Some mathematics for k-means clustering

Rachel Ward

Berlin, December, 2015

Part 1: Joint work with Pranjal Awasthi, Afonso Bandeira, Moses Charikar, Ravi Krishnaswamy, and Soledad Villar

Part 2: Joint work with Dustin Mixon and Soledad Villar

The basic geometric clustering problem

Given a finite dataset $\mathcal{P} = \{x_1, x_2, \dots, x_N\}$, and target number of clusters k, find good partition so that data in any given partition are "similar".

"Geometric" - assume points embedded in Hilbert space

The basic geometric clustering problem

Given a finite dataset $\mathcal{P} = \{x_1, x_2, \dots, x_N\}$, and target number of clusters k, find good partition so that data in any given partition are "similar".

"Geometric" - assume points embedded in Hilbert space

The basic geometric clustering problem

But often it is not so clear (especially with data in \mathbb{R}^d for d large) ...

Most popular unsupervised clustering method. Points embedded in Euclidean space.

- ▶ $x_1, x_2, ..., x_N$ in \mathbb{R}^d , pairwise Euclidean distances are $||x_i x_j||_2^2$.
- ▶ <u>k-means optimization problem</u>: among all k-partitions $C_1 \cup C_2 \cup \cdots \cup C_k = \mathcal{P}$, find one that minimizes

$$\min_{C_1 \cup C_2 \cup \dots \cup C_k = \mathcal{P}} \sum_{i=1}^k \sum_{x \in C_i} \left\| x - \frac{1}{|C_i|} \sum_{x_i \in C_i} x_j \right\|^2$$

► Works well for roughly spherical cluster shapes, uniform cluster sizes

Classic application: RGB Color quantization

► In general, as simple and (nearly) parameter-free pre-processing step for feature learning. These features then used for classification.

Lloyd's algorithm ('57) (a.k.a. "the" *k*-means algorithm)

Simple algorithm for locally minimizing k-means objective; responsible for popularity of k-means

$$\min_{C_1 \cup C_2 \cup \dots \cup C_k = \mathcal{P}} \sum_{i=1}^k \sum_{x \in C_i} \left\| x - \frac{1}{|C_i|} \sum_{x_j \in C_i} x_j \right\|^2$$

- ▶ Initialize *k* "means" at random from among data points
- ► Iterate until convergence between (a) assigning each point to nearest mean and (b) computing new means as the average points of each cluster.
- ► Only guaranteed to converge to local minimizers (*k*-means is NP-hard)

Lloyd's algorithm ('57) (a.k.a. "the" *k*-means algorithm)

Lloyd's method often converges to local minima

- ► [Arthur, Vassilvitskii '07] *k*-means++: Better initialization through non-uniform sampling, but still limited in high-dimension. Default in Matlab kmeans() algorithm
- ► [Kannan, Kumar '10] Initialize Lloyd's via spectral embedding.
- ► For these methods, no "certificate" of optimality

Points drawn from Gaussian mixture model in \mathbb{R}^5 . Initialization for k-means++ via Matlab 2014b kmeans(), Seed 1

Outline of Talk

- ▶ Part 1: Generative clustering models and exact recovery guarantees for SDP relaxation of *k*-means
- ▶ Part 2: Stability results for SDP relaxation of *k*-means

Generative models for clustering

[Nellore, W '2013]: Consider the "Stochastic ball model":

- μ is isotropic probability measure in \mathbb{R}^d supported in a **unit** ball.
- ► Centers $c_1, c_2, \ldots, c_k \in \mathbb{R}^d$ such that $||c_i c_j||_2 > \Delta$.
- μ_j as translation of μ to c_j .
- ▶ Draw *n* points $x_{\ell,1}, x_{\ell,2}, \ldots, x_{\ell,n}$ from $\mu_{\ell}, \ell = 1, \ldots, k$. N = nk.
- $\sigma^2 = \mathbb{E}(\|x_{\ell,j} c_{\ell}\|_2^2) \le 1.$

 $D \in \mathbb{R}^{N \times N}$ such that $D_{(\ell,i),(m,j)} = ||x_{(\ell,i)} - x_{(m,j)}||_2^2$

Note: Unless Stochastic Block Model, edge weights here are not independent

Generative models for clustering

[Nellore, W '2013]: Consider the "Stochastic ball model":

- μ is isotropic probability measure in \mathbb{R}^d supported in a **unit** ball.
- ► Centers $c_1, c_2, \ldots, c_k \in \mathbb{R}^d$ such that $||c_i c_j||_2 > \Delta$.
- μ_j as translation of μ to c_j .
- ▶ Draw *n* points $x_{\ell,1}, x_{\ell,2}, \ldots, x_{\ell,n}$ from $\mu_{\ell}, \ell = 1, \ldots, k$. N = nk.

