On Factorization of Matrix Functions in the Wiener Algebra

L. Rodman
joint work with I. M. Spitkovsky

Let G be a (multiplicative) connected compact abelian group, let Γ be its (additive) discrete character group, and let \preceq be a fixed linear order such that (Γ, \preceq) is an ordered group.

Given $a=\left\{a_{j}\right\}_{j \in \Gamma} \in \ell^{1}(\Gamma)$, the symbol of a is the complex-valued continuous function \hat{a} on G defined by

$$
\hat{a}(g)=\sum_{j \in \Gamma} a_{j}\langle j, g\rangle, \quad g \in G,
$$

where $\langle j, g\rangle$ stands for the action of the character $j \in \Gamma$ on the group element $g \in G$ (thus, $\langle j, g\rangle$ is a unimodular complex number). The set of all symbols of elements $a \in \ell^{1}(\Gamma)$ forms the Wiener algebra $W(G)$ of continuous functions on G (with pointwise multiplication and addition). Denote by $W(G)_{+}$(resp., $W(G)_{-}$) the algebra of symbols of elements in $\ell^{1}\left(\Gamma_{+}\right)$(resp., $\ell^{1}\left(\Gamma_{-}\right)$), where Γ_{+}, resp. Γ_{-}, is the set of nonnegative, resp. nonpositive, elements of Γ with respect to \preceq.

A (left) factorization of matrix function $A \in(W(G))^{n \times n}$ is a representation of the form

$$
\begin{equation*}
A(g)=A_{+}(g) \Lambda(g) A_{-}(g), \quad g \in G \tag{1}
\end{equation*}
$$

where A_{+}and its inverse belong to $\left(W(G)_{+}\right)^{n \times n}, A_{-}$and its inverse belong to $\left(W(G)_{-}\right)^{n \times n}, \Lambda=\operatorname{diag}\left(\left\langle j_{1}, \cdot\right\rangle, \ldots,\left\langle j_{n}, \cdot\right\rangle\right)$, and the indices $j_{1}, \ldots, j_{n} \in \Gamma$.

Main result:
Theorem. Let Γ^{\prime} be a subgroup of Γ, let G and G^{\prime} be the character groups of Γ and Γ^{\prime}, respectively. Assume that $A \in W\left(G^{\prime}\right)^{n \times n}$ admits a Γ factorization. Then A admits a Γ^{\prime}-factorization, necessarily with the same indices.

