Hints for solving the exercises in Chapter 12

Hints to Exercise 12.1 First consider submatrices of the form

$$
A_{\ell}=\left[\begin{array}{cccc}
\delta_{1} & \gamma_{2} & & 0 \tag{*}\\
\beta_{2} & \delta_{2} & \ddots & \\
& \ddots & \ddots & \gamma_{\ell} \\
0 & & \beta_{\ell} & \delta_{\ell}
\end{array}\right] \quad \text { for } \ell=1,2, \ldots, N
$$

and find out in which form the determinant $\operatorname{det}\left(A_{\ell+1}\right) \operatorname{depends}$ on $\operatorname{det}\left(A_{\ell}\right)$ and $\operatorname{det}\left(A_{\ell-1}\right)$ (for $\ell=1,2, \ldots$, $N-1)$.
(a) Use mathematical induction w.r.t. $\ell=1,2, \ldots, N$ to determine a correspondence between $\operatorname{det}\left(A_{\ell}-\lambda I_{\ell}\right)$ and $\operatorname{det}\left(B_{\ell}-\lambda I_{\ell}\right)$, where A_{ℓ} and B_{ℓ} are submatrices of A and B according to $(*)$. The solution to this exercise then follows for the special case $\ell=N$.
(b) Consider the matrix $P A P$ with the special permutation matrix

$$
P=\left[\begin{array}{lll}
& & 1 \\
& & 1 \\
1 & &
\end{array}\right] \in \mathbb{R}^{N \times N}
$$

(c) The answer to the first part of this problem can be found with part (a) of this exercise, and for the second part of the problem use mathematical induction w.r.t. $\ell=1,2, \ldots, N$ to find a representation of $\operatorname{det}\left(A_{\ell}\right)$.

Hints to Exercise 12.2 (a) The problem corresponding to the eigenvalues and vectors can be treated after a consideration of the matrix $A\left(I-2 v v^{\top}\right)$.
(b) First derive a representation for the entries of the matrix $v v^{\top} D v v^{\top}$.

Hints to Exercise 12.3 For $\mu \in \sigma(A)$ the situation is clear, and for $\mu \notin \sigma(A)$ consider $(*)(A-\mu I)^{-1}(D-\mu I) x$ and find out some results on the spectral norms of the matrices in $(*)$. Here, D denotes the diagonal matrix $\operatorname{diag}\left(d_{1}\right.$, $\left.d_{2}, \ldots, d_{N}\right)$. The rest follows by using the symmetry of the considered matrices.

Hints to Exercise 12.4 (a) Apply the theorem of Gershgorin to the matrix $C(\theta):=D_{\theta}^{-1}(A+\theta B) D_{\theta}$, where the notation $D_{\theta}=\operatorname{diag}\left(1, \theta^{1 / N}, \theta^{2 / N}, \ldots, \theta^{(N-1) / N}\right)$ is used.
(b) Consider $B=\left(b_{k j}\right) \in \mathbb{R}^{N \times N}$ with $b_{N 1}=1$ and $b_{k j}=0$ otherwise.

Hints to Exercise 12.5 The assumption means

$$
\left|\lambda-a_{k k}\right| \geq \sum_{\substack{j=1 \\ j \neq k}}^{N}\left|a_{k j}\right| \quad \text { for } k=1,2, \ldots, N
$$

For an arbitrary eigenvector $0 \neq x \in \mathbb{C}^{N}$ with $A x=\lambda x$ consider the index set $\mathcal{K}=\left\{1 \leq k \leq N:\left|x_{k}\right|=\|x\|_{\infty}\right\}$ and verify $\lambda \in \partial \mathcal{G}_{k}$ for all $k \in \mathcal{K}$ by using the diagonaldominance. Then show the following by making a contradictory assumption: if the matrix A is irreducible then the identity $\mathcal{K}=\{1,2, \ldots, N\}$ holds.

Hints to Exercise 12.6 (a) From the symmetry of the matrix A it follows that all eigenvalues of A are real, i.e., $\lambda_{1}, \ldots, \lambda_{N} \in \mathbb{R}$, and the corresponding eigenvectors $x_{1}, \ldots, x_{N} \in \mathbb{R}^{N}$ may assumed as mutually orthonormal, $x_{k}^{\top} x_{j}=\delta_{k j}$. An expansion $x=\sum_{j=1}^{N} a_{j} x_{j}$ and some elementary estimates then give the solution to the problem.
(b) One basically has to proceed as in part (a). Additionally one has to show that with the notation $J^{\prime}=\{1,2, \ldots$, $N\} \backslash J$ the following holds: $\sum_{j \in J^{\prime}}\left|a_{j}\right|^{2}=\inf _{z \in E(J)}\|x-z\|_{2}^{2}$.

Hints to Exercise 12.7 For the verification of the second identity in the exercise show first that in the first identity of the theorem of Courant/Fischer, the condition " $\operatorname{dim} \mathcal{L} \leq j$ " can be replaced by " $\operatorname{dim} \mathcal{L}=j$ ". For this purpose, at one step of the corresponding proof for a subspace $\mathcal{L} \subset \mathbb{R}^{N}$ with $\operatorname{dim} \mathcal{L} \leq j$ another subspace $M \subset \mathbb{R}^{N}$ has to be considered which satisfies $\mathcal{L} \subset M$ and $\operatorname{dim} M=j$, and the corresponding maximal Rayleigh quotients have to be compared. Then the system of sets $\left\{\mathcal{L}^{\perp}: \mathcal{L} \subset \mathbb{R}^{N}\right.$ is a linear subspace, $\left.\operatorname{dim} \mathcal{L}=j\right\}$ has to be considered.

The first identity of the exercise can be obtained from the second identity of this exercise, applied to the matrix $(A+\gamma I)^{-1}$ for a sufficiently large number $\gamma>0$.

Hints to Exercise 12.9 Consider the two identities of Exercise 12.7 with the special subspace $M=\operatorname{span}\left\{\mathbf{e}_{k}: k \leq\right.$ $\lfloor N / 2\rfloor\}$.

