Hints for solving the exercises in Chapter 12

Hints to Exercise 12.1 First consider submatrices of the form

$$A_{\ell} = \begin{bmatrix} \delta_{1} & \gamma_{2} & 0 \\ \beta_{2} & \delta_{2} & \ddots \\ & \ddots & \ddots & \gamma_{\ell} \\ 0 & \beta_{\ell} & \delta_{\ell} \end{bmatrix}$$
for $\ell = 1, 2, \dots, N$ (*)

and find out in which form the determinant $det(A_{\ell+1})$ depends on $det(A_{\ell})$ and $det(A_{\ell-1})$ (for $\ell = 1, 2, ..., N-1$).

- (a) Use mathematical induction w.r.t. $\ell = 1, 2, ..., N$ to determine a correspondence between det $(A_{\ell} \lambda I_{\ell})$ and det $(B_{\ell} \lambda I_{\ell})$, where A_{ℓ} and B_{ℓ} are submatrices of A and B according to (*). The solution to this exercise then follows for the special case $\ell = N$.
- (b) Consider the matrix PAP with the special permutation matrix

$$P = \begin{bmatrix} & 1 \\ & 1 \\ & \ddots & \\ 1 & & \end{bmatrix} \in \mathbb{R}^{N \times N}$$

- (c) The answer to the first part of this problem can be found with part (a) of this exercise, and for the second part of the problem use mathematical induction w.r.t. $\ell = 1, 2, ..., N$ to find a representation of det (A_{ℓ}) .
- **Hints to Exercise 12.2** (a) The problem corresponding to the eigenvalues and vectors can be treated after a consideration of the matrix $A(I 2vv^{\top})$.
- (b) First derive a representation for the entries of the matrix $vv^{\top}Dvv^{\top}$.

Hints to Exercise 12.3 For $\mu \in \sigma(A)$ the situation is clear, and for $\mu \notin \sigma(A)$ consider (*) $(A - \mu I)^{-1}(D - \mu I)x$ and find out some results on the spectral norms of the matrices in (*). Here, D denotes the diagonal matrix diag (d_1, d_2, \ldots, d_N) . The rest follows by using the symmetry of the considered matrices.

- Hints to Exercise 12.4 (a) Apply the theorem of Gershgorin to the matrix $C(\theta) := D_{\theta}^{-1}(A + \theta B)D_{\theta}$, where the notation $D_{\theta} = \text{diag}(1, \theta^{1/N}, \theta^{2/N}, \dots, \theta^{(N-1)/N})$ is used.
- (b) Consider $B = (b_{kj}) \in \mathbb{R}^{N \times N}$ with $b_{N1} = 1$ and $b_{kj} = 0$ otherwise.

Hints to Exercise 12.5 The assumption means

$$|\lambda - a_{kk}| \ge \sum_{\substack{j=1\\j \neq k}}^{N} |a_{kj}|$$
 for $k = 1, 2, \dots, N$

For an arbitrary eigenvector $0 \neq x \in \mathbb{C}^N$ with $Ax = \lambda x$ consider the index set $\mathcal{K} = \{1 \leq k \leq N : |x_k| = ||x||_{\infty} \}$ and verify $\lambda \in \partial \mathcal{G}_k$ for all $k \in \mathcal{K}$ by using the diagonal dominance. Then show the following by making a contradictory assumption: if the matrix A is irreducible then the identity $\mathcal{K} = \{1, 2, ..., N\}$ holds.

- **Hints to Exercise 12.6** (a) From the symmetry of the matrix A it follows that all eigenvalues of A are real, i.e., $\lambda_1, \ldots, \lambda_N \in \mathbb{R}$, and the corresponding eigenvectors $x_1, \ldots, x_N \in \mathbb{R}^N$ may assumed as mutually orthonormal, $x_k^{\top} x_j = \delta_{kj}$. An expansion $x = \sum_{j=1}^N a_j x_j$ and some elementary estimates then give the solution to the problem.
- (b) One basically has to proceed as in part (a). Additionally one has to show that with the notation J' = {1, 2, ..., N} \J the following holds: ∑_{j∈J'} |a_j|² = inf_{z∈E(J)} ||x z||²₂.

Hints to Exercise 12.7 For the verification of the second identity in the exercise show first that in the first identity of the theorem of Courant/Fischer, the condition "dim $\mathcal{L} \leq j$ " can be replaced by "dim $\mathcal{L} = j$ ". For this purpose, at one step of the corresponding proof for a subspace $\mathcal{L} \subset \mathbb{R}^N$ with dim $\mathcal{L} \leq j$ another subspace $M \subset \mathbb{R}^N$ has to be considered which satisfies $\mathcal{L} \subset M$ and dim M = j, and the corresponding maximal Rayleigh quotients have to be compared. Then the system of sets $\{\mathcal{L}^{\perp} : \mathcal{L} \subset \mathbb{R}^N \text{ is a linear subspace, dim } \mathcal{L} = j\}$ has to be considered.

The first identity of the exercise can be obtained from the second identity of this exercise, applied to the matrix $(A + \gamma I)^{-1}$ for a sufficiently large number $\gamma > 0$.

Hints to Exercise 12.9 Consider the two identities of Exercise 12.7 with the special subspace $M = \text{span} \{ \mathbf{e}_k : k \leq \lfloor N/2 \rfloor \}$.