Abbe, Bandeira, ... ] community

detection, stochastic block model

> Many more...



Stability of k-means SDP



Stability of k-means SDP

Recall SDP:
min (D, Z)
Z eRNXN
subjectto {Rank(Z) =k, 1((Z)=---=A4(Z)=1,Z1=1, Z > 0}
» For data X =[x, x2,...,xn] “close" to being separated in k
clusters, SDP solution X Z,,; = [¢1, 2, ..., ¢n] should be

“close" to a cluster solution X Z¢

> “Clustering is only hard when data does not fit the clustering
model"



Stability of k-means SDP

Gaussian mixture model with “even” weights:
» centers ¢, ¢, ...,Cr € R4

» Foreachr e {1,2,...,k}, draw x; 1, x;2, ..., X » i.i.d. from
N (y;,%I), N = nk points total.

» A =mingzp |lcg — cplla-
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Gaussian mixture model with “even” weights:
» centers ¢, ¢, ...,Cr € R4

» Foreachr e {1,2,...,k}, draw x; 1, x;2, ..., X » i.i.d. from
N (y;,%I), N = nk points total.
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» Want stability results in regime A = Co for small C > 1

» Note: now E||x; ; — ¢/||> = do?



Observed tightness of SDP

points in R> — projected to first 2 coordinates
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Stability of k-means SDP

min (D, Z)
subjectto {Tr(Z) =k, Z >0,Z1=1,Z > 0}

Theorem (with D. Mixon and S. Villar, 2016)

Consider N = nk points x; ¢ generated via Gaussian mixture model
with centers cy, ¢y, . . ., cx. Then with probability > 1 — n, the SDP
optimal centers [C1,1,C1,2, ..., Cj ts - - ., Ch,n] satisfy

k

1 < C(ko? +log(1/m))
ZZ 1¢j.c = €113 < o

]=1

where C is not too big.



Stability of k-means SDP

min (D, Z)
subjectto {Tr(Z) =k, Z >0,Z1=1,Z > 0}

Theorem (with D. Mixon and S. Villar, 2016)

Consider N = nk points x; ¢ generated via Gaussian mixture model
with centers cy, ¢y, . . ., cx. Then with probability > 1 — n, the SDP

optimal centers [C1,1,C1,2, ..., Cj ts - - ., Ch,n] satisfy
k n
1 C(ko? +1og(1/n))
ZZ 1¢j.c = €113 < o
]=1

where C is not too big.

» Since E[||x;, ¢ - ¢ ||§] = do?, noise reduction in expectation

» Apply Markov’s inequality to get rounding scheme



Observed tightness of SDP

points in R — projected to first 2 coordinates
Observation: when not tight after one iteration, it is tight after two or
three iterations: [xq, x2,...,xn] = [61, 62, ..., EN] — [éi,éé, oo Oyl

[Animation courtesy of Soledad Villar]



Summary

» We analyzed a convex relaxation of the k-means optimization
problem, and showed that such an algorithm can recover global
k-means optimal solutions if the underlying data can be
partitioned in separated balls.

» In the same setting, popular heuristics like Lloyd’s algorithm can
get stuck in local optimal solutions

» We also showed that the k-means SDP is stable, providing noise
reduction for Gaussian mixture models

» Philosophy: It is OK, and in fact better, that k-means SDP does
not always return hard clusters. Denoising level indicates
“clusterability" of data



Future directions

» SDP relaxation for k-means clustering is not fast — complexity
scales at least N® where N is number of points. Fast solvers.

» Guarantees for kernel k-means for non-spherical data

» Make dual-certificate based clustering algorithms interactive
(semi-supervised)



Thanks!
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