Iterates of the Schur Class Operator-Valued Function and Their Conservative Realizations

Yury Arlinskii

Let \mathfrak{M} and \mathfrak{N} be separable Hilbert spaces and let $\Theta(z)$ be the function from the Schur class $\mathbf{S}(\mathfrak{M}, \mathfrak{N})$ of contractive functions holomorphic on the unit disk. The operator generalization of the Schur algorithm associates with Θ the sequence of contractions (the Schur parameters of Θ)

$$\Gamma_0 = \Theta(0) \in L(\mathfrak{M}, \mathfrak{N}), \ \Gamma_n \in L(\mathfrak{D}_{\Gamma_{n-1}}, \mathfrak{D}_{\Gamma_{n-1}^*})$$

and the sequence of functions $\Theta_0 = \Theta$, $\Theta_n \in \mathbf{S}(\mathfrak{D}_{\Gamma_n}, \mathfrak{D}_{\Gamma_n^*})$ $n = 1, \ldots$ connected by the relations

$$\Gamma_n = \Theta_n(0), \ \Theta_n(z) = \Gamma_n + z D_{\Gamma_n^*} \Theta_{n+1}(z) (I + z \Gamma_n^* \Theta_{n+1}(z))^{-1} D_{\Gamma_n}, \ |z| < 1.$$

The function $\Theta_n(z)$ is called the *n*-th Schur iterate of Θ .

The function $\Theta(z) \in \mathbf{S}(\mathfrak{M}, \mathfrak{N})$ can be realized as the transfer function $\Theta(z) = D + zC(I - zA)^{-1}B$ of a linear conservative and simple discrete-time system

$$\tau = \left\{ \begin{bmatrix} D & C \\ B & A \end{bmatrix}; \mathfrak{M}, \mathfrak{N}, \mathfrak{H} \right\}$$

with the state space \mathfrak{H} and the input and output spaces \mathfrak{M} and \mathfrak{N} , respectively.

In this talk we give a construction of conservative and simple realizations of the Schur iterates Θ_n by means of the conservative and simple realization of Θ .