 $D \in \mathbb{R}^{N \times N}$ such that $D_{(\ell,i),(m,j)} = \|x_{(\ell,i)} - x_{(m,j)}\|_2^2$

Note: Unless Stochastic Block Model, edge weights here are not independent

Stochastic ball model

Benchmark for "easy" clustering regime: $\Delta \ge 4$

Points within the same cluster are closer to each other than points in different clusters – simple thresholding of distance matrix.

Existing clustering guarantees in this regime: [Kumar, Kannan '10], [Elhamifar, Sapiro, Vidal '12], [Nellore, W. '13] $-\Delta = 3.75$

Generative models for clustering

Benchmark for "nontrivial" clustering case? $2 < \Delta < 4$

pairwise distance matrix D no longer looks too much like $\mathbb{E}[D]$,

$$\mathbb{E}\left[D_{(\ell,i),(m,j)}\right] = \|c_{\ell} - c_{m}\|_{2}^{2} + 2\sigma^{2}$$

- ightharpoonup Minimal number of points n > d where d is ambient dimension
- ▶ Take care with distribution μ generating points

Subtleties in k-means objective

- ▶ In one dimension, *k*-means optimal solution (k = 2) switches at $\Delta = 2.75$
- [Iguchi, Mixon, Peterson, Villar '15] Similar phenomenon in 2D for distribution μ supported on boundary of ball, switch at $\Delta \approx 2.05$

▶ Recall *k*-means optimization problem:

$$\min_{\mathcal{P}=C_1\cup C_2\cup\cdots\cup C_k} \sum_{i=1}^k \sum_{x\in C_i} \left\| x - \frac{1}{|C_i|} \sum_{x_j\in C_i} x_j \right\|^2$$

Equivalent optimization problem:

$$\min_{P=C_1 \cup C_2 \cup \dots \cup C_k} \sum_{i=1}^k \frac{1}{|C_i|} \sum_{x,y \in C_i} ||x-y||^2$$

$$= \min_{\mathcal{P} = C_1 \cup C_2 \cup \dots \cup C_k} \sum_{\ell=1}^k \frac{1}{|C_{\ell}|} \sum_{(i,j) \in C_{\ell}} D_{i,j}$$

▶ Recall *k*-means optimization problem:

$$\min_{\mathcal{P}=C_1\cup C_2\cup\cdots\cup C_k} \sum_{i=1}^k \sum_{x\in C_i} \left\| x - \frac{1}{|C_i|} \sum_{x_j\in C_i} x_j \right\|^2$$

► Equivalent optimization problem:

$$\min_{\mathcal{P}=C_1 \cup C_2 \cup \dots \cup C_k} \sum_{i=1}^k \frac{1}{|C_i|} \sum_{x,y \in C_i} ||x - y||^2$$

$$= \min_{\mathcal{P}=C_1 \cup C_2 \cup \dots \cup C_k} \sum_{\ell=1}^k \frac{1}{|C_\ell|} \sum_{(i,j) \in C_\ell} D_{i,j}$$

... equivalent to:

$$\min_{Z \in \mathbb{R}^{N \times N}} \langle D, Z \rangle$$
subject to $\{Rank(Z) = k, \lambda_1(Z) = \dots = \lambda_k(Z) = 1, Z\mathbf{1} = 1, Z \geq 0\}$

Spectral clustering relaxation:

$$\min_{Z \in \mathbb{R}^{N \times N}} \langle D, Z \rangle$$
 subject to $\{Rank(Z) = k, \lambda_1(Z) = \dots = \lambda_k(Z) = 1, Z \}$ (0)

Spectral clustering: Get top k eigenvectors, followed by clustering on reduced space

... equivalent to:

$$\min_{Z \in \mathbb{R}^{N \times N}} \langle D, Z \rangle$$
subject to $\{Rank(Z) = k, \lambda_1(Z) = \dots = \lambda_k(Z) = 1, Z\mathbf{1} = 1, Z \ge 0\}$

Spectral clustering relaxation:

$$\min_{Z \in \mathbb{R}^{N \times N}} \langle D, Z \rangle$$
 subject to $\{Rank(Z) = k, \lambda_1(Z) = \dots = \lambda_k(Z) = 1, Z \}$ (0)

Spectral clustering: Get top k eigenvectors, followed by clustering on reduced space

