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Hints for solving the exercises in Chapter 9

Hints to Exercise 9.1 The solution to the first subproblem is easily obtained, and the solvability follows from Exer-
cise 9.3 with the choices v0 := vN := 0.

Hints to Exercise 9.2 (a) Consider the function z(x) =
∫ 1

0 G(x, ξ )ϕ(ξ ) dξ for x ∈ [0 , 1] and prove z ′′(x) =

ϕ(x). Verify also that the boundary conditions are satisfied.

(b) The solution of the boundary value problem (∆u) ′′(x) = ∆ϕ(x) on [a, b ], (∆u)(0) = (∆u)(1) = 0, can
be determined by using part (a). Reasonable estimates of |∆u(x) | at each point x ∈ [a, b ] then easily follow,
if the domain of integration [a, b ] is divided into the two subintervals [0 , x ] and [x, 1]. The result in fact is
|∆u(x) | ≤ εx(1 − x)/2.

(c) This is a discrete version of part (b). The matrix A0 considered in this exercise concides – up to a normalization
– with the matrix A0 considered in Theorem 9.9. On the other hand, the solution cannot be obtained by simply
applying Theorem 9.9, the procedure has to be modified somewhat. One has to use the estimate |∆b | ≤ εe,
where | · | denotes the modulus function, and e := (1, 1, . . . , 1)>. Moreover the representation of A−1

0 e in the
proof of Theorem 9.9 is needed.

Hints to Exercise 9.3 (a) Use the notation M := maxj=0,...,N vj and prove by a contradictory assumption the
following: if for some 1 ≤ k ≤ N − 1 the identity vk = M holds then also vk−1 = vk+1 = M holds.

(b) The difference w = u − v satisfies ∆w ≥ 0, and the rest follows with the statement of part (a).

Hints to Exercise 9.4 Apply Friedrich’s inequality to the subintervals.

Hints to Exercise 9.5 (a) One has to show that the bilinear form [[ · , · ]] is a continuation of the mapping 〈〈L· , · 〉〉2 .
In fact, one partial integration gives the required identity 〈〈Lu, v 〉〉 = [[u, v ]] for u, v ∈ DL.

(b) Here Friedrich’s inequality as well as the following variant is needed,

||u ||∞ ≤ (b − a)1/2||u ′ ||2 for u ∈ C1
∆[a, b ] with u(a) = 0.

This estimate also has to be verified which after a consideration of the proof of Friedrich’s inequality should be
an easy task. Moreover the trivial estimate ||u ||2 ≤ (b − a)1/2||u ||∞ for u ∈ C[a, b ] is needed.

Hints to Exercise 9.6 The unknown bilinear form is obtained by applying two partial integrations. The boundary
condition guarantees that this bilinear form consists only of terms with integrals. The hints of the solution to part (b)
of Exercise 9.5 can be used also for this exericse.

Hints to Exercise 9.7 The proof of the classical Cauchy Schwarz inequality has to be transferred to this more ge-
neral situation.

Hints to Exercise 9.8 The equivalence of (ii) and (iii) can be easily verified. The implication “(ii) =⇒ (i)” follows
similar to proof of the statements in Theorem 9.43 and Corollary 9.44. The implication “(i) =⇒ (ii)” can be obtained
by making a contradictory assumption. A consideration of ||L(u+tv )−ϕ || for t ∈ R then together with an appropriate
choice of t ∈ R finally yields a contradiction.

Hints to Exercise 9.9 The bilinear form is [[u, v ]] =
∫ b

a u ′v ′ + xuv dx for u, v ∈ C1
∆[a, b ].

Hints to Exercise 9.10 (a) The following auxiliary result will be needed:

Theorem Let p, r, g ∈ C[a, b ] with r(x) ≤ 0 for x ∈ [a, b ]. Let the function y ∈ C2[a, b] be a solution of the
initial value problem

y ′′(x) + p(x)y ′(x) + r(x)y(x) = g(x) for x ∈ [a, b ], y(a) = α, y ′(a) = β

( for some α, β ∈ R ). Moreover assume that z ∈ C2[a, b ] is a solution of the the following initial value problem
for a differential inequality,

z ′′(x) + p(x)z ′(x) + r(x)z(x) ≤ g(x) for x ∈ [a, b ], z(a) ≤ α, z ′(a) ≤ β,
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Show that
z(x) ≤ y(x), z ′(x) ≤ y(x) for x ∈ [a, b ].

Hints for the proof of this theorem are given after the hints to this exercise.

According to Section 9.4, the function v =
∂u

∂s
( ·, s) : [a, b ] → R solves the following initial value problem

for a linear differential equation of second order: v ′′(x) + p(x)v ′(x) + r(x)v(x) = 0 for x ∈ [a, b ], with
certain functions p and q depending on s. For the proof of the inequality κ1 ≤ F ′(s) stated in the exercise
apply the above given theorem with the functions y = v and z(x) = (1 − e−L(x−a) )/L. For the proof of the
inequality F ′(s) ≤ κ2 given in the exercise apply the above given theorem with the initial value problem

y ′′(x) − Ly ′(x) − Ky(x) = 0 for x ∈ [a, b ], y(a) = 0, y ′(a) = 1, (•)

and the function z = v. The general solution of (•) (without consideration of the initial conditions) can be
determined by consideration of y(x) = c1e

λ1x + c2e
λ2x, where λ1/2 are the roots of the quadratic equation

λ2 − Lλ − K = 0.

For the proof of the above given theorem consider the differential operator Lw := w ′′ + pw ′ + rw. It is
sufficient to verify the following:

{

(Lw )(x) ≥ 0 for x ∈ [a, b ]

w(a) ≥ 0, w ′(a) ≥ 0,

}

=⇒ w(x) ≥ 0, w ′(x) ≥ 0 for x ∈ [a, b ]. (∗)

For the proof (∗) one has to prove the following stronger version:
{

(Lw )(x) > 0 for x ∈ [a, b ]

w(a) ≥ 0, w ′(a) > 0,

}

=⇒ w(x) > 0, w ′(x) > 0 for x ∈ ( a, b ]. (∗∗)

For the proof of (∗∗) suppose contradictory that the function w is not monotonically increasing on the interval
[a, b ]. Show then that there exists a number x∗ ∈ [a, b ] such that

w(x∗ ) ≥ 0, w ′(x∗ ) = 0, w ′′(x∗ ) ≤ 0

holds. This finally leads to a contradiction.

For the proof of the statement (∗) with a function w consider the auxiliary function

s(x) = eα(x−a) − 1 for x ∈ [a, b ],

where the coefficient α > 0 is chosen so that α2 − α maxx∈[a, b ] |p(x) | + minx∈[a, b ] r(x) > 0 holds. The
statement (∗) then follows from (∗∗) applied with the function wδ := w + δ s with δ > 0 and a subsequent limit
process δ → 0.

(b) The solution can be obtained with Banach’s fixpoint theorem.

Hints to Exercise 9.11 The general solution of the differential equation u ′′ = 100u is u(x) = αe10x + βe−10x. A
fitting of the coefficients α and β gives u( · , s). A consideration of the difference u(3 , sε ) − u(3 , s∗ ) helps to find
out if the shooting method is applicable or not.


