Eigenvalue Problems with Boundary Conditions Depending Polynomially on the Eigenparameter

Branko Ćurgus

Let S be a closed densely defined symmetric operator with equal defect numbers $d < \infty$ in a Hilbert space $(\mathcal{H}, \langle \cdot, \cdot \rangle)$. Let $\mathbf{b} : \operatorname{dom}(S^*) \to \mathbb{C}^{2d}$ be a boundary mapping for S. We assume that S has a self-adjoint extension with a compact resolvent. Let $\mathcal{P}(z)$ be a $d \times 2d$ matrix polynomial.

We will give sufficient conditions on $\mathcal{P}(z)$ under which the eigenvalue problem

$$S^*f = \lambda f, \quad \mathcal{P}(\lambda)\mathbf{b}(f) = 0$$

is equivalent to an eigenvalue problem for a self-adjoint operator \widetilde{A} in a Pontrjagin space which is the direct sum of \mathcal{H} and a finite-dimensional space. Both, this finite dimensional Pontrjagin space and the self-adjoint operator \widetilde{A} are defined explicitly in terms of the coefficients of $\mathcal{P}(z)$.

In a special case when S is associated with an ordinary regular differential expression we give a description of the form domain of the operator \widetilde{A} in terms of the essential boundary conditions. It is shown that the eigenfunction expansions for the elements in the form domain converge in a topology that is stronger than uniform.

If J is a self-adjoint involution on \mathcal{H} and JS has a definitizable extension in the Krein space $(\mathcal{H}, \langle J \cdot, \cdot \rangle)$ our results extend to the eigenvalue problem in which S^* is replaced by JS^* . As a model problem we propose the following

$$-f''(x) = \lambda(\operatorname{sgn} x)f(x), \quad x \in [-1,1],$$

$$\begin{pmatrix} 1 & 0 & 0 & \lambda \\ 0 & 1 & -\lambda & \lambda^n \end{pmatrix} \begin{pmatrix} f(-1) \\ f(1) \\ f'(-1) \\ f'(1) \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}.$$