Our approach: Semidefinite relaxation for *k*-means

[Peng, Wei '05] Proposed *k*-means semidefinite relaxation:

min
$$\langle D, Z \rangle$$

subject to $\{ \text{Tr}(\mathbf{Z}) = \mathbf{k}, Z \ge 0, Z1 = 1, Z \ge 0 \}$

Note: Only parameter in SDP is k, the number of clusters, even though generative model assumes equal num. points n in each cluster

k-means SDP – recovery guarantees

- μ is isotropic probability measure in \mathbb{R}^d supported in a **unit** ball.
- ► Centers $c_1, c_2, \ldots, c_k \in \mathbb{R}^d$ such that $||c_i c_j||_2 > \Delta$.
- μ_j as translation of μ to c_j . $\sigma^2 = \mathbb{E}(\|x_{\ell,j} c_\ell\|_2^2) \le 1$.

Theorem (with A., B., C., K., V. '14)

Suppose

$$\Delta \geq \sqrt{\frac{8\sigma^2}{d} + 8}$$

Then k-means SDP recovers clusters as unique optima solution with probability $\geq 1 - 2dk \exp\left(-\frac{cn}{\log^2(n)d}\right)$.

Proof: construct dual certificate matrix, PSD, orthogonal to rank-k matrix with entries $||x_i - c_j||_2^2$, satisfies dual constraints bound largest eigenvalue of residual "noise" matrix [Vershynin '10]

k-means SDP – recovery guarantees

- μ is isotropic probability measure in \mathbb{R}^d supported in a **unit** ball.
- Centers $c_1, c_2, \ldots, c_k \in \mathbb{R}^d$ such that $||c_i c_j||_2 > \Delta$.
- μ_j as translation of μ to c_j . $\sigma^2 = \mathbb{E}(\|x_{\ell,j} c_\ell\|_2^2) \le 1$.

Theorem (with A., B., C., K., V. '14)

Suppose

$$\Delta \ge \sqrt{\frac{8\sigma^2}{d} + 8}$$

Then k-means SDP recovers clusters as unique optimal solution with probability $\geq 1 - 2dk \exp\left(-\frac{cn}{\log^2(n)d}\right)$.

Proof: construct dual certificate matrix, PSD, orthogonal to rank-k matrix with entries $||x_i - c_j||_2^2$, satisfies dual constraints bound largest eigenvalue of residual "noise" matrix [Vershynin '10]

k-means SDP – cluster recovery guarantees

Theorem (with A., B., C., K., V. '14)

Suppose

$$\Delta \geq \sqrt{\frac{8\sigma^2}{d} + 8}$$

Then k-means SDP recovers clusters as unique optimal solution with probability $\geq 1 - 2dk \exp\left(-\frac{cn}{\log^2(n)d}\right)$.

- ► In fact, deterministic dual certificate sufficient condition. The "stochastic ball model" satisfies conditions with high probability.
- ► [Iguchi, Mixon, Peterson, Villar '15]: Recovery also for $\Delta \ge 2\sigma \frac{\sqrt{k}}{d}$, constructing different dual certificate

Inspirations

- ► [Candes, Romberg, Tao '04; Donoho '04] Compressive sensing
- Matrix factorizations
 - ► [Recht, Fazel, Parrilo '10] Low-rank matrix recovery
 - ► [Chandrasekaran, Sanghavi, Parrilo, Willsky '09] Robust PCA
 - ▶ [Bittorf, Recht, Re, Tropp '12] Nonnegative matrix factorization
 - [Oymak, Hassibi, Jalali, Chen, Sanghavi, Xu, Fazel, Ames, Mossel, Neeman, Sly, Abbe, Bandeira, ...] community detection, stochastic block model
 - ► Many more...

Recall SDP:

$$\min_{Z \in \mathbb{R}^{N \times N}} \langle D, Z \rangle$$
subject to $\{Rank(Z) = k, \lambda_1(Z) = \dots = \lambda_k(Z) = 1, Z\mathbf{1} = 1, Z \geq 0\}$

- For data $X = [x_1, x_2, ..., x_N]$ "close" to being separated in k clusters, SDP solution $XZ_{opt} = [\hat{c}_1, \hat{c}_2, ..., \hat{c}_N]$ should be "close" to a cluster solution XZ_C
- "Clustering is only hard when data does not fit the clustering model"

Gaussian mixture model with "even" weights:

- centers $c_1, c_2, \ldots, c_k \in \mathbb{R}^d$
- For each $t \in \{1, 2, ..., k\}$, draw $x_{t,1}, x_{t,2}, ..., x_{t,n}$ i.i.d. from $\mathcal{N}(\gamma_t, \sigma^2 I)$, N = nk points total.
- Want stability results in regime $\Delta = C\sigma$ for small C > 1
- Note: now $\mathbb{E}||x_{t,j} c_t||^2 = d\sigma^2$

