On Non-Canonical Extensions with Finitely Many Negative Squares

A. Luger

joint work with J. Behrndt and C. Trunk

Self-adjoint operators with finitely many negative squares appear e.g. in connection with Sturm-Liouville problems with certain indefinite weight functions. For particular eigenvalue dependent boundary value problems the linearization turns out to be an operator with also finitely many negative squares (in a larger space). In this talk we are going to discuss the following issue:

Let S be a symmetric operator in a Krein space \mathcal{K} with defect 1 and assume that it has a self-adjoint extension A_0 which has κ negative squares. The latter is equivalent to the fact that the corresponding Q-function mbelongs to the so-called \mathcal{D}_{κ} -class. Then Kreins formula

$$\mathcal{P}_{\mathcal{K}}(\widetilde{A}-\lambda)^{-1} \mid_{\mathcal{K}} = (A_0-\lambda)^{-1} - \frac{(\cdot,\varphi(\lambda))}{m(\lambda) + \tau(\lambda)}\varphi(\lambda)$$

establishes a one-to-one correspondence between all \mathcal{K} -minimal self-adjoint extensions \widetilde{A} which have finitely many negative squares and the parameters τ which belong to $\bigcup_{\kappa>0} \mathcal{D}_{\kappa}$.

In particular, we show that the actual number of negative squares of \widetilde{A} can be counted precisely as the sum of the indexes of m and τ with a possible correction depending on the functions local behaviour at 0 at ∞ .