Bissectors and Isometries on Hilbert Spaces

J.-P. Labrousse

Let \mathcal{H} be a Hilbert space over \mathbb{C} and let $F(\mathcal{H})$ be the set of all closed linear subspaces of \mathcal{H} . For all $M, N \in F(\mathcal{H})$ set $g(M, N) = ||P_M - P_N||$ (known as the gap metric) where P_M, P_N denote respectively the orthogonal projections in \mathcal{H} on M and on N.

For all $M, N \in F(\mathcal{H})$ such that $ker(P_M + P_N - I) = \{0\}, \Psi(M, N)$, the bissector of M and N, is a uniquely determined element of $F(\mathcal{H})$ such that (setting $\Psi(M, N) = W$):

- (i) $P_M P_W = P_W P_N$
- (ii) $(P_M + P_N)P_W = P_W(P_M + P_N)$ is positive definite.

A mapping Φ of $F(\mathcal{H})$ into itself is called an *isometry* if

$$\forall M, N \in F(\mathcal{H}), g(M, N) = g(\Phi(M), \Phi(N)).$$

Theorem : Let $M, N \in F(\mathcal{H})$ be such that $ker(P_M + P_N - I) = \{0\}$ and let Φ be an isometry on $F(\mathcal{H})$. Then if $ker(P_{\Phi(M)} + P_{\Phi(N)} - I) = \{0\}$:

$$\Phi(\Psi(M,N)) = \Psi(\Phi(M),\Phi(N)).$$

A number of applications of this result are given.