Commuting Domination in Pontryagin Spaces

M. Wojtylak

We will discuss the following theorem, proved originally in [2] for formally normal and normal operators in Hilbert spaces.

Theorem 1 Let A_0, \ldots, A_n $(n \ge 1)$ be symmetric operators in a Pontryagin space \mathcal{K} and let \mathcal{E}_{ij} , $0 \le i < j \le n$, be dense linear spaces of \mathcal{K} such that

- (i) A_j weakly commutes with A_0 on \mathcal{E}_{0j} for $j = 1, \ldots, n$;
- (ii) A_i pointwise commutes with A_j on \mathcal{E}_{ij} for $1 \leq i < j \leq n$;
- (iii) A_0 is essentially selfajoint on \mathcal{E}_{0j} for $j = 1, \ldots, n$;
- (iv) A_0 dominates A_j on \mathcal{E}_{0j} for $j = 1, \ldots, n$.

Then $\bar{A}_0, \ldots, \bar{A}_n$ are spectrally commuting selfadjoint operators.

The proof requires some results on bouded vectors of a selfadjoint operator in a Pontryagin space. As a corollary we obtain a polynomial version of Nelson's criteria for selfadjointness. We will use the theory of operator matrices with all unbounded entries, which was developed in [1].

References

- [1] M. Möller, F.H. Szafraniec, Adjoints and formal adjoints of matrices of unbounded operators, *Proc. Amer. Math. Soc.*
- [2] J. Stochel, F. H. Szafraniec, Domination of unbounded operators and commutativity, J. Math. Soc. Japan, 55 No.2, (2003), 405-437.
- [3] M. Wojtylak, Commuting domination in Pontryagin spaces, preprint