Gaussian mixture model with "even" weights:

- centers $c_1, c_2, \ldots, c_k \in \mathbb{R}^d$
- For each $t \in \{1, 2, ..., k\}$, draw $x_{t,1}, x_{t,2}, ..., x_{t,n}$ i.i.d. from $\mathcal{N}(\gamma_t, \sigma^2 I)$, N = nk points total.
- Want stability results in regime $\Delta = C\sigma$ for small C > 1
- Note: now $\mathbb{E}||x_{t,j} c_t||^2 = d\sigma^2$

Observed tightness of SDP

points in \mathbb{R}^5 – projected to first 2 coordinates

min
$$\langle D, Z \rangle$$

subject to $\{ \text{Tr}(\mathbf{Z}) = \mathbf{k}, Z \ge 0, Z1 = 1, Z \ge 0 \}$

Theorem (with D. Mixon and S. Villar, 2016)

Consider N = nk points $x_{j,\ell}$ generated via Gaussian mixture model with centers c_1, c_2, \ldots, c_k . Then with probability $\geq 1 - \eta$, the SDP optimal centers $[\hat{c}_{1,1}, \hat{c}_{1,2}, \ldots, \hat{c}_{j,\ell}, \ldots, \hat{c}_{k,n}]$ satisfy

$$\frac{1}{N} \sum_{j=1}^{k} \sum_{\ell=1}^{n} \|\hat{c}_{j,\ell} - c_j\|_2^2 \le \frac{C(k\sigma^2 + \log(1/\eta))}{\Delta^2}$$

where C is not too big.

- ► Since $\mathbb{E}[\|x_{j,\ell} c_j\|_2^2] = d\sigma^2$, noise reduction in expectation
- Apply Markov's inequality to get rounding scheme

$$\min \langle D, Z \rangle$$
 subject to $\{ \text{Tr}(\mathbf{Z}) = \mathbf{k}, Z \ge 0, Z1 = 1, Z \ge 0 \}$

Theorem (with D. Mixon and S. Villar, 2016)

Consider N = nk points $x_{j,\ell}$ generated via Gaussian mixture model with centers c_1, c_2, \ldots, c_k . Then with probability $\geq 1 - \eta$, the SDP optimal centers $[\hat{c}_{1,1}, \hat{c}_{1,2}, \ldots, \hat{c}_{j,\ell}, \ldots, \hat{c}_{k,n}]$ satisfy

$$\frac{1}{N} \sum_{j=1}^{k} \sum_{\ell=1}^{n} \|\hat{c}_{j,\ell} - c_j\|_2^2 \le \frac{C(k\sigma^2 + \log(1/\eta))}{\Delta^2}$$

where C is not too big.

- ► Since $\mathbb{E}[\|x_{j,\ell} c_j\|_2^2] = d\sigma^2$, noise reduction in expectation
- ► Apply Markov's inequality to get rounding scheme

Observed tightness of SDP

points in \mathbb{R}^5 – projected to first 2 coordinates Observation: when not tight after one iteration, it is tight after two or three iterations: $[x_1, x_2, \dots, x_N] \rightarrow [\hat{c}_1, \hat{c}_2, \dots, \hat{c}_N] \rightarrow [\hat{c}_1', \hat{c}_2', \dots, \hat{c}_N']$

[Animation courtesy of Soledad Villar]

Summary

- ▶ We analyzed a convex relaxation of the *k*-means optimization problem, and showed that such an algorithm can recover global *k*-means optimal solutions if the underlying data can be partitioned in separated balls.
- ► <u>In the same setting</u>, popular heuristics like Lloyd's algorithm can get stuck in local optimal solutions
- ▶ We also showed that the *k*-means SDP is stable, providing noise reduction for Gaussian mixture models
- Philosophy: It is OK, and in fact better, that k-means SDP does not always return hard clusters. Denoising level indicates "clusterability" of data

Future directions

- ▶ SDP relaxation for k-means clustering is not fast complexity scales at least N^6 where N is number of points. Fast solvers.
- ► Guarantees for kernel *k*-means for non-spherical data
- Make dual-certificate based clustering algorithms <u>interactive</u> (semi-supervised)

Thanks!

Mentioned papers:

- 1. Relax, no need to round: integrality of clustering formulations with P. Awasthi, A. Bandeira, M. Charikar, R. Krishnaswamy, and S. Villar. *ITCS*, 2015.
- 2. *Stability of an SDP relaxation of k-means*. D. Mixon, S. Villar, R. Ward. Preprint, 2016.