Hints for solving the exercises in Chapter 3

Hints to Exercise 3.1 (a) Use that an existence and uniqeness result similar to that for interpolating polynomials also holds for polynomials in $e^{\mathrm{i} x}$: there exists a unique function of the form (*) $\sum_{k=-N / 2}^{N / 2} d_{k} e^{\mathrm{i} k 2 \pi x / L}$ satisfying the interpolationg conditions. An application of the Euler formula $e^{i x}=\cos x+\mathrm{i} \sin x$ leads to the representation in the exercise.
(b) We have $y_{k}=\overline{y_{k}}=\overline{T\left(x_{k}\right)} \ldots$. The uniqueness of the interpolating function of the form (*) yields the statement of the exercise.

Hints to Exercise 3.2 (a) The first result in the hint to this exercise is obtained by a summation formula for trigonometric functions, and the second result in the hint to the exercise is obtained by using the Euler formula $e^{i x}=$ $\cos x+\mathrm{i} \sin x$. (Multiplication with complex numbers, then backtransformation to real numbers.)
Hints to Exercise 3.3 (a) For each index $j=0,1, \ldots, N-1$ there holds $D_{2} w^{(j)}=\lambda_{j} w^{(j)}$ (verify this for each entry). From $\left(w^{(j)}\right)^{\mathrm{H}} w^{(\ell)}=\sqrt{N} \delta_{j \ell}$ one then obtains the solution to part (a) of this exerscise .
(b) Show that $\mathcal{F} D_{2} c=M \mathcal{F} c$ for $c \in \mathbb{C}^{N}$, the statement of the exercise then follows easily.

Hints to Exercise 3.4 Here the following definition of the d_{j} 's is needed: $\left[d_{0}, d_{1}, \ldots, d_{N-1}\right]:=2 T\left[f_{0}, f_{1}, \ldots\right.$, $\left.f_{N-1}\right]$ with $T=\operatorname{diag}\left(e^{-\mathrm{i} j 0 \pi / N}, e^{-\mathrm{i} j 1 \pi / N}, \ldots, e^{-\mathrm{i} j k 2 \pi / N}\right)$.
(a) Show that

$$
d_{j}=\frac{2}{N} \sum_{k=0}^{N-1} f_{k} \cos \left(\pi j \frac{2 k+1}{N}\right) .
$$

The statement of the exercise then follows easily.
(b) Apply part (a) with $f_{N-1-k}:=f_{k}$ for $k=0, \ldots, N / 2-1$. For the evaluation of $p\left(x_{k}\right)$ use the complex representation and apply the Euler formula. The discrete inverse Fourier transform finally yields $p\left(x_{k}\right)=f_{k}$.

