Hints for solving the exercises in Chapter 4

Hints to Exercise 4.3 (a) For " $\Longleftarrow " ~ p r o c e e d ~ a s ~ f o r ~ t h e ~ s q u a r e ~ r o o t ~ m e t h o d ~ t o ~ c o m p u t e ~ a ~ C h o l e s k y ~ f a c t o r i z a t i o n ~$ of symmetric, positiv definite matrices. For " \Longrightarrow " show that a $L R$ factorization of A can be used to determine a $L R$ factorization for each of the considered principal submatrices.

Hints to Exercise 4.4 (a) Use the positive definitness of the matrix A with a special well-known vector.
(b) For fixed indices i and j, apply the positive definitness of the matrix A with the vector

$$
x=\left(x_{k}\right) \in \mathbb{R}^{N} \quad \text { with } x_{k}= \begin{cases}1, & k=i \\ 0, & k \neq i, k \neq j \\ \alpha, & k=j\end{cases}
$$

with $\alpha \in \mathbb{R}$ arbitrary. From that conclude that no real solution α to the corresponding quadratic equation exists. This finally yields the solution to the problem.
(c) A contradictory assumption leads to a contradiction to the statement of part (b) of the exercise.

Hints to Exercise 4.5 Consider the decomposition (*) $A=L L^{\top}$ with the lower triangular matrix $L=\left(\ell_{i j}\right) \in$ $\mathbb{R}^{N \times N}$. For fixed index $i \in\{m+2, m+3, \ldots, N\}$, prove by mathematical induction w.r.t. $j \in\{1,2, \ldots, i-m-1\}$ that $\ell_{i j}=0$ holds. (Use $(*)$ to derive necessary conditions for the numbers $\ell_{i j}$).

Hints to Exercise 4.6 Consider the notations

$$
U=\left[\begin{array}{l|l|l}
u_{1} & \ldots & u_{N} \\
& &
\end{array}\right], \quad V=\left[\begin{array}{l|l|l}
v_{1} & \ldots & \left.v_{N}\right], \quad\langle u, v\rangle_{2}=u^{\top} v
\end{array}\right.
$$

and show first that the representation

$$
A x \quad \stackrel{(*)}{=} \sum_{k=1}^{N} \sigma_{k}\left\langle x, u_{k}\right\rangle_{2} v_{k} \quad \text { for } x \in \mathbb{R}^{N}
$$

holds. This representation $(*)$ has to be applied several times in the sequel.
(a) Derive a formula for $\|A\|_{2}$ in terms of σ_{1}, and proceed similarly for $\left\|A^{-1}\right\|_{2}$ and σ_{N}.
(b) Consider $x=\sum_{k=1}^{N} \alpha_{k} u_{k}$ and find out under which conditions on the coefficients $\alpha_{1}, \alpha_{2}, \ldots, \alpha_{N}$ the identity $\|b\|_{2}=\|A\|_{2}\|x\|_{2}$ is satisfied. Similarly consider $\Delta x=\sum_{k=1}^{N} \beta_{k} u_{k}$ and find out under which conditions on the coefficients $\beta_{1}, \beta_{2}, \ldots, \beta_{N}$ the identity $\|\Delta x\|_{2}=\left\|A^{-1}\right\|_{2}\|\Delta b\|_{2}$ is satisfied. As a consequence from these properties, the solution to the third subproblem in part (b) is obtained.
(c) First reduce the problem and determine vectors $b \in \mathbb{R}^{N}$ so that $\|x\|_{2}=\left\|A^{-1}\right\|_{2}\|b\|_{2}$ holds.

Hints to Exercise 4.9 Consider the notations

$$
A=\left[\begin{array}{l|l|l}
a_{1} & \ldots & a_{N}
\end{array}\right], \quad Q=\left[\begin{array}{l|l|l}
q_{1} & \ldots & q_{N}
\end{array}\right], \quad R=\left(r_{i j}\right)
$$

and compute $|\operatorname{det} A|$ by using the identity $A=Q R$. On the other hand there holds $a_{j}=\sum_{i=1}^{j} r_{i j} q_{i}$ with mutually orthonormal vectors $q_{1}, q_{2}, \ldots, q_{i}$. This can be used to determine lower bounds for the number $\left\|a_{j}\right\|_{2}$.

Hints to Exercise 4.10 In part (a) compute

$$
\left(A+u v^{\top}\right)\left(A^{-1}-\frac{A^{-1} u v^{\top} A-1}{1+v^{\top} A^{-1} u}\right)
$$

