On the relation between $X X^{[*]}$ and $X^{[*]} X$ in an indefinite inner product space

A. C. M. Ran
joint work with J. S. Kes

On \mathbb{C}^{n} we consider the indefinite inner product given by a Hermitian invertible matrix H. For an $n \times n$ matrix X we define by $X^{[*]}$ the adjoint in this indefinite inner product, that is, $X^{[*]}=H^{-1} X^{*} H$. Obviously, both $X^{[*]} X$ and $X X^{[*]}$ are H-selfadjoint. We discuss the relations between the canonical forms for the pairs $\left(X X^{[*]}, H\right)$ and $\left(X^{[*]} X, H\right)$. For some specific cases which are obtained by imposing restrictions on rank X or $\operatorname{rank} X^{[*]} X$ or both, the relations between these canonical forms can be found explicitly.

More precisely, given the canonical form of the pair $\left(X^{[*]} X, H\right)$, we shall describe the canonical form of $\left(X X^{[*]}, H\right)$ in the case where $\operatorname{rank} X^{[*]} X=$ $\operatorname{rank} X$, as well as in the case where $X^{[*]} X=0$. Note that these two cases can be seen as being opposite extremes. Several other cases are discussed as well.

