Remarks on Global Stability for Inverse Sturm-Liouville Problems

A.A. Shkalikov joint work with A. Savchuk

We study inverse problems for the Sturm-Liouville operator

$$Ly = -y'' + q(x)y$$

on the finite interval $[0, \pi]$. The main attention is paid to the reconstruction of the potential q(x) from given two spectra $\{\lambda_k\}_1^{\infty}$ and $\{\mu_k\}_1^{\infty}$ of the operators L_D and L_{DN} generated by L with Dirichlet $(y(0) = y(\pi) = 0)$ and Dirichlet-Neumann $(y(0) = y'(\pi))$ conditions, respectively. We introduce the special spaces \hat{l}_2^{θ} which are finite dimensional dilations of the usual weighted l_2 -spaces and give the complete characterization for the sequences $\{\lambda_k\}_1^{\infty}$ and $\{\mu_k\}_1^{\infty}$ (in terms of these spaces) to be the spectra L_D and L_{DN} with the potential q(x) belonging to the Sobolev space $W_2^{\theta-1}[0,\pi]$, provided that $\theta \ge 0$. The case $\theta = 1$ gives the classical result due to Borg, Marchenko and Levitan.

Then, we prove the estimates (characterizing the global stability)

$$\|q^{0}(x) - q^{1}(x)\|_{W^{\theta-1}} \leq C(\|\{\sqrt{\lambda_{k}^{0}} - \sqrt{\lambda_{k}^{1}}\}\|_{\hat{l}^{\theta}} + \|\{\sqrt{\mu_{k}^{0}} - \sqrt{\mu_{k}^{1}}\}\|_{\hat{l}^{\theta}})$$

provided that $\{\lambda_k^j\}_1^\infty$ and $\{\mu_k^j\}_1^\infty$, j=0,1, lie inside some "natural" convex sets, and the constant C depends only on the parameters characterizing these sets. Estimates of this type are new for all $\theta \ge 0$ including the classical case $\theta = 1$.