Spectral Function for some Product of Selfadjoint Operators

M. Denisov

Let \mathcal{H} be a Hilbert space with a scalar product (\cdot, \cdot) . Let $A : \mathcal{H} \to \mathcal{H}$ is a linear continuous operator, $A = A^*$ and $A \ge 0$, $G : \mathcal{H} \to \mathcal{H}$ is a linear continuous operator, $G = G^*$ and $0 \notin \sigma_p(G)$.

Consider the form $[\cdot, \cdot] := (G \cdot, \cdot)$, Hilbert space \mathcal{H} with a form $[\cdot, \cdot]$ is named G-space.

It is well-known a result of H.Langer about an existence of the spectral function of J-nonnegative operators. Our aim is to construct the spectral function for G-nonnegative operator AG. By the construction the spectral function we follow J.Bognar. We give an example of G-nonnegative operator which has no spectral function.

The research supported by the grant RFBR, 05-01-00203-a.

Bibliography

[1] T. Ja. Azizov and I.S. Iohvidov, Theory linear operators in the space with indefinite metric.- M.: Nauka, 1986.

[2] J.Bognar, A proof of the spectral theorem for J-positive operators. Acta sci. math., 1983, 15, 1-2, p.75-80.

[3] Langer.H, Spectralfunctionen einer Klasse J-selbstadjungierter Operatoren. — Math. Nachr., 1967, 33, 1-2, p. 107-120.