Hints for solving the exercises in Chapter 6

Hints to Exercise 6.1 It is sufficient to consider monomials. This leads to a linear system of equations with corresponding matrix $A = (x_j^k)_{k,j=0,...,N-1} \in \mathbb{R}^{N \times N}$. Apply a result from Chapter 1 on polynomial interpolation to show that the transposed matrix A^{\top} and therefore also the matrix A itself is regular.

Hints to Exercise 6.2 Consider a number \overline{x} with $\overline{x} \neq x_j$ for j = 0, 1, ..., n and a polynomial $p \in \Pi_{2n+2}$ which satisfies

$$p(\overline{x}) = 1,$$
 $p(x_j) = 0$ for $j = 0, 1, \dots, n,$ $p(x) \ge 0$ for $x \in \mathbb{R}.$

Hints to Exercise 6.3 Consider a Taylor expansion of the function f of order n (for n not being fixed yet) at the point $x_m = (a+b)/2$ and apply it for a representation of the numbers $\int_a^b f(x) dx$ and f(a) and f(b). Then consider the difference $\int_a^b f(x) dx - Qf$ and determine the coefficients a_0 , a_1 and a_2 , such that all term except for the remainders vanish. It turns out that this is only possible for $n \le 3$.

Hints to Exercise 6.4 The interpolating trigonometric polynomial Lf should be of the form

$$(Lf)(x) = \sum_{k=-N}^{N} d_k e^{ikx}$$

Consider the function $p(x) := (Lf)(x)e^{iNx}$ to show that there is exactly one interpolating function Lf of the given form. Moreover show that $\int_0^{2\pi} (Lf)(x) = 2\pi d_0$ holds. Then determine the coefficient d_0 by applying the discrete inverse Fourier transform.

Hints to Exercise 6.5 For r = 1, the Euler-Maclaurin summation formula is of the form

$$\frac{g(0)}{2} + g(1) + \ldots + g(N-1) + \frac{g(N)}{2} = \int_0^N g(t) \, dt + \frac{B_2(0)}{2} (g'(N) - g'(0)) + \frac{B_4(0)}{24} g^{(4)}(\xi)$$

with some intermediate number $0 < \xi < N$, with $B_2(0) = 1/6$ und $B_4(0) = -1/30$. This fomula applied with the function $g(x) = x^3$ yields the solution.

Hints to Exercise 6.6 Apply the substitution rule with $x = \cos \theta$. Additionally use that the trigonometric polynomials $\cos (kx)$, k = 0, 1, ... are mutually orthogonal with respect to the standard inner product $\langle u, v \rangle_2 = \int_0^{2\pi} u(x) v(x) dx$.

Hints to Exercise 6.7 Proposal: for each of the four integrals, compute with a precision of 10^{-8} the numbers

Here $4 \le j_* \le 12$ denotes the smallest index with $|T_{j_*-3,...,j_*} - T_{j_*-4,...,j_*-1}| \le \varepsilon := 10^{-8}$. In the case $|T_{j-3,...,j} - T_{j_*-4,...,j_*-1}| > \varepsilon$ for j = 4, 5, ..., 12 let $j_* = 12$.