On the relation between $XX^{[*]}$ and $X^{[*]}X$ in an indefinite inner product space

A. C. M. Ran

joint work with J. S. Kes

On \mathbb{C}^n we consider the indefinite inner product given by a Hermitian invertible matrix H. For an $n \times n$ matrix X we define by $X^{[*]}$ the adjoint in this indefinite inner product, that is, $X^{[*]} = H^{-1}X^*H$. Obviously, both $X^{[*]}X$ and $XX^{[*]}$ are H-selfadjoint. We discuss the relations between the canonical forms for the pairs $(XX^{[*]}, H)$ and $(X^{[*]}X, H)$. For some specific cases which are obtained by imposing restrictions on rankX or rank $X^{[*]}X$ or both, the relations between these canonical forms can be found explicitly.

More precisely, given the canonical form of the pair $(X^{[*]}X, H)$, we shall describe the canonical form of $(XX^{[*]}, H)$ in the case where rank $X^{[*]}X =$ rankX, as well as in the case where $X^{[*]}X = 0$. Note that these two cases can be seen as being opposite extremes. Several other cases are discussed as well.