Hints for solving the exercises in Chapter 14

Hints to Exercise 14.2 Follows with Theorem 14.5 applied to a sequence of functions which can be obtained by applying the following theorem:

Theorem For each point $x \in [a, b]$ there exists a system of infinitely often differentiable functions $g_{\varepsilon} : [a, b] \to \mathbb{R}$ für $\varepsilon > 0$ with the following properties: $g_{\varepsilon}(t) = 0$ for $|t - x| \ge \varepsilon$, and $\int_{a}^{b} g_{\varepsilon}(t)\psi(t) dt \to \psi(x) \ (\varepsilon \to 0)$ for each continuous function $\psi : [a, b] \to \mathbb{R}$.

Verify the continuity of the Peano kernel. A proof of the theorem is not required.

Hints to Exercise 14.3 (a) Show first that the polynomial P can be represented as follows,

$$P(x) = \sum_{j=0}^{2} (f_j L_{j0}(x) + f'_j L_{j1}(x))$$

where the following notations are used:

For the verification of the representation for the corresponding quadrature formula stated in the exercise, one has to evaluate the integrals $\int_{-1}^{1} L_{j0}(x) dx$ und $\int_{-1}^{1} L_{j1}(x) dx$ for j = 0, 1, 2. Here, the computations can be simplified by verifying the identities $L_{11}(-x) = L_{11}(x)$ and $L_{21}(x) = -L_{01}(-x)$ as well as $L_{20}(x) = L_{00}(-x)$, where the second of the three identities can be obtained by a comparison of the Hermitian interpolation properties.

(d) Use the representation (14.3).