Hints for solving the exercises in Chapter 6

Hints to Exercise 6.1 It is sufficient to consider monomials. This leads to a linear system of equations with corresponding matrix $A=\left(x_{j}^{k}\right)_{k, j=0, \ldots, N-1} \in \mathbb{R}^{N \times N}$. Apply a result from Chapter 1 on polynomial interpolation to show that the transposed matrix A^{\top} and therefore also the matrix A itself is regular.

Hints to Exercise 6.2 Consider a number \bar{x} with $\bar{x} \neq x_{j}$ for $j=0,1, \ldots, n$ and a polynomial $p \in \Pi_{2 n+2}$ which satisfies

$$
p(\bar{x})=1, \quad p\left(x_{j}\right)=0 \quad \text { for } j=0,1, \ldots, n, \quad p(x) \geq 0 \quad \text { for } \quad x \in \mathbb{R}
$$

Hints to Exercise 6.3 Consider a Taylor expansion of the function f of order n (for n not being fixed yet) at the point $x_{m}=(a+b) / 2$ and apply it for a representation of the numbers $\int_{a}^{b} f(x) d x$ and $f(a)$ and $f(b)$. Then consider the difference $\int_{a}^{b} f(x) d x-Q f$ and determine the coefficients a_{0}, a_{1} and a_{2}, such that all term except for the remainders vanish. It turns out that this is only possible for $n \leq 3$.

Hints to Exercise 6.4 The interpolating trigonometric polynomial $L f$ should be of the form

$$
(L f)(x)=\sum_{k=-N}^{N} d_{k} e^{\mathrm{i} k x}
$$

Consider the function $p(x):=(L f)(x) e^{\mathrm{i} N x}$ to show that there is exactly one interpolating function $L f$ of the given form. Moreover show that $\int_{0}^{2 \pi}(L f)(x)=2 \pi d_{0}$ holds. Then determine the coefficient d_{0} by applying the discrete inverse Fourier transform.

Hints to Exercise 6.5 For $r=1$, the Euler-Maclaurin summation formula is of the form
$\frac{g(0)}{2}+g(1)+\ldots+g(N-1)+\frac{g(N)}{2}=\int_{0}^{N} g(t) d t+\frac{B_{2}(0)}{2}\left(g^{\prime}(N)-g^{\prime}(0)\right)+\frac{B_{4}(0)}{24} g^{(4)}(\xi)$
with some intermediate number $0<\xi<N$, with $B_{2}(0)=1 / 6$ und $B_{4}(0)=-1 / 30$. This fomula applied with the function $g(x)=x^{3}$ yields the solution.

Hints to Exercise 6.6 Apply the substitution rule with $x=\cos \theta$. Additionally use that the trigonometric polynomials $\cos (k x), k=0,1, \ldots$ are mutually orthogonal with respect to the standard inner product $\langle u, v\rangle_{2}=$ $\int_{0}^{2 \pi} u(x) v(x) d x$.

Hints to Exercise 6.7 Proposal: for each of the four integrals, compute with a precision of 10^{-8} the numbers

$$
\begin{array}{llll}
T_{0} & & & \\
T_{1} & T_{01} & & \\
T_{2} & T_{12} & T_{012} & \\
T_{3} & T_{23} & T_{123} & T_{0123} \\
T_{4} & T_{34} & T_{234} & T_{1234} \\
\vdots & \vdots & \vdots & \vdots \\
T_{j_{*}-1} & T_{j_{*}-2, j_{*}-1} & T_{j_{*}-3, j_{*}-2, j_{*}-1} & T_{j_{*}-4, j_{*}-3, j_{*}-2, j_{*}-1} \\
T_{j_{*}} & T_{j_{*}-1, j_{*}} & T_{j_{*}-2, j_{*}-1, j_{*}} & T_{j_{*}-3, j_{*}-2, j_{*}-1, j_{*}} \\
& & & \left|T_{j_{*}-3, \ldots, j_{*}}-T_{j_{*}-4, \ldots, j_{*}-1}\right|
\end{array}
$$

Here $4 \leq j_{*} \leq 12$ denotes the smallest index with $\left|T_{j_{*}-3, \ldots, j_{*}}-T_{j_{*}-4, \ldots, j_{*}-1}\right| \leq \varepsilon:=10^{-8}$. In the case $\mid T_{j-3, \ldots, j}-$ $T_{j-4, \ldots, j-1} \mid>\varepsilon$ for $j=4,5, \ldots, 12$ let $j_{*}=12$.

